Platelets in defense against bacterial pathogens

Michael R Yeaman, Michael R Yeaman

Abstract

Platelets interact with bacterial pathogens through a wide array of cellular and molecular mechanisms. The consequences of this interaction may significantly influence the balance between infection and immunity. On the one hand, recent data indicate that certain bacteria may be capable of exploiting these interactions to gain a virulence advantage. Indeed, certain bacterial pathogens appear to have evolved specific ways in which to subvert activated platelets. Hence, it is conceivable that some bacterial pathogens exploit platelet responses. On the other hand, platelets are now known to possess unambiguous structures and functions of host defense effector cells. Recent discoveries emphasize critical features enabling such functions, including expression of toll-like receptors that detect hallmark signals of bacterial infection, an array of microbicidal peptides, as well as other host defense molecules and functions. These concepts are consistent with increased risk and severity of bacterial infection as correlates of clinical abnormalities in platelet quantity and quality. In these respects, the molecular and cellular roles of platelets in host defense against bacterial pathogens are explored with attention on advances in platelet immunobiology.

Figures

Fig. 1
Fig. 1
Model of platelet interactions with Staphylococcus aureus. Based upon recent evidence, the model illustrates how platelets may sense and respond via parallel pathways that promote anti-staphylococcal host defense. a On the cellular level, interactions with S. aureus evoke: (1) platelet activation via specific receptors; (2) liberation and processing of PMPs and PKs which exert direct microbicidal effects, and (3) secretion of adenosine nucleotides (ADP/ATP) triggering a recursive cascade for activation of adjacent platelets. Note that inhibitors of the purinergic pathway of activation preclude anti-staphylococcal responses. b On the molecular level, specific sense and response pathway components are illustrated. Purinergic agonists such as ADP are known stimulants of strong platelet activation. Thus, degradation of extracellular ADP by apyrase (APY) or the inhibition of P2X or P2Y12 adenosine nucleotide receptors by suramin (SUR; general P2 inhibitor), pyridoxal-5′-phosphonucleotide derivative (PND; high-affinity P2X1 inhibitor), or cangrelor (CNG; high-affinity P2Y12 inhibitor) specifically prevents platelet (PLT) sense and response activation for staphylocidal efficacy. In contrast, antagonism of the P2Y1, phospholipase C (PLC), thromboxane A2 (TXA2), or cyclooxygenase (COX) pathways, or inhibition of the CD41, CD42b, or CD62P platelet adhesin receptors do not impede the sense and response activation of platelets versus S. aureus. Thus, the antistaphylococcal efficacy of platelets involves a self-amplifying, recursive sense and response mechanism: (1) direct or indirect interactions of platelets and S. aureus (SA); (2) platelet activation, via autocrine or intercrine P2X1 or P2Y12 receptor-mediated signal transduction prompting granule mobilization; (3) degranulation and liberation of ADP/ATP from δ-granules; (4) deployment of direct antimicrobial effector molecules (PMPs and PKs) from α-granules; and (5) adenosine nucleotide-mediated activation of adjacent platelets, with the ensuing amplification of antimicrobial responses. Such interactions are likely influenced by platelet-to-S. aureus ratios. In this respect, staphylocidal efficacy appears to involve a threshold platelet ratio to generate and sustain an intercrine platelet cascade required to achieve PMP/PK concentrations for staphylocidal efficacy. Adapted from [173]

References

    1. Yeaman MR, Bayer AS. Platelets in antimicrobial host defense. In: Michelson A, editor. Platelets. 2. New York: Academic; 2006. pp. 727–755.
    1. Nachum R, Watson SW, Sullivan JD, Jr, Siegel SE. Antimicrobial defense mechanisms in the horseshoe crab, Limulus polyphemus: preliminary observations with heat-derived extracts of Limulus amoebocyte lysate. J Invertebr Pathol. 1980;32:51–58.
    1. Maluf NSR. The blood of arthropods. Q Rev Biol. 1939;14:149–191.
    1. Weksler BB. Platelets. In: Gallin JI, Goldstein IM, Snyderman R, editors. Inflammation: basic principles and clinical correlates. 2. New York: Raven; 1992. pp. 543–557.
    1. Tocantins LM. The mammalian blood platelet in health and disease. Medicine. 1938;17:155–257.
    1. Klinger MH, Jelkmann W. Role of blood platelets in infection and inflammation. J Interferon Cytokine Res. 2002;22:913–922.
    1. Yeaman MR. The role of platelets in antimicrobial host defense. Clin Infect Dis. 1997;25:951–968.
    1. Yeaman MR, Bayer AS. Antimicrobial peptides from platelets. Drug Resist Updat. 1999;2:116–126.
    1. Elzey BD, Sprague DL, Ratliff TL. The emerging role of platelets in adaptive immunity. Cell Immunol. 2005;238:1–9.
    1. Fitzgerald JR, Foster TJ, Cox D. The interaction of bacterial pathogens with platelets. Nat Rev Microbiol. 2006;4:445–457.
    1. Ford I, Douglas CW. The role of platelets in infective endocarditis. Platelets. 1997;8:285–294.
    1. White JG. Platelet morphology and function. In: Williams WJ, Beutler E, Erslev AJ, Rundles RW, editors. Hematology. New York: McGraw-Hill; 1972. pp. 1023–1039.
    1. Marcus AJ (1969) Platelet function. N Eng J Med 280: 1213, 1278, 1330
    1. Heyssel RM. Determination of human platelet survival utilizing 14C-labelled serotonin. J Clin Invest. 1961;40:2134–2138.
