The effect of occipital nerve field stimulation on the descending pain pathway in patients with fibromyalgia: a water PET and EEG imaging study

Shaheen Ahmed, Mark Plazier, Jan Ost, Gaetane Stassijns, Steven Deleye, Sarah Ceyssens, Patrick Dupont, Sigrid Stroobants, Steven Staelens, Dirk De Ridder, Sven Vanneste, Shaheen Ahmed, Mark Plazier, Jan Ost, Gaetane Stassijns, Steven Deleye, Sarah Ceyssens, Patrick Dupont, Sigrid Stroobants, Steven Staelens, Dirk De Ridder, Sven Vanneste

Abstract

Background: Fibromyalgia is a chronic disorder characterized by widespread musculoskeletal pain accompanied by fatigue, sleep, memory, and mood problems. Recently, occipital nerve field stimulation (ONS) has been proposed as an effective potential treatment for fibromyalgia-related pain. The aim of this study is to unravel the neural mechanism behind occipital nerve stimulation's ability to suppress pain in fibromyalgia patients.

Materials and methods: Seven patients implanted with subcutaneous electrodes in the C2 dermatoma were enrolled for a Positron Emission Tomography (PET) H215O activation study. These seven patients were selected from a cohort of 40 patients who were part of a double blind, placebo-controlled study followed by an open label follow up at six months. The H215O PET scans were taken during both the "ON" (active stimulation) and "OFF" (stimulating device turned off) conditions. Electroencephalogram (EEG) data were also recorded for the implanted fibromyalgia patients during both the "ON" and "OFF" conditions.

Results: Relative to the "OFF" condition, ONS stimulation resulted in activation in the dorsal lateral prefrontal cortex, comprising the medial pain pathway, the ventral medial prefrontal cortex, and the bilateral anterior cingulate cortex as well as parahippocampal area, the latter two of which comprise the descending pain pathway. Relative deactivation was observed in the left somatosensory cortex, constituting the lateral pain pathway as well as other sensory areas such as the visual and auditory cortex. The EEG results also showed increased activity in the descending pain pathway. The pregenual anterior cingulate cortex extending into the ventral medial prefrontal cortex displayed this increase in the theta, alpha1, alpha2, beta1, and beta2 frequency bands.

Conclusion: PET shows that ONS exerts its effect via activation of the descending pain inhibitory pathway and the lateral pain pathway in fibromyalgia, while EEG shows activation of those cortical areas that could be responsible for descending inhibition system recruitment.

Trial registration: This study is registered with ClinicalTrials.gov , number NCT00917176 (June 10, 2009).

Keywords: Fibromyalgia; Occipital nerve stimulation; Positron emission tomography (PET).

Conflict of interest statement

Competing interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

All patients gave written informed consent, and the ethical committee of the University Hospital Antwerp, Belgium approved the study.

Consent for publication

Not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Pet scan data regions of activation (on - off; red) and regions of deactivation (off - on; blue)
Fig. 2
Fig. 2
A comparison between the on and off stimulation conditions show a significant increase in activity at the pregenual anterior cingulate cortex extending into the ventral medial prefrontal cortex for the theta, alpha1, alpha2, beta1, and beta2 frequency bands during stimulation

