The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome

Geoffrey D Hannigan, Jacquelyn S Meisel, Amanda S Tyldsley, Qi Zheng, Brendan P Hodkinson, Adam J SanMiguel, Samuel Minot, Frederic D Bushman, Elizabeth A Grice, Geoffrey D Hannigan, Jacquelyn S Meisel, Amanda S Tyldsley, Qi Zheng, Brendan P Hodkinson, Adam J SanMiguel, Samuel Minot, Frederic D Bushman, Elizabeth A Grice

Abstract

Viruses make up a major component of the human microbiota but are poorly understood in the skin, our primary barrier to the external environment. Viral communities have the potential to modulate states of cutaneous health and disease. Bacteriophages are known to influence the structure and function of microbial communities through predation and genetic exchange. Human viruses are associated with skin cancers and a multitude of cutaneous manifestations. Despite these important roles, little is known regarding the human skin virome and its interactions with the host microbiome. Here we evaluated the human cutaneous double-stranded DNA virome by metagenomic sequencing of DNA from purified virus-like particles (VLPs). In parallel, we employed metagenomic sequencing of the total skin microbiome to assess covariation and infer interactions with the virome. Samples were collected from 16 subjects at eight body sites over 1 month. In addition to the microenviroment, which is known to partition the bacterial and fungal microbiota, natural skin occlusion was strongly associated with skin virome community composition. Viral contigs were enriched for genes indicative of a temperate phage replication style and also maintained genes encoding potential antibiotic resistance and virulence factors. CRISPR spacers identified in the bacterial DNA sequences provided a record of phage predation and suggest a mechanism to explain spatial partitioning of skin phage communities. Finally, we modeled the structure of bacterial and phage communities together to reveal a complex microbial environment with a Corynebacterium hub. These results reveal the previously underappreciated diversity, encoded functions, and viral-microbial dynamic unique to the human skin virome.

Importance: To date, most cutaneous microbiome studies have focused on bacterial and fungal communities. Skin viral communities and their relationships with their hosts remain poorly understood despite their potential to modulate states of cutaneous health and disease. Previous studies employing whole-metagenome sequencing without purification for virus-like particles (VLPs) have provided some insight into the viral component of the skin microbiome but have not completely characterized these communities or analyzed interactions with the host microbiome. Here we present an optimized virus purification technique and corresponding analysis tools for gaining novel insights into the skin virome, including viral "dark matter," and its potential interactions with the host microbiome. The work presented here establishes a baseline of the healthy human skin virome and is a necessary foundation for future studies examining viral perturbations in skin health and disease.

Copyright © 2015 Hannigan et al.