    1. Murphy EA, Robinson GA, Rowsell A. The pattern of platelet disappearance. Blood. 1967;30:26–31.
    1. Harker LA, Finch CA. Thrombokinetics in man. J Clin Invest. 1969;48:963–1969.
    1. Colman RW. Receptors that activate platelets. Proc Soc Exp Biol Med. 1991;197:242–248.
    1. MacFarlane DE, Mills DCB. The effects of ATP on platelets: evidence against the central role of released ADP in primary aggregation. Blood. 1975;46:309–314.
    1. MacFarlane DE, Walsh PN, Mills DCB, Holmsen H, Day HJ. The role of thrombin in ADP-induced platelet aggregation and release: a critical evaluation. Br J Haematol. 1975;30:457–464.
    1. Davies TA, Fine RE, Johnson RJ, Levesque CA, Rathbun WH, Seetoo KF, Smith SJ, Strohmeier G, Volicer L, Delva L, Simons ER. Non-age related differences in thrombin responses by platelets from male patients with advanced Alzheimer’s disease. Biochem Biophys Res Commun. 1993;194:537–543.
    1. Rosenfeld SI, Looney RJ, Leddy JP. Human platelet Fc receptor of immunoglobulin G. J Clin Invest. 1985;76:2317–2322.
    1. Joseph M, Auriault C. A new function for platelets: IgE-dependent killing of schistosomes. Nature. 1983;303:810–812.
    1. Bout D, Joseph M, Ponet M. Rat resistance to schistosomiasis: platelet-mediated cytotoxicity induced by C-reactive protein. Science. 1986;231:153–156.
    1. Ochenhouse CF, Magowan C, Chulay JD. Activation of monocytes and platelets by monoclonal antibodies or malaria-infected erythrocytes binding to CD36 surface receptor in vitro. J Clin Invest. 1989;84:468–475.
    1. Cosgrove LJ, de Apice AJ, Haddad A, Pedersen J, McKenzie IF. CR3 receptors on platelets and it role in the prostaglandin metabolic pathway. Immunol Cell Biol. 1987;65:453–460.
    1. Pancré V, Monte D, Delanoye A, Capron A, Auriault C. Interleukin-6, the main mediator of interaction between monocytes and platelets in killing of Schistosoma mansoni. Eur Cytokine Netw. 1990;1:15–19.
    1. Peng J, Friese P, George JN, Dale GL, Burstein SA. Alteration of platelet function in dogs mediated by interleukin-6. Blood. 1994;83:398–403.
    1. Clemetson KJ, Clemetson JM, Proudfoot AE, Power CA, Baggiolini M, Wells TN. Functional expression of CCR1, CCR3, CCR4, and CXCR4 chemokine receptors on human platelets. Blood. 2000;96:4046–4054.
    1. Bureau MF, DeClerck F, Lefort J, Arreto CD, Vargaftig BB. Thromboxane A2 accounts for bronchoconstriction, but not for platelet sequestration and microvascular albumin exchanges induced by f-met-leu-phe in the guinea pig lung. J Pharmacol Exp Ther. 1992;260:8832–8840.
    1. Coyle AJ, Vargaftig BB. Animal models for investigating the allergic and inflammatory properties of platelets. In: Joseph M, editor. Immunopharmacology of platelets. London: Academic; 1995. pp. 21–30.
    1. Czapiga M, Gao JL, Kirk A, Lekstrom-Himes J. Human platelets exhibit chemotaxis using functional N-formyl peptide receptors. Exp Hematol. 2005;33:73–84.
    1. Jaff MS, McKenna D, McCann SR. Platelet phagocytosis: a probable mechanism of thrombocytopenia in Plasmodium falciparum infection. J Clin Pathol. 1985;38:1318–1319.
    1. Movat HZ, Weiser WJ, Glynn MF, Mustard JF. Platelet phagocytosis and aggregation. J Cell Biol. 1965;27:531–543.
    1. Cognasse F, Hamzeh H, Chavarin P, Acquart S, Genin C, Garraud O. Evidence of Toll-like receptor molecules on human platelets. Immunol Cell Biol. 2005;83:196–198.
    1. Shiraki R, Inoue N, Kawasaki S, Takei A, Kadotani M, Ohnishi Y, Ejiri J, Kobayashi S, Hirata K, Kawashima S, Yokoyama M. Expression of Toll-like receptors on human platelets. Thromb Res. 2004;113:379–385.
    1. Aslam R, Speck ER, Kim M, Crow AR, Bang KW, Nestel FP, Ni H, Lazarus AH, Freedman J, Semple JW. Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo. Blood. 2006;107:637–641.
    1. Cognasse F, Hamzeh-Cognasse H, Lafarge S, Delezay O, Pozzetto B, McNicol A, Garraud O. Toll-like receptor 4 ligand can differentially modulate the release of cytokines by human platelets. Br J Haematol. 2008;141:84–91.
    1. Blair P, Rex S, Vitseva O, Beaulieu L, Tanriverdi K, Chakrabarti S, Hayashi C, Genco CA, Iafrati M, Freedman JE. Stimulation of Toll-like receptor 2 in human platelets induces a thromboinflammatory response through activation of phosphoinositide 3-kinase. Circ Res. 2009;104:346–354.
    1. Zhang G, Han J, Welch EJ, Ye RD, Voyno-Yasenetskaya TA, Malik AB, Du X, Li Z. Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J Immunol. 2009;182:7997–8004.
    1. Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, Keys EM, Allen-Vercoe E, Devinney R, Doig CJ, Green FH, Kubes P. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007;13:463–469.
    1. Scott T, Owens MD. Thrombocytes respond to lipopolysaccharide through Toll-like receptor-4, and MAP kinase and NF-kappaB pathways leading to expression of interleukin-6 and cyclooxygenase-2 with production of prostaglandin E2. Mol Immunol. 2008;45:1001–1008.