References

    1. Wolfe F, et al. Aspects of fibromyalgia in the general population: sex, pain threshold, and fibromyalgia symptoms. J Rheumatol. 1995;22(1):151–156.
    1. Rahman A, Underwood M, Carnes D. Fibromyalgia. Bmj. 2014;348:g1224. doi: 10.1136/bmj.g1224.
    1. Queiroz LP. Worldwide epidemiology of fibromyalgia. Curr Pain Headache Rep. 2013;17(8):356. doi: 10.1007/s11916-013-0356-5.
    1. Berger A, et al. Patterns of healthcare utilization and cost in patients with newly diagnosed fibromyalgia. Am J Manag Care. 2010;16(5 Suppl):S126–S137.
    1. Perrot S, et al. Societal and individual burden of illness among fibromyalgia patients in France: association between disease severity and OMERACT core domains. BMC Musculoskelet Disord. 2012;13:22. doi: 10.1186/1471-2474-13-22.
    1. Sauer K, Kemper C, Glaeske G. Fibromyalgia syndrome: prevalence, pharmacological and non-pharmacological interventions in outpatient health care. An analysis of statutory health insurance data. Joint Bone Spine. 2011;78(1):80–84. doi: 10.1016/j.jbspin.2010.05.003.
    1. Chinn S, Caldwell W, Gritsenko K. Fibromyalgia pathogenesis and treatment options update. Curr Pain Headache Rep. 2016;20(4):25. doi: 10.1007/s11916-016-0556-x.
    1. Marlow NM, Bonilha HS, Short EB. Efficacy of transcranial direct current stimulation and repetitive transcranial magnetic stimulation for treating fibromyalgia syndrome: a systematic review. Pain Practice. 2013;13(2):131–145. doi: 10.1111/j.1533-2500.2012.00562.x.
    1. Taylor AG, et al. Cranial electrical stimulation improves symptoms and functional status in individuals with fibromyalgia. Pain Management Nursing. 2013;14(4):327–335. doi: 10.1016/j.pmn.2011.07.002.
    1. Thimineur M, De Ridder D. C2 area neurostimulation: a surgical treatment for fibromyalgia. Pain Med. 2007;8(8):639–646. doi: 10.1111/j.1526-4637.2007.00365.x.
    1. Plazier Mark, Vanneste Sven, Dekelver Ingrid, Thimineur Mark, De Ridder Dirk. Peripheral Nerve Stimulation. Basel: KARGER; 2011. Peripheral Nerve Stimulation for Fibromyalgia; pp. 133–146.
    1. Plazier M, et al. Occipital nerve stimulation in fibromyalgia: a double-blind placebo-controlled pilot study with a six-month follow-up. Neuromodulation: Technology at the Neural Interface. 2014;17(3):256–264. doi: 10.1111/ner.12121.
    1. Weiner RL, Reed KL. Peripheral neurostimulation for control of intractable occipital neuralgia. Neuromodulation: Technology at the Neural Interface. 1999;2(3):217–221. doi: 10.1046/j.1525-1403.1999.00217.x.
    1. Le Doare K, et al. Occipital afferent activation of second order neurons in the trigeminocervical complex in rat. Neurosci Lett. 2006;403(1):73–77. doi: 10.1016/j.neulet.2006.04.049.
    1. Goadsby PJ, Knight YE, Hoskin KL. Stimulation of the greater occipital nerve increases metabolic activity in the trigeminal nucleus caudalis and cervical dorsal horn of the cat. Pain. 1997;73(1):23–28. doi: 10.1016/S0304-3959(97)00074-2.
    1. Busch V, et al. Functional connectivity between trigeminal and occipital nerves revealed by occipital nerve blockade and nociceptive blink reflexes. Cephalalgia. 2006;26(1):50–55. doi: 10.1111/j.1468-2982.2005.00992.x.
    1. Magis D, et al. Occipital nerve stimulation for drug-resistant chronic cluster headache: a prospective pilot study. The Lancet Neurology. 2007;6(4):314–321. doi: 10.1016/S1474-4422(07)70058-3.
