Oral Antiviral Treatment for COVID-19: A Comprehensive Review on Nirmatrelvir/Ritonavir

Karolina Akinosoglou, Georgios Schinas, Charalambos Gogos, Karolina Akinosoglou, Georgios Schinas, Charalambos Gogos

Abstract

Despite the rapid development of efficient and safe vaccines against COVID-19, the need to confine the pandemic and treat infected individuals on an outpatient basis has led to the approval of oral antiviral agents. Taking into account the viral kinetic pattern of SARS-CoV-2, it is of high importance to intervene at the early stages of the disease. A protease inhibitor called nirmatrelvir coupled with ritonavir (NMV/r), which acts as a CYP3A inhibitor, delivered as an oral formulation, has shown much promise in preventing disease progression in high-risk patients with no need for supplemental oxygen administration. Real-world data seem to confirm the drug combination's efficacy and safety against all viral variants of concern in adult populations. Although, not fully clarified, viral rebound and recurrence of COVID-19 symptoms have been described following treatment; however, more data on potential resistance issues concerning the Mpro gene, which acts as the drug's therapeutic target, are needed. NMV/r has been a gamechanger in the fight against the pandemic by preventing hospitalizations and halting disease severity; therefore, more research on future development and greater awareness on its use are warranted.

Keywords: COVID-19; Paxlovid; SARS-CoV-2; nirmatrelvir; nirmatrelvir/ritonavir; ritonavir; treatment.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Protease inhibitors (PIs) evolution.
Figure 2
Figure 2
Algorithm on potential drug–drug interactions of nirmatrelvir/ritonavir.