Figures

FIG 1
FIG 1
Study design for the analysis of cutaneous viral and whole metagenomic communities. (A) Eight skin sites of 16 subjects were sampled. Colored text indicates the microenvironment classification, and each colored ball represents the occlusion status of the anatomical site. (B) Characteristics of the cohort sampled. (C) Flowchart illustrating the procedures by which DNA was isolated from cutaneous swabs and sequenced for downstream bioinformatic analyses.
FIG 2
FIG 2
Taxonomy and diversity of cutaneous viral and bacterial metagenomic communities. (A and B) Taxonomic relative abundance of the viral (A) and bacterial (B) communities by site over time. The viral relative abundance plots show the 10 most abundant taxa according to virus TrEMBL annotated contigs. The bacterial communities show the 10 most abundant taxa according to MetaPhlAn analysis. Each bar represents a single sample from a subject, and the bars are separated by time point and anatomical location as indicated at the top. (C and D) Nonmetric multidimensional scaling (NMDS) ordination plots of Bray-Curtis dissimilarities between virome (C) and whole-metagenome (D) samples, showing significant clustering (P < 0.001, Adonis test) by occlusion status and environmental substrate. (E) Alpha diversity (Shannon diversity metric) of the virome and bacterial metagenome for each anatomical site. The x axis represents median bacterial metagenome diversity, and the y axis represents median virome diversity. Each point is the median diversity of the two communities, and error bars indicate the population notch deviation of the median. (F and G) Viral (F) and microbial (G) Shannon diversity is presented by site microenvironment and occlusion, with asterisks indicating statistical significance (P < 0.05) by the Kruskal-Wallis and multiple-comparison post hoc tests. Box plots were calculated with the ggplot2 R package. (H and I) Intrapersonal variance compared to temporal variance of the virome (D) and the whole metagenome (E) as calculated by the mean (± the standard error of the mean) Bray-Curtis dissimilarity metric. A higher value indicates higher dissimilarity. An asterisk indicates statistical significance (P < 1.0−10).
FIG 3
FIG 3
Replication cycle and functional enrichment of bacteriophages on the skin. (A) Euler diagram of the phage contigs (yellow) that also contain an integrase gene (green), at least one prophage element per 10 kb (blue), homology to a known bacterial genome (red), or a combination of these markers. (B) Box plot illustrating the percent relative abundances of predicted temperate phages per body site. Temperate phage contigs were defined as those that contained both a phage gene at least every 10 kb and one of the other three temperate markers. Relative abundance was calculated as the relative number of reads per kilobase of transcript per million mapped unassembled reads that mapped back to the assembled contigs. An asterisk indicates statistical significance at P < 0.05 by the Kruskal-Wallis and multiple-comparison post hoc tests. (C) The distribution of exclusive OPFs associated with each anatomical site. (D) The distribution and UniProt annotation of the 15 core OPFs found across the entire virome. (E) Bray-Curtis dissimilarity of the virome samples by OPF relative abundance. Clustering was statistically significant (P < 0.001) by the Adonis test for both environmental substrate and occlusion.
FIG 4
FIG 4
Antibiotic resistance and bacterial virulence in the skin virome. (A) Relative abundances of predicted ARGs according to the CARD. Each bar represents a subject, and the bars are separated by time point and anatomical location as indicated at the top. (B) Flow diagram of the ARGs associated with bacteriophage contigs. The leftmost part shows the proportions of ARGs that colocalize on contigs with other phage genes or are themselves known phage-associated genes. The middle part shows the distribution of phage taxa that contain predicted ARGs. The rightmost part shows two annotated examples of ARGs colocalized on phage contigs, with the CARD-predicted ARGs in bold italics. (C) Similar to panel B, a flow diagram of the VFs associated with phages. As in panel B, the leftmost part shows the distribution of predicted VFs associated with phages, the middle part shows the taxonomic distribution of those phages, and the rightmost part shows an annotated example.
FIG 5
FIG 5
Modeled bacteriophage-host co-occurrence associations and CRISPR targets within the skin virome. (A) Network analysis of the correlations between bacteriophages of the virome and bacteria of the whole metagenome. Bacteriophages are represented by yellow boxes, while the bacterial genera are represented by blue boxes. The color intensity indicates the overall relative abundance of the taxon. The red lines represent a negative correlation, and the green lines represent a positive correlation. (B) Radial table showing bacterial CRISPR spacers (grey) that target viral phage contigs (black). The line colors represent the CRISPR spacer bacterial hosts. (C) Flow chart depicting the phage genome regions targeted by skin bacterial CRISPRs. The leftmost part shows the abundance of spacers that target a predicted coding region (ORF) within the phage genomes. The middle part is the distribution of ORFs matching a gene in the TrEMBL reference database. The rightmost part is the distribution of annotated coding region CRISPR targets.