    1. Miedzobrodzki J, Panz T, Płonka PM, Zajac K, Dracz J, Pytel K, Mateuszuk Ł, Chłopicki S. Platelets augment respiratory burst in neutrophils activated by selected species of gram-positive or gram-negative bacteria. Folia Histochem Cytobiol. 2008;46:383–388.
    1. Blumberg N, Spinelli SL, Francis CW, Taubman MB, Phipps RP (2009) The platelet as an immune cell-CD40 ligand and transfusion immunomodulation. Immunol Res. 2009 [Epub ahead of print]
    1. Bancsi MJLF, Thompson J, Bertina RM. Stimulation of monocyte tissue factor expression in an in vitro model of bacterial endocarditis. Infect Immun. 1994;62:5669–5672.
    1. Drake TA, Pang M. Staphylococcus aureus induces tissue factor expression in cultured human cardiac valve endothelium. J Infect Dis. 1988;157:749–756.
    1. Drake TA, Rodgers GM, Sande MA. Tissue factor is a major stimulus for vegetation formation in enterococcal endocarditis in rabbits. J Clin Invest. 1984;73:1750–1753.
    1. White JG. Views of the platelet at rest and at work. Ann NY Acad Sci. 1987;509:156–176.
    1. White JG, Sauk JJ. Microtubule coils in spread blood platelets. Blood. 1984;64:470–478.
    1. Price B, Flaumenhaft R. Platelet α-granules: basic biology and clinical correlates. Blood Rev. 2009;23:177–189.
    1. Scheld WM, Valone JA, Sande MA. Bacterial adherence in the pathogenesis of infective endocarditis: interaction of dextran, platelets, & fibrin. J Clin Invest. 1978;61:1394–1404.
    1. Durack DT. Experimental bacterial endocarditis. IV. Structure and evolution of very early lesions. J Clin Pathol. 1975;45:81–89.
    1. Calderone RA, Rotondo MF, Sande MA. Candida albicans endocarditis: ultrastructural studies of vegetation formation. Infect Immun. 1978;20:279–289.
    1. Durack DT, Beeson PB, Petersdorf RG. Experimental bacterial endocarditis. III. Production of progress of the disease in rabbits. Br J Exp Pathol. 1973;54:142–151.
    1. Sullam PM, Drake TA, Sande MA. Pathogenesis of endocarditis. Am J Med. 1985;78(Suppl 6B):110–115.
    1. Ferguson DJP, McColm AA, Savage TJ, Ryan DM, Acred P. A morphological study of experimental rabbit staphylococcal endocarditis and aortitis. I. Formation and effect of infected and uninfected vegetations on the aorta. Br J Exp Pathol. 1986;67:667–678.
    1. Scheld WM, Sande MA. Endocarditis and intravascular infections. In: Mandell GL, Bennet JE, Dolin R, editors. Principles and practice of infectious diseases. 5. New York: Churchill Livingstone; 1995. pp. 740–782.
    1. Clawson CC (1977) Role of platelets in the pathogenesis of endocarditis. In: Infectious endocarditis. Am Heart Assoc Monogr 52:24–27
    1. Roberts WC, Buchbinder NA. Right-sided valvular infective endocarditis: a clinicopathologic study of 12 necropsy patients. Am J Med. 1972;53:7–19.
    1. Buchbinder NA, Roberts WC. Left-sided valvular infective endocarditis: a study of 45 necropsy patients. Am J Med. 1972;53:20–35.
    1. Vinter DW, Burkel WE, Wakefield TW, Graham LM, Whitehouse WM, Jr, Stanley JC, Ford JW. Radioisotope-labeled platelet studies and infection of vascular grafts. J Vasc Surg. 1984;6:921–923.
    1. Osler W (1886) On certain problems in the physiology of the blood corpuscles. Med News 48:365–370, 393–399, 421–425
    1. Cheung AL, Fischetti VA. The role of fibrinogen in staphylococcal adherence to catheters in vitro. J Infect Dis. 1990;161:1177–1186.
    1. Piguet PF, Vesin C, Ryser JE, Senaldi G, Grau GF, Tachini-Cottier F. An effector role for platelets in systemic and local lipopolysaccharide-induced toxicity in mice, mediated by a CD11a- and CD54a-dependent interaction with endothelium. Infect Immun. 1993;61:82–87.
    1. Smith CW. Leukocyte-endothelial cell interaction. Semin Hematol. 1993;30:45–55.
    1. Maisch PA, Calderone RA. Adherence of Candida albicans to a fibrin-platelet matrix formed in vitro. Infect Immun. 1980;27:650–656.
    1. Klotz SA, Harrison JL, Misra RP. Aggregated platelets enhance adherence of Candida yeasts to endothelium. J Infect Dis. 1989;160:669–677.
    1. Yeaman MR, Norman DC, Bayer AS. Staphylococcus aureus susceptibility to thrombin-induced platelet microbicidal protein is independent of platelet adherence or aggregation in vitro. Infect Immun. 1992;60:2368–2374.
    1. Sullam PM, Valone FH, Mills J. Mechanisms of platelet aggregation by group streptococci. Infect Immun. 1987;55:1743–1750.
    1. Robert R, Senet JM, Mahaza C, Annaix V, Miegeville M, Bouchara JP, Tronchin G, Marot-Leblond A. Molecular basis of the interaction between Candida albicans, fibrinogen, and platelets. J Mycol Med. 1992;2:19–25.