References

    1. Parasher A. COVID-19: Current understanding of its Pathophysiology, Clinical presentation and Treatment. Postgrad Med. J. 2021;97:312–320. doi: 10.1136/postgradmedj-2020-138577.
    1. Estiri H., Strasser Z.H., Murphy S.N. Individualized prediction of COVID-19 adverse outcomes with MLHO. Sci. Rep. 2021;11:5322. doi: 10.1038/s41598-021-84781-x.
    1. Logue J.K., Franko N.M., McCulloch D.J., McDonald D., Magedson A., Wolf C.R., Chu H.Y. Sequelae in Adults at 6 Months After COVID-19 Infection. JAMA Netw. Open. 2021;4:e210830. doi: 10.1001/jamanetworkopen.2021.0830.
    1. NIH COVID-19 Treatment Guidelines. [(accessed on 1 November 2022)]; Available online:
    1. European Centre for Disease Prevention and Control 2022 High-Risk Groups for COVID-19. [(accessed on 5 November 2022)]. Available online: .
    1. Wu Z., McGoogan J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;323:1239–1242. doi: 10.1001/jama.2020.2648.
    1. Di Fusco M., Shea K.M., Lin J., Nguyen J.L., Angulo F.J., Benigno M., Malhotra D., Emir B., Sung A.H., Hammond J.L., et al. Health outcomes and economic burden of hospitalized COVID-19 patients in the United States. J. Med. Econ. 2021;24:308–317. doi: 10.1080/13696998.2021.1886109.
    1. Scudellari M. How the pandemic might play out in 2021 and beyond. Nature. 2020;584:22–25. doi: 10.1038/d41586-020-02278-5.
    1. Sallam M. COVID-19 Vaccine Hesitancy Worldwide: A Concise Systematic Review of Vaccine Acceptance Rates. Vaccines. 2021;9:160. doi: 10.3390/vaccines9020160.
    1. Bergwerk M., Gonen T., Lustig Y., Amit S., Lipsitch M., Cohen C., Mandelboim M., Levin E.G., Rubin C., Indenbaum V., et al. Covid-19 Breakthrough Infections in Vaccinated Health Care Workers. N. Engl. J. Med. 2021;385:1474–1484. doi: 10.1056/NEJMoa2109072.
    1. Naaber P., Tserel L., Kangro K., Sepp E., Jürjenson V., Adamson A., Haljasmägi L., Rumm A.P., Maruste R., Kärner J., et al. Dynamics of antibody response to BNT162b2 vaccine after six months: A longitudinal prospective study. Lancet Reg. Health Eur. 2021;10:100208. doi: 10.1016/j.lanepe.2021.100208.
    1. Harvey W.T., Carabelli A.M., Jackson B., Gupta R.K., Thomson E.C., Harrison E.M., Ludden C., Reeve R., Rambaut A., Consortium C.-G.U., et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 2021;19:409–424. doi: 10.1038/s41579-021-00573-0.
    1. Harris R.J., Hall J.A., Zaidi A., Andrews N.J., Dunbar J.K., Dabrera G. Effect of Vaccination on Household Transmission of SARS-CoV-2 in England. N. Engl. J. Med. 2021;385:759–760. doi: 10.1056/NEJMc2107717.
    1. Tan D.H.S., Chan A.K., Jüni P., Tomlinson G., Daneman N., Walmsley S., Muller M., Fowler R., Murthy S., Press N., et al. Post-exposure prophylaxis against SARS-CoV-2 in close contacts of confirmed COVID-19 cases (CORIPREV): Study protocol for a cluster-randomized trial. Trials. 2021;22:224. doi: 10.1186/s13063-021-05134-7.
    1. Tanne J.H. COVID-19: FDA authorises pharmacists to prescribe Paxlovid. BMJ. 2022;378:o1695. doi: 10.1136/bmj.o1695.
    1. EMA COVID-19 Treatments. [(accessed on 5 November 2022)]. Available online: .
    1. Goyal A., Cardozo-Ojeda E.F., Schiffer J.T. Potency and timing of antiviral therapy as determinants of duration of SARS-CoV-2 shedding and intensity of inflammatory response. Sci. Adv. 2020;6:eabc7112. doi: 10.1126/sciadv.abc7112.
    1. Forrest J.I., Rayner C.R., Park J.J.H., Mills E.J. Early Treatment of COVID-19 Disease: A Missed Opportunity. Infect Dis. Ther. 2020;9:715–720. doi: 10.1007/s40121-020-00349-8.
    1. Gonçalves A., Bertrand J., Ke R., Comets E., de Lamballerie X., Malvy D., Pizzorno A., Terrier O., Calatrava M.R., Mentré F., et al. Timing of Antiviral Treatment Initiation is Critical to Reduce SARS-CoV-2 Viral Load. CPT Pharmacomet. Syst. Pharm. 2020;9:509–514. doi: 10.1002/psp4.12543.
    1. Rai B., Shukla A., Dwivedi L.K. Incubation period for COVID-19: A systematic review and meta-analysis. Z Gesundh. Wiss. 2022;30:2649–2656. doi: 10.1007/s10389-021-01478-1.
    1. Eastman R.T., Roth J.S., Brimacombe K.R., Simeonov A., Shen M., Patnaik S., Hall M.D. Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19. ACS Cent. Sci. 2020;6:672–683. doi: 10.1021/acscentsci.0c00489.
    1. Rubin E.J., Baden L.R. The Potential of Intentional Drug Development. N. Engl. J. Med. 2022;386:1463–1464. doi: 10.1056/NEJMe2202160.