References

    1. Hannigan GD, Grice EA. 2013. Microbial ecology of the skin in the era of metagenomics and molecular microbiology. Cold Spring Harb Perspect Med 3:a015362. doi:10.1101/cshperspect.a015362.
    1. Oh J, Byrd AL, Deming C, Conlan S, Program NCS, Kong HH, Segre JA. 2014. Biogeography and individuality shape function in the human skin metagenome. Nature 514:59–64. doi:10.1038/nature13786.
    1. Bohannan BJM, Lenski RE. 1997. Effect of resource enrichment on a chemostat community of bacteria and bacteriophage. Ecology 78:2303–2315. doi:10.1890/0012-9658(1997)078[2303:EOREOA];2.
    1. Rodriguez-Brito B, Li L, Wegley L, Furlan M, Angly F, Breitbart M, Buchanan J, Desnues C, Dinsdale E, Edwards R, Felts B, Haynes M, Liu H, Lipson D, Mahaffy J, Martin-Cuadrado AB, Mira A, Nulton J, Pašić L, Rayhawk S, Rodriguez-Mueller J, Rodriguez-Valera F, Salamon P, Srinagesh S, Thingstad TF, Tran T, Thurber RV, Willner D, Youle M, Rohwer F. 2010. Viral and microbial community dynamics in four aquatic environments. ISME J 4:739–751. doi:10.1038/ismej.2010.1.
    1. Tyson GW, Banfield JF. 2008. Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ Microbiol 10:200–207.
    1. Oliver KM, Degnan PH, Hunter MS, Moran NA. 2009. Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 325:992–994. doi:10.1126/science.1174463.
    1. Tyler JS, Beeri K, Reynolds JL, Alteri CJ, Skinner KG, Friedman JH, Eaton KA, Friedman DI. 2013. Prophage induction is enhanced and required for renal disease and lethality in an EHEC mouse model. PLoS Pathog 9:e1003236. doi:10.1371/journal.ppat.1003236.
    1. Brussow H, Canchaya C, Hardt W-. 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602. doi:10.1128/MMBR.68.3.560-602.2004.
    1. Hurwitz BL, Brum JR, Sullivan MB. 2015. Depth-stratified functional and taxonomic niche specialization in the “core” and “flexible” Pacific Ocean virome. ISME J 9:472–484 doi:10.1038/ismej.2014.143.
    1. Modi SR, Lee HH, Spina CS, Collins JJ. 2013. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 499:219–222. doi:10.1038/nature12212.
    1. Foulongne V, Sauvage V, Hebert C, Dereure O, Cheval J, Gouilh MA, Pariente K, Segondy M, Burguière A, Manuguerra J, Caro V, Eloit M. 2012. Human skin microbiota: high diversity of DNA viruses identified on the human skin by high throughput sequencing. PLoS One 7:e38499. doi:10.1371/journal.pone.0038499.
    1. Wylie KM, Mihindukulasuriya KA, Zhou Y, Sodergren E, Storch GA, Weinstock GM. 2014. Metagenomic analysis of double-stranded DNA viruses in healthy adults. BMC Biol 12:71. doi:10.1186/s12915-014-0071-7.
    1. Pedulla ML, Ford ME, Houtz JM, Karthikeyan T, Wadsworth C, Lewis JA, Jacobs-Sera D, Falbo J, Gross J, Pannunzio NR, Brucker W, Kumar V, Kandasamy J, Keenan L, Bardarov S, Kriakov J, Lawrence JG, Jacobs WR Jr., Hendrix RW, Hatfull GF. 2003. Origins of highly mosaic mycobacteriophage genomes. Cell 113:171–182. doi:10.1016/S0092-8674(03)00233-2.
    1. Breitbart M. 2012. Marine viruses: truth or dare. Annu Rev Mar Sci 4:425–448. doi:10.1146/annurev-marine-120709-142805.
    1. Thurber RV, Haynes M, Breitbart M, Wegley L, Rohwer F. 2009. Laboratory procedures to generate viral metagenomes. Nat Protoc 4:470–483. doi:10.1038/nprot.2009.10.
    1. Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, Rohwer F, Gordon JI. 2010. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466:334–338. doi:10.1038/nature09199.
    1. Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, Wu GD, Lewis JD, Bushman FD. 2011. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res 21:1616–1625. doi:10.1101/gr.122705.111.