    1. Kovacs S, et al. Central effects of occipital nerve electrical stimulation studied by functional magnetic resonance imaging. Neuromodulation: Technology at the Neural Interface. 2011;14(1):46–57. doi: 10.1111/j.1525-1403.2010.00312.x.
    1. De Ridder D, Vanneste S. Occipital nerve field transcranial direct current stimulation normalizes imbalance between pain detecting and pain inhibitory pathways in fibromyalgia. Neurotherapeutics. 2016:1–18.
    1. Matharu MS, et al. Central neuromodulation in chronic migraine patients with suboccipital stimulators: a PET study. Brain. 2004;127(1):220–230. doi: 10.1093/brain/awh022.
    1. Pujol J, et al. Mapping brain response to pain in fibromyalgia patients using temporal analysis of FMRI. PLoS One. 2009;4(4):e5224. doi: 10.1371/journal.pone.0005224.
    1. Price DD. Psychological and neural mechanisms of the affective dimension of pain. Science. 2000;288(5472):1769–1772. doi: 10.1126/science.288.5472.1769.
    1. Bushnell MC, Čeko M, Low LA. Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci. 2013;14(7):502–511. doi: 10.1038/nrn3516.
    1. Fields H. State-dependent opioid control of pain. Nat Rev Neurosci. 2004;5(7):565–575. doi: 10.1038/nrn1431.
    1. Jensen KB, et al. Overlapping structural and functional brain changes in patients with long-term exposure to fibromyalgia pain. Arthritis Rheum. 2013;65(12):3293–3303. doi: 10.1002/art.38170.
    1. Schmidt-Wilcke T, et al. Resting state connectivity correlates with drug and placebo response in fibromyalgia patients. Neuroimage Clin. 2014;6:252–261. doi: 10.1016/j.nicl.2014.09.007.
    1. Jensen KB, et al. Patients with fibromyalgia display less functional connectivity in the brain's pain inhibitory network. Mol Pain. 2012;8:32. doi: 10.1186/1744-8069-8-32.
    1. Wolfe F, et al. The American College of Rheumatology 1990 criteria for the classification of fibromyalgia. Report of the multicenter criteria committee. Arthritis Rheum. 1990;33(2):160–172. doi: 10.1002/art.1780330203.
    1. Bennett R. The fibromyalgia impact questionnaire (FIQ): a review of its development, current version, operating characteristics and uses. Clin Exp Rheumatol. 2005;23(5 Suppl 39):S154–S162.
    1. McCracken LM. “Attention” to pain in persons with chronic pain: a behavioral approach. Behav Ther. 1997;28(2):271–284. doi: 10.1016/S0005-7894(97)80047-0.
    1. Neuling T, et al. Friends, not foes: magnetoencephalography as a tool to uncover brain dynamics during transcranial alternating current stimulation. Neuroimage. 2015;118:406–413. doi: 10.1016/j.neuroimage.2015.06.026.
    1. Neuling T, et al. Faith and oscillations recovered: on analyzing EEG/MEG signals during tACS. Neuroimage. 2017;147:960–963. doi: 10.1016/j.neuroimage.2016.11.022.
    1. Congedo, M., EureKa! (version 3.0) [computer software]. Knoxville, TN: NovaTech EEG Inc. freeware available at . 2002.
    1. Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol. 2002;(24 Suppl D):5–12.
    1. Jurcak V, Tsuzuki D, Dan I. 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage. 2007;34(4):1600–1611. doi: 10.1016/j.neuroimage.2006.09.024.
    1. Fuchs M, et al. A standardized boundary element method volume conductor model. Clin Neurophysiol. 2002;113(5):702–712. doi: 10.1016/S1388-2457(02)00030-5.
    1. Mazziotta JC, et al. A probabilistic atlas of the human brain: theory and rationale for its development. Neuroimage. 1995;2(2):89–101. doi: 10.1006/nimg.1995.1012.
    1. Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp. 2002;15(1):1–25. doi: 10.1002/hbm.1058.