    1. Yang H., Xie W., Xue X., Yang K., Ma J., Liang W., Zhao Q., Zhou Z., Pei D., Ziebuhr J., et al. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol. 2005;3:e324. doi: 10.1371/journal.pbio.0030324.
    1. Owen D.R., Allerton C.M.N., Anderson A.S., Aschenbrenner L., Avery M., Berritt S., Boras B., Cardin R.D., Carlo A., Coffman K.J., et al. An oral SARS-CoV-2 M(pro) inhibitor clinical candidate for the treatment of COVID-19. Science. 2021;374:1586–1593. doi: 10.1126/science.abl4784.
    1. Razali R., Asis H., Budiman C. Structure-Function Characteristics of SARS-CoV-2 Proteases and Their Potential Inhibitors from Microbial Sources. Microorganisms. 2021;9:2481. doi: 10.3390/microorganisms9122481.
    1. Yang K.S., Leeuwon S.Z., Xu S., Liu W.R. Evolutionary and Structural Insights about Potential SARS-CoV-2 Evasion of Nirmatrelvir. J. Med. Chem. 2022;65:8686–8698. doi: 10.1021/acs.jmedchem.2c00404.
    1. Hammond J., Leister-Tebbe H., Gardner A., Abreu P., Bao W., Wisemandle W., Baniecki M., Hendrick V.M., Damle B., Simón-Campos A., et al. Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with COVID-19. N. Engl. J. Med. 2022;386:1397–1408. doi: 10.1056/NEJMoa2118542.
    1. Ahmad B., Batool M., Ain Q.U., Kim M.S., Choi S. Exploring the Binding Mechanism of PF-07321332 SARS-CoV-2 Protease Inhibitor through Molecular Dynamics and Binding Free Energy Simulations. Int. J. Mol. Sci. 2021;22:9124. doi: 10.3390/ijms22179124.
    1. Vangeel L., Chiu W., De Jonghe S., Maes P., Slechten B., Raymenants J., André E., Leyssen P., Neyts J., Jochmans D. Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antivir. Res. 2022;198:105252. doi: 10.1016/j.antiviral.2022.105252.
    1. Cooper C.L., van Heeswijk R.P., Gallicano K., Cameron D.W. A review of low-dose ritonavir in protease inhibitor combination therapy. Clin. Infect. Dis. 2003;36:1585–1592. doi: 10.1086/375233.
    1. PAXLOVID SPC. 2022. [(accessed on 3 November 2022)]. Available online: .
    1. Gandhi R.T., Malani P.N., Del Rio C. COVID-19 Therapeutics for Nonhospitalized Patients. JAMA. 2022;327:617–618. doi: 10.1001/jama.2022.0335.
    1. Bhimraj A., Morgan R.L., Shumaker A.H., Baden L., Cheng V.C.C., Edwards K.M., Gallagher J.C., Gandhi R.T., Muller W.J., Nakamura M.M., et al. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients with COVID-19. Clin. Infect. Dis. 2022:ciac724. doi: 10.1093/cid/ciac724.
    1. Rochwerg B., Siemieniuk R.A., Agoritsas T., Lamontagne F., Askie L., Lytvyn L., Agarwal A., Leo Y.-S., Macdonald H., Zeng L., et al. A living WHO guideline on drugs for COVID-19. BMJ. 2020;370:m3379. doi: 10.1136/bmj.m3379.
    1. Arbel R., Sagy Y.W., Hoshen M., Battat E., Lavie G., Sergienko R., Friger M., Waxman J.G., Dagan N., Balicer R., et al. Nirmatrelvir Use and Severe Covid-19 Outcomes during the Omicron Surge. N. Engl. J. Med. 2022;387:790–798. doi: 10.1056/NEJMoa2204919.
    1. Najjar-Debbiny R., Gronich N., Weber G., Khoury J., Amar M., Stein N., Goldstein L.H., Saliba W. Effectiveness of Paxlovid in Reducing Severe COVID-19 and Mortality in High Risk Patients. Clin. Infect. Dis. 2022:ciac443. doi: 10.1093/cid/ciac443.
    1. Wong C.K.H., Au I.C.H., Lau K.T.K., Lau E.H.Y., Cowling B.J., Leung G.M. Real-world effectiveness of early molnupiravir or nirmatrelvir-ritonavir in hospitalised patients with COVID-19 without supplemental oxygen requirement on admission during Hong Kong’s omicron BA.2 wave: A retrospective cohort study. Lancet Infect. Dis. 2022 doi: 10.1016/S1473-3099(22)00507-2.
    1. Wong C.K.H., Au I.C.H., Lau K.T.K., Lau E.H.Y., Cowling B.J., Leung G.M. Real-world effectiveness of molnupiravir and nirmatrelvir plus ritonavir against mortality, hospitalisation, and in-hospital outcomes among community-dwelling, ambulatory patients with confirmed SARS-CoV-2 infection during the omicron wave in Hong Kong: An observational study. Lancet. 2022;400:1213–1222. doi: 10.1016/S0140-6736(22)01586-0.
    1. Yip T.C.F., Lui G.C.Y., Lai M.S.M., Wong V.W.S., Tse Y.K., Ma B.H.M., Hui E., Leung M.K.W., Chan H.L.Y., Hui D.S.C., et al. Impact of the use of oral antiviral agents on the risk of hospitalization in community COVID-19 patients. Clin. Infect. Dis. 2022:ciac687. doi: 10.1093/cid/ciac687.
    1. Dryden-Peterson S., Kim A., Kim A.Y., Caniglia E.C., Lennes I., Patel R., Gainer L., Dutton L., Donahue E., Gandhi R.T., et al. Nirmatrelvir plus ritonavir for early COVID-19 and hospitalization in a large US health system. medRxiv. 2022 doi: 10.1101/2022.06.14.22276393.