    1. Breitbart M, Haynes M, Kelley S, Angly F, Edwards RA, Felts B, Mahaffy JM, Mueller J, Nulton J, Rayhawk S, Rodriguez-Brito B, Salamon P, Rohwer F. 2008. Viral diversity and dynamics in an infant gut. Res Microbiol 159:367–373. doi:10.1016/j.resmic.2008.04.006.
    1. Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, Salamon P, Rohwer F. 2003. Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol 185:6220–6223. doi:10.1128/JB.185.20.6220-6223.2003.
    1. Wommack KE, Bhavsar J, Ravel J. 2008. Metagenomics: read length matters. Appl Environ Microbiol 74:1453–1463. doi:10.1128/AEM.02181-07.
    1. Roux S, Krupovic M, Debroas D, Forterre P, Enault F. 2013. Assessment of viral community functional potential from viral metagenomes may be hampered by contamination with cellular sequences. Open Biol 3:130160. doi:10.1098/rsob.130160.
    1. Minot S, Bryson A, Chehoud C, Wu GD, Lewis JD, Bushman FD. 2013. Rapid evolution of the human gut virome. Proc Natl Acad Sci U S A 110:12450–12455. doi:10.1073/pnas.1300833110.
    1. Oh J, Byrd AL, Deming C, Conlan S, Program NCS, Kong HH, Segre JA. 2014. Biogeography and individuality shape function in the human skin metagenome. Nature 514:59–64. doi:10.1038/nature13786.
    1. Gutiérrez D, Adriaenssens EM, Martínez B, Rodríguez A, Lavigne R, Kropinski AM, García P. 2014. Three proposed new bacteriophage genera of staphylococcal phages: “3alikevirus,” “77likevirus” and “Phietalikevirus.” Arch Virol 159:389–398. doi:10.1007/s00705-013-1833-1.
    1. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. 2012. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 9:811–814. doi:10.1038/nmeth.2066.
    1. Segata N, Boernigen D, Tickle TL, Morgan XC, Garrett WS, Huttenhower C. 2013. Computational meta’omics for microbial community studies. Mol Syst Biol 9:666. doi:10.1038/msb.2013.22.
    1. Huson DH, Mitra S, Ruscheweyh H-, Weber N, Schuster SC. 2011. Integrative analysis of environmental sequences using MEGAN4. Genome Res 21:1552–1560. doi:10.1101/gr.120618.111.
    1. Human Microbiome Project Consortium 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–214. doi:10.1038/nature11234.
    1. Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, Schoenfeld D, Nomicos E, Park M, Becker J, Benjamin B, Blakesley R, Bouffard G, Brooks S, Coleman H, Dekhtyar M, Gregory M, Guan X, Gupta J, Han J, Hargrove A, Ho SL, Johnson T, Legaspi R, Lovett S, Maduro Q, Masiello C, Maskeri B, McDowell J, Montemayor C, Mullikin J, Park M, Riebow N, Schandler K, Schmidt B, Sison C, Stantripop M, Thomas J, Thomas P, Vemulapalli M, Young A, Kong HH, Segre JA. 2013. Topographic diversity of fungal and bacterial communities in human skin. Nature 498:367–370 doi:10.1038/nature12171.
    1. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, NISC Comparative Sequencing Program, Bouffard GG, Blakesley RW, Murray PR, Green ED, Turner ML, Segre JA. 2009. Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192. doi:10.1126/science.1171700.
    1. Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA, Carlson C, Chan AM, Haynes M, Kelley S, Liu H, Mahaffy JM, Mueller JE, Nulton J, Olson R, Parsons R, Rayhawk S, Suttle CA, Rohwer F. 2006. The marine viromes of four oceanic regions. PLoS Biol 4:e368. doi:10.1371/journal.pbio.0040368.
    1. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. 2009. Bacterial community variation in human body habitats across space and time. Science 326:1694–1697. doi:10.1126/science.1177486.