    1. Herzberg MC, Brintzenhofe KL, Clawson CC. Aggregation of human platelets and adhesion of Streptococcus sanguis. Infect Immun. 1983;39:1457–1469.
    1. Herzberg MC, Gong K, MacFarlane GD, Erickson PR, Soberay AH, Krebsbach PH, Gopalraj M, Schilling K, Bowen WH. Phenotypic characterization of Streptococcus sanguis virulence factors associated with bacterial endocarditis. Infect Immun. 1990;58:515–522.
    1. Nicolau DP, Freeman CD, Nightingale CH, Quintiliani R, Coe CJ, Maderazo EG, Cooper BW. Reduction of bacterial titers by low-dose aspirin in experimental aortic valve endocarditis. Infect Immun. 1993;61:1593–1595.
    1. Clawson CC, White JG. Platelet interaction with bacteria. II. Fate of bacteria. Am J Pathol. 1971;65:381–398.
    1. Clawson CC, White JG. Platelet interaction with bacteria. I. Reaction phases and effects of inhibitors. Am J Pathol. 1971;65:367–380.
    1. Clawson CC. Platelet interaction with bacteria. III. Ultrastructure. Am J Pathol. 1973;70:449–472.
    1. Clawson CC, Rao GHR, White JG. Platelet interaction with bacteria. IV. Stimulation of the release reaction. Am J Pathol. 1975;81:411–420.
    1. Forrester LJ, Campbell BJ, Berg JN, Barrett JT. Aggregation of platelets by Fusobacterium necrophorum. J Clin Microbiol. 1985;22:245–249.
    1. Czuprynski CJ, Balish E. Interaction of rat platelets with Listeria monocytogenes. Infect Immun. 1981;33:103–108.
    1. Copley AL, Maupin B, Balea T. The agglutinant and adhesive behaviour of isolated human and rabbit platelets in contact with various strains of mycobacteria. Acta Tuberc Scand. 1959;37:151–161.
    1. Kessler CM, Nussbaum E, Tuazon CU. In vitro correlation of platelet aggregation with occurrence of disseminated intravascular coagulation and subacute bacterial endocarditis. J Lab Clin Med. 1987;109:647–652.
    1. Timmons S, Huzoor-Akbar A, Grabarek J, Kloczewiak M, Hawiger J. Mechanism of human platelet activation by endotoxic glycolipid-bearing mutant Re595 of Salmonella minnesota. Blood. 1986;68:1015–1023.
    1. Mandell GL, Hook EW. The interaction of platelets, Salmonella, and mouse peritoneal macrophages. Proc Soc Exp Biol Med. 1969;132:757–759.
    1. Simmonet M, Triadou P, Frehel C, Morel-Kopp M-C, Kaplan C, Berche P. Human platelet aggregation by Yersinia pseudotuberculosis is mediated by invasin. Infect Immun. 1992;60:366–373.
    1. Sigurdsson AF, Gudmundsson S. The etiology of bacterial cellulitis as determined by fine-needle aspiration. Scand J Infect Dis. 1989;21:537–542.
    1. Diekema DJ, Pfaller MA, Schmitz FJ, Smayevsky J, Bell J, Jones RN, Beach M. Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin Infect Dis. 2001;32:S114–S132.
    1. Carratala J, Roson B, Fernandez-Sabe N, Shaw E, del Rio O, Rivera A, Gudiol F. Factors associated with complications and mortality in adult patients hospitalized for infectious cellulitis. Eur J Clin Microbiol Infect Dis. 2003;22:151–157.
    1. Brook I, Frazier EH. Clinical features and aerobic and anaerobic microbiological characteristics of cellulitis. Arch Surg. 1995;130:786–792.
    1. Hoen B, Alla F, Selton-Suty C, Beguinot I, Bouvet A, Briancon S, Casalta JP, Danchin N, Delahaye F, Etienne J, Le Moing V, Leport C, Mainardi JL, Ruimy R, Vandenesch F. Changing profile of infective endocarditis: results of a 1-year survey in France. JAMA. 2002;288:75–81.
    1. Fowler VG, Jr, Miro JM, Hoen B, Cabell CH, Abrutyn E, Rubinstein E, Corey GR, Spelman D, Bradley SF, Barsic B, Pappas PA, Anstrom KJ, Wray D, Fortes CQ, Anguera I, Athan E, Jones P, van der Meer JT, Elliott TS, Levine DP, Bayer AS. Staphylococcus aureus endocarditis: a consequence of medical progress. JAMA. 2005;293:3012–3021.
    1. Miro JM, Anguera I, Cabell CH, Chen AY, Stafford JA, Corey GR, Olaison L, Eykyn S, Hoen B, Abrutyn E, Raoult D, Bayer A, Fowler VG., Jr Staphylococcus aureus native valve infective endocarditis: report of 566 episodes from the International Collaboration on Endocarditis Merged Database. Clin Infect Dis. 2005;41:507–514.
    1. Wisplinghoff H, Seifert H, Wenzel RP, Edmond MB. Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in hospitals in the United States. Clin Infect Dis. 2003;36:1103–1110.
    1. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24, 179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004;39:309–317.
    1. Wisplinghoff H, Seifert H, Tallent SM, Bischoff T, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in pediatric patients in United States hospitals: epidemiology, clinical features and susceptibilities. Pediatr Infect Dis J. 2003;22:686–691.
    1. Mylotte JM, Kahler L, McCann C. Community-acquired bacteremia at a teaching versus a nonteaching hospital: impact of acute severity of illness on 30-day mortality. Am J Infect Control. 2001;29:13–19.