    1. Ganatra S., Dani S.S., Ahmad J., Kumar A., Shah J., Abraham G.M., McQuillen D.P., Wachter R.M., E Sax P. Oral Nirmatrelvir and Ritonavir in Non-hospitalized Vaccinated Patients with Covid-19. Clin. Infect. Dis. 2022:ciac673. doi: 10.1093/cid/ciac673.
    1. Malden D.E., Hong V., Lewin B.J., Ackerson B.K., Lipsitch M., Lewnard J.A., Tartof S.Y. Hospitalization and Emergency Department Encounters for COVID-19 After Paxlovid Treatment—California, December 2021-May 2022. MMWR Morb. Mortal. Wkly. Rep. 2022;71:830–833. doi: 10.15585/mmwr.mm7125e2.
    1. Allen S., Jonhson K., Haddock J., Trinkl J., Nariani S., Joyce B. Game Changer: Paxlovid Reduces Hospitalizations and Saves Lives. Cosmos Study. 2022. [(accessed on 1 November 2022)]. Available online: .
    1. Lewnard J.A., Malden D., Hong V., Puzniak L., Kim J.S., Shaw S.F., Takhar H., Jodar L., McLaughlin J.M., Tartof S.Y. Effectiveness of nirmatrelvir-ritonavir against hospital admission: A matched cohort study in a large US healthcare system. medRxiv. 2022 doi: 10.1101/2022.10.02.22280623.
    1. Wai A.K.-C., Chan C.Y., Cheung A.W.-L., Wang K., Chan S.C.-L., Lee T.T.-L., Luk L.Y.-F., Yip E.T.-F., Ho J.W.-K., Tsui O.W.-K., et al. Association of Molnupiravir and Nirmatrelvir-Ritonavir with preventable mortality, hospital admissions and related avoidable healthcare system cost among high-risk patients with mild to moderate COVID-19. Lancet Reg. Health West Pac. 2022:100602. doi: 10.1016/j.lanwpc.2022.100602.
    1. Gentile I., Scotto R., Moriello N.S., Pinchera B., Villari R., Trucillo E., Ametrano L., Fusco L., Castaldo G., Buonomo A.R., et al. Nirmatrelvir/Ritonavir and Molnupiravir in the Treatment of Mild/Moderate COVID-19: Results of a Real-Life Study. Vaccines. 2022;10:1731. doi: 10.3390/vaccines10101731.
    1. Loza A., Farias R., Gavin N., Wagner R., Hammer E., Shields A. Short-term Pregnancy Outcomes After Nirmatrelvir–Ritonavir Treatment for Mild-to-Moderate Coronavirus Disease 2019 (COVID-19) Obstet. Gynecol. 2022;140:447–449. doi: 10.1097/AOG.0000000000004900.
    1. Qian G., Wang X., Patel N.J., Kawano Y., Fu X., Cook C.E., Vanni K.M.M., Kowalski E.N., Banasiak E.P., Banasiak E.P., et al. Outcomes with and without outpatient SARS-CoV-2 treatment for patients with COVID-19 and systemic autoimmune rheumatic diseases: A retrospective cohort study. medRxiv. 2022 doi: 10.1101/2022.10.27.22281629.
    1. Ranganath N., O’Horo J.C., Challener D.W., Tulledge-Scheitel S.M., Pike M.L., O’Brien R.M., Razonable R.R., Shah A. Rebound Phenomenon after Nirmatrelvir/Ritonavir Treatment of Coronavirus Disease-2019 in High-Risk Persons. Clin. Infect. Dis. 2022:ciac481. doi: 10.1093/cid/ciac481.
    1. Epling B.P., Rocco J.M., Boswell K.L., Laidlaw E., Galindo F., Kellogg A., Das S., Roder A., Ghedin E., Kreitman A., et al. Clinical, Virologic, and Immunologic Evaluation of Symptomatic Coronavirus Disease 2019 Rebound Following Nirmatrelvir/Ritonavir Treatment. Clin. Infect. Dis. 2022:ciac663. doi: 10.1093/cid/ciac663.
    1. Truong T.T., Ryutov A., Pandey U., Yee R., Goldberg L., Bhojwani D., Aguayo-Hiraldo P., Pinsky B.A., Pekosz A., Shen L., et al. Persistent SARS-CoV-2 infection and increasing viral variants in children and young adults with impaired humoral immunity. medRxiv. 2021 doi: 10.1101/2021.02.27.21252099.
    1. Motyan J.A., Mahdi M., Hoffka G., Tozser J. Potential Resistance of SARS-CoV-2 Main Protease (Mpro) against Protease Inhibitors: Lessons Learned from HIV-1 Protease. Int. J. Mol. Sci. 2022;23:3507. doi: 10.3390/ijms23073507.
    1. Bajema K., Wang X.Q., Hynes D.M., Rowneki M., Hickok A., Cunningham F., Bohnert A., Boyko E.J., Iwashyna T.J., Maciejewski M.L., et al. Early Adoption of Anti–SARS-CoV-2 Pharmacotherapies Among US Veterans With Mild to Moderate COVID-19, January and February 2022. JAMA Netw. Open. 2022;5:e2241434. doi: 10.1001/jamanetworkopen.2022.41434.
    1. Helleberg M., Niemann C.U., Moestrup K.S., Kirk O., Lebech A.M., Lane C., Lundgren J. Persistent COVID-19 in an Immunocompromised Patient Temporarily Responsive to Two Courses of Remdesivir Therapy. J. Infect. Dis. 2020;222:1103–1107. doi: 10.1093/infdis/jiaa446.
    1. . (2022). NCT. [(accessed on 1 November 2022)]; Available online: .
    1. . (2022). NCT. [(accessed on 1 November 2022)]; Available online: .
    1. . (2022). NCT. [(accessed on 1 November 2022)]; Available online: .
    1. . (2022). NCT. [(accessed on 1 November 2022)]; Available online: .

Source: PubMed

3
Abonner