    1. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Bouffard GG, Blakesley RW, Murray PR, Green ED, Turner ML, Segre JA. 2009. Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192. doi:10.1126/science.1171700.
    1. Leplae R, Hebrant A, Wodak SJ, Toussaint A. 2004. ACLAME: a CLAssification of mobile genetic elements. Nucleic Acids Res 32:D45–D49. doi:10.1093/nar/gkh084.
    1. Kanehisa M, Goto S. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. doi:10.1093/nar/28.1.27.
    1. Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, Rodriguez-Mueller B, Zucker J, Thiagarajan M, Henrissat B, White O, Kelley ST, Methé B, Schloss PD, Gevers D, Mitreva M, Huttenhower C. 2012. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 8:e1002358. doi:10.1371/journal.pcbi.1002358.
    1. Schloss PD, Handelsman J. 2008. A statistical toolbox for metagenomics: assessing functional diversity in microbial communities. BMC Bioinformatics 9:34. doi:10.1186/1471-2105-9-34.
    1. Pride DT, Salzman J, Haynes M, Rohwer F, Davis-Long C, White RA III, Loomer P, Armitage GC, Relman DA. 2012. Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome. ISME J 6:915–926. doi:10.1038/ismej.2011.169.
    1. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, Bhullar K, Canova MJ, De Pascale G, Ejim L, Kalan L, King AM, Koteva K, Morar M, Mulvey MR, O’Brien JS, Pawlowski AC, Piddock LJV, Spanogiannopoulos P, Sutherland AD, Tang I, Taylor PL, Thaker M, Wang W, Yan M, Yu T, Wright GD. 2013. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 57:3348–3357. doi:10.1128/AAC.00419-13.
    1. Brötz E, Kulik A, Vikineswary S, Lim CT, Tan GY, Zinecker H, Imhoff JF, Paululat T, Fiedler HP. 2011. Phenelfamycins G and H, new elfamycin-type antibiotics produced by Streptomyces albospinus Acta 3619. J Antibiot 64:257–266. doi:10.1038/ja.2010.170.
    1. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q. 2005. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 33:D325–D328. doi:10.1093/nar/gki008.
    1. Soffer N, Zaneveld J, Vega Thurber R. 2015. Phage-bacteria network analysis and its implication for the understanding of coral disease. Environ Microbiol 17:1203–1218. doi:10.1111/1462-2920.12553.
    1. Barabasi A, Albert R. 1999. Emergence of scaling in random networks. Science 286:509–512. doi:10.1126/science.286.5439.509.
    1. Zhou J, Deng Y, Luo F, He Z, Tu Q, Zhi X. 2010. Functional molecular ecological networks. mBio 1:e00169. doi:10.1128/mBio.00169-10.
    1. Steele JA, Countway PD, Xia L, Vigil PD, Beman JM, Kim DY, Chow CT, Sachdeva R, Jones AC, Schwalbach MS, Rose JM, Hewson I, Patel A, Sun F, Caron DA, Fuhrman JA. 2011. Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J 5:1414–1425. doi:10.1038/ismej.2011.24.
    1. Marinelli LJ, Fitz-Gibbon S, Hayes C, Bowman C, Inkeles M, Loncaric A, Russell DA, Jacobs-Sera D, Cokus S, Pellegrini M, Kim J, Miller JF, Hatfull GF, Modlin RL. 2012. Propionibacterium acnes bacteriophages display limited genetic diversity and broad killing activity against bacterial skin isolates. mBio 3:e00279–12. doi:10.1128/mBio.00279-12.
    1. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P, Parkhill J, Loman NJ, Walker AW. 2014. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:87. doi:10.1186/s12915-014-0087-z.
    1. Hannigan GD, Hodkinson BP, McGinnis K, Tyldsley AS, Anari JB, Horan AD, Grice EA, Mehta S. 2014. Culture-independent pilot study of microbiota colonizing open fractures and association with severity, mechanism, location, and complication from presentation to early outpatient follow-up. J Orthop Res 32:597–605. doi:10.1002/jor.22578.