    1. Moreillon P, Que Y-A, Glauser MP. Staphylococcus aureus (including staphylococcal toxic shock) In: Mandell GL, Bennett JE, Dolin R, editors. Principles and practice of infectious diseases. 6. Philadelphia: Elsevier; 2005. pp. 2321–2351.
    1. Bayer AS, Ramos MD, Menzies BE, Yeaman MR, Shen AJ, Cheung AL. Hyperproduction of alpha-toxin by Staphylococcus aureus results in paradoxically reduced virulence in experimental endocarditis: a host defense role for platelet microbicidal proteins. Infect Immun. 1997;65:4652–4660.
    1. Hawiger J, Streackley S, Hammond D, Chang C, Timmons S, Glick A, desPrez RM. Staphylococcal-induced human platelet injury mediated by protein A and immunoglobulin G Fc receptor. J Clin Invest. 1979;64:931–937.
    1. Sullam PM, Payan DG, Dazin PF, Valone FH. Binding of viridans group streptococci to human platelets: a quantitative analysis. Infect Immun. 1990;58:3802–3806.
    1. Yeaman MR, Sullam PM, Dazin PF, Bayer AS. Characterization of Staphylococcus aureus-platelet binding by quantitative flow cytometric analysis. J Infect Dis. 1992;166:65–73.
    1. Bayer AS, Sullam PM, Ramos M, Li C, Cheung AL, Yeaman MR. Staphylococcus aureus induces platelet aggregation via a fibrinogen-dependent mechanism which is independent of principal platelet glycoprotein IIb/IIIa fibrinogen binding domains. Infect Immun. 1995;63:3634–3641.
    1. Siboo IR, Chambers HF, Sullam PM. Role of SraP, a serine-rich surface protein of Staphylococcus aureus in binding to human platelets. Infect Immun. 2005;73:2273–2280.
    1. Niemann S, Spehr N, van Aken H, Morgenstern E, Peters G, Herrmann M, Kehrel BE. Soluble fibrin is the main mediator of Staphylococcus aureus adhesion to platelets. Circulation. 2004;110:193–200.
    1. Cheung AL, Krishnan M, Jaffe EA, Fischetti VA. Fibrinogen acts as a bridging molecule in the adherence of Staphylococcus aureus to cultured human endothelial cells. J Clin Invest. 1991;87:2236–2245.
    1. Clawson CC, White JG, Herzberg MC. Platelet interaction with bacteria. VI. Contrasting the role of fibrinogen and fibronectin. Am J Hematol. 1980;9:43–53.
    1. Toy PTCY, Lai L-W, Drake TA, Sande MA. Effect of fibronectin on adherence of Staphylococcus aureus to fibrin thrombi in vitro. Infect Immun. 1985;48:83–86.
    1. Herrmann M, Suchard SJ, Boxer LA, Waldvogel FA, Lew PD. Thrombospondin binds to Staphylococcus aureus and promotes staphylococcal adherence to surfaces. Infect Immun. 1991;59:271–288.
    1. Loughman A, Fitzgerald JR, Brennan MP, Higgins J, Downer R, Cox D, Foster TJ. Roles for fibrinogen, immunoglobulin and complement in platelet activation promoted by Staphylococcus aureus clumping factor A. Mol Microbiol. 2005;57:804–818.
    1. Nguyen T, Ghebrehiwet B, Peerschke EI. Staphylococcus aureus protein A recognizes platelet gC1qR/p33: a novel mechanism for staphylococcal interactions with platelets. Infect Immun. 2000;68:2061–2068.
    1. Youssefian T, Drouin A, Masse JM, Guichard J, Cramer EM. Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specific subcellular compartment and is enhanced by platelet activation. Blood. 2002;99:4021–4029.
    1. Brennan M, Loughman A, Devocelle M, Arasu S, Chubb AJ, Foster TJ, Cox D. Elucidating the role of Staphylococcus epidermidis serine-aspartate repeat protein G (SdrG) in platelet activation. J Thromb Haemost. 2009;7:1364–1372.
    1. Gong K, Herzberg MC. Streptococcus sanguis expresses a 150-kilodalton two-domain adhesin: characterization of several independent adhesin epitopes. Infect Immun. 1997;65:3815–3821.
    1. Zimmerman TS, Spregelberg HL. Pneumococcus-induced serotonin release from human platelets. Identification of the participating plasma/serum factor as immunoglobulin. J Clin Invest. 1975;56:828–834.
    1. Ford I, Douglas CWI, Preston SE, Lawless A, Hampton KK. Mechanisms of platelet aggregation by Streptococcus sanguis, a causative organism in infective endocarditis. Br J Hematol. 1993;84:85–100.
    1. Kurpiewski GE, Forrester LJ, Campbell BJ, Barrett JT. Platelet aggregation by Streptococcus pyogenes. Infect Immun. 1983;39:704–708.
    1. Johnson CM, Bowie EJW. Pigs with von Willebrand disease may be resistant to experimental infective endocarditis. J Lab Clin Med. 1992;120:553–558.
    1. Kerrigan SW, Jakubovics NS, Keane C, Maguire P, Wynne K, Jenkinson HF, Cox D. Role of Streptococcus gordonii surface proteins SspA/SspB and Hsa in platelet function. Infect Immun. 2007;75:5740–5747.
    1. Sullam PM, Jarvis GA, Valone FH. Role of immunoglobulin G in platelet aggregation by viridans group streptococci. Infect Immun. 1988;56:2907–2911.
    1. Bensing BA, Rubens CE, Sullam PM. Genetic loci of Streptoccus mitis that mediate binding to human platelets. Infect Immun. 2001;69:1373–1380.
    1. Mitchell J, Siboo IR, Takamatsu D, Chambers HF, Sullam PM. Mechanism of cell surface expression of the Streptococcus mitis platelet binding proteins PblA and PblB. Mol Microbiol. 2007;64:844–857.