    1. Kong J, et al. Exploring the brain in pain: activations, deactivations and their relation. Pain. 2010;148(2):257–267. doi: 10.1016/j.pain.2009.11.008.
    1. Yilmaz P, et al. Brain correlates of stress-induced analgesia. Pain. 2010;151(2):522–529. doi: 10.1016/j.pain.2010.08.016.
    1. Eippert F, et al. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron. 2009;63(4):533–543. doi: 10.1016/j.neuron.2009.07.014.
    1. Jensen KB, et al. Overlapping structural and functional brain changes in patients with long-term exposure to fibromyalgia pain. Arthritis & Rheumatism. 2013;65(12):3293–3303. doi: 10.1002/art.38170.
    1. Coulombe MA, et al. Intrinsic functional connectivity of periaqueductal gray subregions in humans. Hum Brain Mapp. 2016;37(4):1514–1530. doi: 10.1002/hbm.23117.
    1. Truini A, et al. Abnormal resting state functional connectivity of the periaqueductal grey in patients with fibromyalgia. Clin Exp Rheumatol. 2016;34(2 Suppl 96):S129–S133.
    1. Xie Y-f, Huo F-q, Tang J-s. Cerebral cortex modulation of pain. Acta Pharmacol Sin. 2009;30(1):31–41. doi: 10.1038/aps.2008.14.
    1. Magis D, et al. Central modulation in cluster headache patients treated with occipital nerve stimulation: an FDG-PET study. BMC Neurol. 2011;11:25. doi: 10.1186/1471-2377-11-25.
    1. Cieslik EC, et al. Is there “one” DLPFC in cognitive action control? Evidence for heterogeneity from co-activation-based parcellation. Cereb Cortex. 2013;23:2677–789. doi: 10.1093/cercor/bhs256.
    1. Vossel S, Geng JJ, Fink GR. Dorsal and ventral attention systems distinct neural circuits but collaborative roles. Neuroscientist. 2014;20(2):150–159. doi: 10.1177/1073858413494269.
    1. Kouneiher F, Charron S, Koechlin E. Motivation and cognitive control in the human prefrontal cortex. Nat Neurosci. 2009;12(7):939–945. doi: 10.1038/nn.2321.
    1. Liu Y, et al. Top-down modulation of neural activity in anticipatory visual attention: control mechanisms revealed by simultaneous EEG-fMRI. Cereb Cortex. 2016;26:517–29. doi: 10.1093/cercor/bhu240.
    1. Sokol-Hessner P, et al. Decision value computation in DLPFC and VMPFC adjusts to the available decision time. Eur J Neurosci. 2012;35(7):1065–1074. doi: 10.1111/j.1460-9568.2012.08076.x.
    1. Barbey AK, Koenigs M, Grafman J. Dorsolateral prefrontal contributions to human working memory. Cortex. 2013;49(5):1195–1205. doi: 10.1016/j.cortex.2012.05.022.
    1. Treadway MT, et al. Corticolimbic gating of emotion-driven punishment. Nat Neurosci. 2014;17(9):1270–1275. doi: 10.1038/nn.3781.
    1. Sallet J, et al. The organization of dorsal frontal cortex in humans and macaques. J Neurosci. 2013;33(30):12255–12274. doi: 10.1523/JNEUROSCI.5108-12.2013.
    1. O’Reilly RC. The what and how of prefrontal cortical organization. Trends Neurosci. 2010;33(8):355–361. doi: 10.1016/j.tins.2010.05.002.
    1. Lorenz J, Minoshima S, Casey K. Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain. 2003;126(5):1079–1091. doi: 10.1093/brain/awg102.
    1. De Ridder D, et al. Burst spinal cord stimulation for limb and back pain. World neurosurgery. 2013;80(5):642–649. doi: 10.1016/j.wneu.2013.01.040.
    1. De Ridder D, et al. Burst spinal cord stimulation: toward paresthesia-free pain suppression. Neurosurgery. 2010;66(5):986–990. doi: 10.1227/01.NEU.0000368153.44883.B3.