    1. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421. doi:10.1186/1471-2105-10-421.
    1. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with bowtie 2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923.
    1. Schmieder R, Edwards R. 2011. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS One 6:e17288. doi:10.1371/journal.pone.0017288.
    1. Boisvert S, Raymond F, Godzaridis É, Laviolette F, Corbeil J. 2012. Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biol 13:R122. doi:10.1186/gb-2012-13-12-r122.
    1. UniProt C. 2014. Activities at the universal protein resource (UniProt). Nucleic Acids Res 42:D191–D198. doi:10.1093/nar/gkt1140.
    1. Angly F, Rodriguez-Brito B, Bangor D, McNairnie P, Breitbart M, Salamon P, Felts B, Nulton J, Mahaffy J, Rohwer F. 2005. PHACCS, an online tool for estimating the structure and diversity of uncultured viral communities using metagenomic information. BMC Bioinformatics 6:41. doi:10.1186/1471-2105-6-41.
    1. Angly FE, Willner D, Prieto-Davó A, Edwards RA, Schmieder R, Vega-Thurber R, Antonopoulos DA, Barott K, Cottrell MT, Desnues C, Dinsdale EA, Furlan M, Haynes M, Henn MR, Hu Y, Kirchman DL, McDole T, McPherson JD, Meyer F, Miller RM, Mundt E, Naviaux RK, Rodriguez-Mueller B, Stevens R, Wegley L, Zhang L, Zhu B, Rohwer F. 2009. The GAAS metagenomic tool and its estimations of viral and microbial average genome size in four major biomes. PLOS Comput Biol 5:e1000593. doi:10.1371/journal.pcbi.1000593.
    1. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H. 2014. Vegan: community ecology package. R package version 2.2-0. .
    1. Wickham H. 2009. ggplot2: elegant graphics for data analysis. Springer, New York, NY.
    1. McGill R, Tukey JW, Larsen WA. 1978. Variations of box plots. Am Stat 32:12–16. doi:10.1080/00031305.1978.10479236.
    1. Zheng Q, Wang X-. 2008. GOEAST: a web-based software toolkit for gene ontology enrichment analysis. Nucleic Acids Res 36:W358–W363. doi:10.1093/nar/gkn276.
    1. Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 23:673–679. doi:10.1093/bioinformatics/btm009.
    1. Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. doi:10.1093/bioinformatics/btq461.
    1. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi:10.1038/nmeth.f.303.
    1. Chen L, Xiong Z, Sun L, Yang J, Jin Q. 2012. VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res 40:D641–D645. doi:10.1093/nar/gkr989.
    1. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. doi:10.1093/bioinformatics/bts199.
    1. Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, Huttenhower C. 2012. Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol 8:e1002606. doi:10.1371/journal.pcbi.1002606.
    1. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. doi:10.1101/gr.1239303.
    1. Sarkar SK, Chang C. 1997. The Simes method for multiple hypothesis testing with positively dependent test statistics. J Am Stat Assoc 92:1601–1608. doi:10.1080/01621459.1997.10473682.
    1. Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Series B Methodological 57:289–300.
    1. Assenov Y, Ramirez F, Schelhorn S-, Lengauer T, Albrecht M. 2008. Computing topological parameters of biological networks. Bioinformatics 24:282–284. doi:10.1093/bioinformatics/btm554.
    1. Edgar RC. 2007. PILER-CR: fast and accurate identification of CRISPR repeats. BMC Bioinformatics 8:18. doi:10.1186/1471-2105-8-18.
    1. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. 2009. Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645. doi:10.1101/gr.092759.109.

Source: PubMed

3
Abonner