    1. Mitchell J, Sullam PM. Streptococcus mitis phage-encoded adhesins mediate attachment to α-2–8-linked sialic acid residues on platelet membrane gangliosides. Infect Immun. 2009;77:3485–3490.
    1. Xiong YQ, Bensing BA, Bayer AS, Chambers HF, Sullam PM. Role of the serine-rich surface glycoprotein GspB of Streptococcus gordonii in the pathogenesis of infective endocarditis. Microb Pathog. 2008;45:297–301.
    1. Takamatsu D, Bensing BA, Sullam PM. Four proteins encoded in the gspB-secY2A2 operon of Streptococcus gordonii mediate the intracellular glycosylation of the platelet-binding protein GspB. J Bacteriol. 2004;186:7100–7111.
    1. Ohba M, Shibazaki M, Sasano T, Inoue M, Takada H, Endo Y. Platelet responses and anaphylaxis-like shock induced in mice by intravenous injection of whole cells of oral streptococci. Oral Microbiol Immunol. 2004;19:26–30.
    1. Rasmussen M, Eden A, Bjorck L. SclA, a novel collagen-like surface protein of Streptococcus pyogenes. Infect Immun. 2000;69:6370–6377.
    1. Pietrocola G, Schubert A, Visai L, Torti M, Fitzgerald JR, Foster TJ, Reinscheid DJ, Speziale P. FbsA, a fibrinogen-binding protein from Streptococcus agalactiae, mediates platelet aggregation. Blood. 2005;105:1052–1059.
    1. Coutinho IR, Berk RS, Mammen E. Platelet aggregation by a phospholipase C from Pseudomonas aeruginosa. Thromb Res. 1988;51:495–505.
    1. Machado GB, de Assis MC, Leão R, Saliba AM, Silva MC, Suassuna JH, de Oliveira AV, Plotkowski MC (2009) ExoU-induced vascular hyperpermeability and platelet activation in the course of experimental Pseudomonas aeruginosa pneumosepsis. Shock [Epub ahead of print]
    1. Shepel M, Boyd J, Luider J, Gibb AP. Interaction of Yersinia enterocolitica and Y. pseudotuberculosis with platelets. J Med Microbiol. 2001;50:1030–1038.
    1. Bhat MA, Bhat JI, Kawoosa MS, Ahmad SM, Ali SW. Organism-specific platelet response and factors affecting survival in thrombocytopenic very low birth weight babies with sepsis. J Perinatol. 2009;29:702–708.
    1. Fodor J. Die fahigkeit des blutes bakterien zu vernichten. Dtsch Med Wochenschr. 1887;13:745–747.
    1. Gengou O. De l’origine de l’axenine de serums normaux. Ann Inst Pasteur (Paris) 1901;15:232–245.
    1. Hirsch JG. Comparative bactericidal activities of blood serum and plasma serum. J Exp Med. 1960;112:15–22.
    1. Jago R, Jacox RF. Cellular source and character of a heat-stable bactericidal property associated with rabbit and rat platelets. J Exp Med. 1961;113:701–709.
    1. Weksler BB. Induction of bactericidal activity in human platelets. Clin Res. 1971;19:434–435.
    1. Kahn RA, Flinton LJ. The relationship between platelets and bacteria. Blood. 1974;44:715–721.
    1. Miragliotta G, Lafata M, Jirilla E. Antibacterial activity mediated by human platelets. Agents Actions. 1988;25:401–406.
    1. Carroll SF, Martinez RJ. Antibacterial peptide from normal rabbit serum. I. Isolation from whole serum, activity, and microbiologic spectrum. Biochemistry. 1981;20:5973–5981.
    1. Carroll SF, Martinez RJ. Antibacterial peptide from normal rabbit serum. II. Compositional microanalysis. Biochemistry. 1981;20:5981–5987.
    1. Carroll SF, Martinez RJ. Antibacterial peptide from normal rabbit serum. III. Inhibition of microbial electron transport. Biochemistry. 1981;20:5988–5994.
    1. Myrvik QN. Serum bactericidins active against Gram-positive bacteria. Ann NY Acad Sci. 1956;66:391–400.
    1. Myrvik QN, Leake ES. Studies on antibacterial factors in mammalian tissues and fluids. IV. Demonstration of two non-dialyzable components in the serum bactericidin system for Bacillus subtilis. J Immunol. 1960;84:247–250.
    1. Johnson FB, Donaldson DM. Purification of staphylocidal β-lysin from rabbit serum. J Bacteriol. 1968;96:589–595.
    1. Donaldson DM, Tew JG. β-lysin of platelet origin. Bacteriol Rev. 1977;41:501–512.
    1. Weksler BB, Nachman RL. Rabbit platelet bactericidal protein. J Exp Med. 1971;134:1114–1130.
    1. Tew JG, Roberts RR, Donaldson DM. Release of β-lysin from platelets by thrombin and by a factor produced in heparinized blood. Infect Immun. 1974;9:179–186.
    1. Dankert J (1988) Role of platelets in early pathogenesis of viridans group streptococcal endocarditis. PhD dissertation, University of Groningen, The Netherlands
    1. Dankert J, van der Werff J, Zaat SAJ, Joldersma W, Klein D, Hess J. Involvement of bactericidal factors from thrombin-stimulated platelets in clearance of adherent viridans streptococci in experimental infective endocarditis. Infect Immun. 1995;63:663–671.
    1. Darveau RP, Blake J, Seachord CL, Cosand WL, Cunningham MD, Cassiano-Cough L, Maloney G. Peptide related to the carboxy-terminus of human platelet factor IV with antibacterial activity. J Clin Invest. 1992;90:447–455.