    1. Courtney P, et al. Improved pain relief with burst spinal cord stimulation for two weeks in patients using tonic stimulation: results from a small clinical study. Neuromodulation: Technology at the Neural Interface. 2015;18(5):361–366. doi: 10.1111/ner.12294.
    1. Schu S, et al. A prospective, randomised, double-blind, placebo-controlled study to examine the effectiveness of burst spinal cord stimulation patterns for the treatment of failed back surgery syndrome. Neuromodulation: Technology at the Neural Interface. 2014;17(5):443–450. doi: 10.1111/ner.12197.
    1. Aminoff E, Gronau N, Bar M. The parahippocampal cortex mediates spatial and nonspatial associations. Cereb Cortex. 2007;17(7):1493–1503. doi: 10.1093/cercor/bhl078.
    1. Bar M, Aminoff E, Ishai A. Famous faces activate contextual associations in the parahippocampal cortex. Cereb Cortex. 2008;18(6):1233–1238. doi: 10.1093/cercor/bhm170.
    1. Bar M, Aminoff E, Schacter DL. Scenes unseen: the parahippocampal cortex intrinsically subserves contextual associations, not scenes or places per se. J Neurosci. 2008;28(34):8539–8544. doi: 10.1523/JNEUROSCI.0987-08.2008.
    1. Eichenbaum H, Lipton PA. Towards a functional organization of the medial temporal lobe memory system: role of the parahippocampal and medial entorhinal cortical areas. Hippocampus. 2008;18(12):1314–1324. doi: 10.1002/hipo.20500.
    1. Ranganath C, Ritchey M. Two cortical systems for memory-guided behaviour. Nat Rev Neurosci. 2012;13(10):713–726. doi: 10.1038/nrn3338.
    1. Wood PB, et al. Hippocampal metabolite abnormalities in fibromyalgia: correlation with clinical features. J Pain. 2009;10(1):47–52. doi: 10.1016/j.jpain.2008.07.003.
    1. Wood PB, Ledbetter CR, Patterson JC., 2nd Changes in hippocampal metabolites after effective treatment for fibromyalgia: a case study. Clin J Pain. 2009;25(9):810–814. doi: 10.1097/AJP.0b013e3181af129e.
    1. Moulton EA, et al. Aversion-related circuitry in the cerebellum: responses to noxious heat and unpleasant images. J Neurosci. 2011;31(10):3795–3804. doi: 10.1523/JNEUROSCI.6709-10.2011.
    1. De Ridder D, et al. Phantom percepts: tinnitus and pain as persisting aversive memory networks. Proc Natl Acad Sci U S A. 2011;108(20):8075–8080. doi: 10.1073/pnas.1018466108.
    1. Kamping S, et al. Deficient modulation of pain by a positive emotional context in fibromyalgia patients. Pain. 2013;154(9):1846–1855. doi: 10.1016/j.pain.2013.06.003.
    1. De Ridder D, Vanneste S. Burst and tonic spinal cord stimulation: different and common brain mechanisms. Neuromodulation. 2016;19(1):47–59. doi: 10.1111/ner.12368.
    1. Leknes S, et al. The importance of context: when relative relief renders pain pleasant. Pain. 2013;154(3):402–410. doi: 10.1016/j.pain.2012.11.018.
    1. Schwedt TJ, et al. Enhanced pain-induced activity of pain-processing regions in a case-control study of episodic migraine. Cephalalgia. 2014;34(12):947–958. doi: 10.1177/0333102414526069.
    1. Glass JM, et al. Executive function in chronic pain patients and healthy controls: different cortical activation during response inhibition in fibromyalgia. J Pain. 2011;12(12):1219–1229. doi: 10.1016/j.jpain.2011.06.007.
    1. Wu C, et al. Tinnitus: maladaptive auditory-somatosensory plasticity. Hear Res. 2016;334:20–29. doi: 10.1016/j.heares.2015.06.005.
    1. Lambert GA, et al. Effect of cortical spreading depression on activity of trigeminovascular sensory neurons. Cephalalgia. 1999;19(7):631–638. doi: 10.1046/j.1468-2982.1999.019007631.x.