    1. Dürr M, Peschel A. Chemokines meet defensins: the merging concepts of chemoattractants and antimicrobial peptides in host defense. Infect Immun. 2002;70:6515–6517.
    1. Cole AM, Ganz T, Liese AM, Burdick MD, Liu L, Strieter RM. Cutting edge: IFN-inducible ELR- CXC chemokines display defensin-like antimicrobial activity. J Immunol. 2001;167:623–627.
    1. Yang D, Chen Q, Hoover DM, Staley P, Tucker KD, Lubkowski J, Oppenheim JJ. Many chemokines including CCL20/MIP-3α display antimicrobial activity. J Leukoc Biol. 2003;74:448–455.
    1. Tang YQ, Yeaman MR, Selsted ME. Microbicidal and synergistic activities of human platelet factor-4 (hPF-4) and connective tissue activating peptide-3 (CTAP-3) Blood. 1995;86:556a.
    1. Tang YQ, Yeaman MR, Selsted ME. Antimicrobial proteins from human platelets. Infect Immun. 2002;70:6524–6533.
    1. Yeaman MR, Puentes SM, Norman DC, Bayer AS. Partial purification and staphylocidal activity of thrombin-induced platelet microbicidal protein. Infect Immun. 1992;60:1202–1209.
    1. Yeaman MR, Tang Y-Q, Shen AJ, Bayer AS, Selsted ME. Purification and in vitro activities of rabbit platelet microbicidal proteins. Infect Immun. 1997;65:1023–1031.
    1. Yount NY, Gank KD, Xiong YQ, Bayer AS, Pender T, Welch WH, Yeaman MR. Platelet microbicidal protein-1: structural themes of a multifunctional antimicrobial peptide. Antimicrob Agents Chemother. 2004;48:4395–4404.
    1. Yeaman MR, Yount NY. Code among chaos: immunorelativity and the AEGIS model of antimicrobial peptides. Microbe. 2005;71:21–27.
    1. Yeaman MR (2004) Antimicrobial peptides from platelets in defense against cardiovascular infections. In: Devine DA, Hancock REW (eds) Mammalian host defense peptides. Cambridge University Press, Cambridge, pp 279–322
    1. Yeaman MR, Waring AJ, Yount NY, Gank KD, Wiese R, Bayer AS, Welch WH. Modular determinants of antimicrobial activity in platelet factor-4 family kinocidins. Biochem Biophys Acta. 2007;1768:609–619.
    1. Yount NY, Andrés MT, Fierro JF, Yeaman MR. The γ-core motif correlates with antimicrobial activity in Cys-containing kaliocin-1 originating from transferrins. Biochem Biophys Acta. 2007;1768:2862–2872.
    1. Yeaman MR, Yount NY. Unifying themes in host defense effector polypeptides. Nature Rev Microbiol. 2007;5:727–740.
    1. Yount NY, Waring AJ, Gank KD, Welch WH, Kupferwasser D, Yeaman MR. Structural correlates of antimicrobial activity in IL-8 and related human kinocidins. Biochem Biophys Acta. 2007;1768:598–608.
    1. Yount NY, Yeaman MR. Multidimensional signatures in antimicrobial peptides. Proc Natl Acad Sci USA. 2004;101:7363–7368.
    1. Anderson RC, Rehders M, Yu PL. Antimicrobial fragments of the pro-region of cathelicidins and other immune peptides. Biotechnol Lett. 2008;30:813–818.
    1. Yeaman MR, Gank KD, Bayer AS, Brass EP. Synthetic peptides that exert antimicrobial activities in whole blood and blood-derived matrices. Antimicrob Agents Chemother. 2002;46:3883–3891.
    1. Azizi N, Li C, Shen AJ, Bayer AS, Yeaman MR (1996) Staphylococcus aureus elicits release of platelet microbicidal proteins in vitro. Abstract no. 866, 36th Interscience Conference on Antimicrobial Agents and Chemotherapy, New Orleans
    1. Krijgsveld J, Zaat SA, Meeldijk J, van Veelen PA, Fang G, Poolman B, Brandt E, Ehlert JE, Kuijpers AJ, Engbers GH, Feijen J, Dankert J. Thrombocidins, microbicidal proteins from human blood platelets, are C-terminal deletion products of CXC chemokines. J Biol Chem. 2000;275:20374–20381.
    1. Yeaman MR, Yount NY, Edwards JE Jr., Brass EP (2006) Multifunctional context-activated protides and methods of use. US patent number 7,067,621
    1. Sieprawska-Lupa M, Mydel P, Krawczyk K, Wojcik K, Puklo M, Lupa B, Suder P, Silberring J, Reed M, Pohl J, Shafer W, McAleese F, Foster T, Travis J, Potempa J. Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother. 2004;48:4673–4679.
    1. Yount NY, Kupferwasser D, Spisni A, Waring AJ, Sharma S, Zachary Z, Ramjan H, Yeaman MR (2009) Selective reciprocity in antimicrobial activity versus cytotoxicity of hBD-2 and crotamine. Proc Natl Acad Sci USA (in press)
    1. Schaffner A, King CC, Schaer D, Guiney DG. Induction and antimicrobial activity of platelet basic protein derivatives in human monocytes. J Leukoc Biol. 2004;76:1010–1018.
    1. Zaiou M, Nizet V, Gallo RL. Antimicrobial and protease inhibitory functions of the human cathelicidin (hCAP18/LL-37) prosequence. J Invest Dermatol. 2003;120:810–816.
    1. Trier D, Gank K, Kupferwasser D, Yount N, Bayer AS, Kupferwasser L, French WJ, Michelson A, Yeaman MR. Platelet anti-staphylococcal responses occur through P2X1 and P2Y12 receptor-induced amplification and kinocidin release. Infect Immun. 2008;76:5706–5713.
    1. Sharma A, Novak EK, Sojar HT, Swank RT, Kuramitsu HK, Genco RJ. Porphyromonas gingivalis platelet aggregation activity: outer membrane vesicles are potent activators of murine platelets. Oral Microbiol Immunol. 2000;15:393–396.
    1. Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharm Rev. 2003;55:27–55.
    1. Mercier RC, Rybak MJ, Bayer AS, Yeaman MR. Influence of platelets and platelet microbicidal protein susceptibility on the fate of Staphylococcus aureus in an in vitro model of infective endocarditis. Infect Immun. 2000;68:4699–4705.
    1. Mercier RC, Dietz RM, Mazzola JL, Bayer AS, Yeaman MR. Beneficial influence of platelets on antibiotic efficacy in an in vitro model of Staphylococcus aureus endocarditis. Antimicrob Agents Chemother. 2004;48:2551–2557.
    1. Yeaman MR, Sullam PM, Dazin PF, Bayer AS. Platelet microbicidal protein alone and in combination with antibiotics reduces Staphylococcus aureus adherence to platelets in vitro. Infect Immun. 1994;62:3416–3423.
    1. Yeaman MR, Sullam PM, Dazin PF, Ghannoum MA, Edwards JE, Jr, Bayer AS. Fluconazole and platelet microbicidal protein inhibit Candida adherence to platelets in vitro. Antimicrob Agents Chemother. 1994;38:1460–1465.
    1. Filler SG, Joshi M, Phan QT, Diamond RD, Edwards JE, Jr, Yeaman MR. Platelets protect vascular endothelial cells from injury due to Candida albicans. Abstract 2163, 39th ICAAC Meeting. San Francisco: American Society for Microbiology; 1999.
    1. Yeaman MR, Bayer AS. Staphylococcus aureus, platelets, and the heart. Current Infect Dis Rep. 2000;2:281–298.
    1. Lorenz R, Brauer M. Platelet factor-4 (PF4) in septicaemia. Infection. 1988;16:273–276.
    1. Mezzano S, Burgos ME, Ardiles L, Olavarria F, Concha M, Caorsi I, Aranda E, Mezzano D. Glomerular localization of platelet factor 4 in streptococcal nephritis. Nephron. 1992;61:58–63.
    1. Wilson M, Blum R, Dandona P, Mousa S. Effects in humans of intravenously administered endotoxin on soluble cell-adhesion molecule and inflammatory markers: a model of human diseases. Clin Exp Pharmacol Physiol. 2001;28:376–380.
    1. Sullam PM, Frank U, Yeaman MR, Tauber MG, Bayer AS, Chambers HF. Effect of thrombocytopenia on the early course of streptococcal endocarditis. J Infect Dis. 1993;168:910–914.
    1. Dankert J, Krijgsveld J, van der Werff J, Joldersma W, Zaat SA. Platelet microbicidal activity is an important defense factor against viridans streptococcal endocarditis. J Infect Dis. 2001;184:597–605.
    1. Viscoli C, Bruzzi P, Castagnola E, Boni L, Calandra T, Gaya H, Meuneir F, Feld R, Zinner S, Klastersky J, et al. Factors associated with bacteraemia in febrile, granulocytopenic patients. The International Antimicrobial Therapy Cooperative Group (IATCG) of the European Organization for Research and Treatment of Cancer (EORTC) Eur J Cancer. 1994;30:430–437.
    1. Feldman C, Kallenbach JM, Levy H, Thorburn JR, Hurwitz MD, Koornhof HJ. Comparision of bacteraemic community-acquired lobar pneumonia due to Streptococcus pneumoniae and Klebsiella pneumoniae in an intensive care unit. Respiration. 1991;58:265–270.
    1. Chang FY, Singh N, Gayowski T, Wagener MM, Mietzner SM, Stout JE, Marino IR. Thrombocytopenia in liver transplant recipients: predictors, impact on fungal infections, and role of endogenous thrombopoietin. Transplantation. 2000;69:70–75.
    1. Smith-Erichsen N. Serial determinations of platelets, leukocytes, and coagulation parameters in surgical septicemia. Scand J Clin Lab Invest. 1985;178:7–14.
    1. Santolaya ME, Alvarez AM, Aviles CL, Becker A, Cofre J, Enriquez N, O’Ryan M, Paya E, Salgado C, Silva P, Tordecilla J, Varas M, Villarroel M, Viviani T, Zubieta M. Prospective evaluation of a model of prediction of invasive bacterial infection risk among children with cancer, fever, and neutropenia. Clin Infect Dis. 2002;35:678–683.
    1. Yoshida T, Tsushima K, Tsuchiya A, Nishikawa N, Shirahata K, Kaneko K, Ito K, Kawakami H, Nakagawa S, Suzuki T, Kubo K, Ikeda S. Risk factors for hospital-acquired bacteremia. Intern Med. 2005;44:1157–1162.
    1. Mavrommatis AC, Theodoridis T, Orfanidou A, Roussos C, Christopoulou-Kokkinou V, Zakynthinos S. Coagulation system and platelets are fully activated in uncomplicated sepsis. Crit Care Med. 2000;28:451–457.
    1. Sun H, Wang X, Degen JL, Ginsburg D. Reduced thrombin generation increases host susceptibility to group A streptococcal infection. Blood. 2009;113:1358–1364.

Source: PubMed

3
Abonner