    1. Vanneste S, et al. Transcutaneous electrical nerve stimulation (TENS) of upper cervical nerve (C2) for the treatment of somatic tinnitus. Exp Brain Res. 2010;204(2):283–287. doi: 10.1007/s00221-010-2304-5.
    1. De Ridder D, Vanneste S. Multitarget surgical neuromodulation: combined C2 and auditory cortex implantation for tinnitus. Neurosci Lett. 2015;591:202–206. doi: 10.1016/j.neulet.2015.02.034.
    1. De Ridder D, et al. Surgical brain modulation for tinnitus: the past, present and future. J Neurosurg Sci. 2012;56(4):323–340.
    1. Cagnie B, et al. Central sensitization in fibromyalgia? A systematic review on structural and functional brain MRI. Semin Arthritis Rheum. 2014;44(1):68–75. doi: 10.1016/j.semarthrit.2014.01.001.
    1. Friebel U, Eickhoff SB, Lotze M. Coordinate-based meta-analysis of experimentally induced and chronic persistent neuropathic pain. Neuroimage. 2011;58(4):1070–1080. doi: 10.1016/j.neuroimage.2011.07.022.
    1. Price DD. Neuroscience - psychological and neural mechanisms of the affective dimension of pain. Science. 2000;288(5472):1769–1772. doi: 10.1126/science.288.5472.1769.
    1. Bushnell MC, Ceko M, Low LA. Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci. 2013;14(7):502–511. doi: 10.1038/nrn3516.
    1. Pujol J, et al. The contribution of sensory system functional connectivity reduction to clinical pain in fibromyalgia. Pain. 2014;155(8):1492–1503. doi: 10.1016/j.pain.2014.04.028.
    1. De Ridder D, Vanneste S. Occipital nerve field transcranial direct current stimulation normalizes imbalance between pain detecting and pain inhibitory pathways in fibromyalgia. Neurotherapeutics. 2016.
    1. Lim M, et al. Disinhibition of the primary somatosensory cortex in patients with fibromyalgia. Pain. 2015;156(4):666–674. doi: 10.1097/j.pain.0000000000000096.
    1. Baliki MN, et al. Functional reorganization of the default mode network across chronic pain conditions. PLoS One. 2014;9(9):e106133. doi: 10.1371/journal.pone.0106133.
    1. Kucyi A, Davis KD. The dynamic pain connectome. Trends Neurosci. 2015;38(2):86–95. doi: 10.1016/j.tins.2014.11.006.
    1. Amanzio M, et al. Activation likelihood estimation meta-analysis of brain correlates of placebo analgesia in human experimental pain. Hum Brain Mapp. 2013;34(3):738–752.
    1. Benedetti F, Amanzio M. Mechanisms of the placebo response. Pulm Pharmacol Ther. 2013;26(5):520–523. doi: 10.1016/j.pupt.2013.01.006.
    1. Svoboda E, McKinnon MC, Levine B. The functional neuroanatomy of autobiographical memory: a meta-analysis. Neuropsychologia. 2006;44(12):2189–2208. doi: 10.1016/j.neuropsychologia.2006.05.023.
    1. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38. doi: 10.1196/annals.1440.011.
    1. Pearson JM, et al. Posterior cingulate cortex: adapting behavior to a changing world. Trends Cogn Sci. 2011;15(4):143–151. doi: 10.1016/j.tics.2011.02.002.
    1. De Ridder D, et al. The brain, obesity and addiction: an EEG neuroimaging study. Sci Rep. 2016;6:34122. doi: 10.1038/srep34122.
    1. Bzdok D, et al. Subspecialization in the human posterior medial cortex. Neuroimage. 2015;106:55–71. doi: 10.1016/j.neuroimage.2014.11.009.
    1. Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease. Brain. 2014;137(Pt 1):12–32. doi: 10.1093/brain/awt162.
    1. De Ridder D, et al. Allostasis in health and food addiction. Sci Rep. 2016;6:37126. doi: 10.1038/srep37126.

Source: PubMed

3
Abonner