CNOT3 is a modifier of PRPF31 mutations in retinitis pigmentosa with incomplete penetrance

Giulia Venturini, Anna M Rose, Amna Z Shah, Shomi S Bhattacharya, Carlo Rivolta, Giulia Venturini, Anna M Rose, Amna Z Shah, Shomi S Bhattacharya, Carlo Rivolta

Abstract

Heterozygous mutations in the PRPF31 gene cause autosomal dominant retinitis pigmentosa (adRP), a hereditary disorder leading to progressive blindness. In some cases, such mutations display incomplete penetrance, implying that certain carriers develop retinal degeneration while others have no symptoms at all. Asymptomatic carriers are protected from the disease by a higher than average expression of the PRPF31 allele that is not mutated, mainly through the action of an unknown modifier gene mapping to chromosome 19q13.4. We investigated a large family with adRP segregating an 11-bp deletion in PRPF31. The analysis of cell lines derived from asymptomatic and affected individuals revealed that the expression of only one gene among a number of candidates within the 19q13.4 interval significantly correlated with that of PRPF31, both at the mRNA and protein levels, and according to an inverse relationship. This gene was CNOT3, encoding a subunit of the Ccr4-not transcription complex. In cultured cells, siRNA-mediated silencing of CNOT3 provoked an increase in PRPF31 expression, confirming a repressive nature of CNOT3 on PRPF31. Furthermore, chromatin immunoprecipitation revealed that CNOT3 directly binds to a specific PRPF31 promoter sequence, while next-generation sequencing of the CNOT3 genomic region indicated that its variable expression is associated with a common intronic SNP. In conclusion, we identify CNOT3 as the main modifier gene determining penetrance of PRPF31 mutations, via a mechanism of transcriptional repression. In asymptomatic carriers CNOT3 is expressed at low levels, allowing higher amounts of wild-type PRPF31 transcripts to be produced and preventing manifestation of retinal degeneration.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1. CNOT3 shows an opposite trend…
Figure 1. CNOT3 shows an opposite trend of expression with respect to that of PRPF31 between the asymptomatic (AS) and affected (AF) individuals of the AD5 family.
(A) PRPF31 mRNA expression normalized to the housekeeping gene GAPDH. Error bars refer to the standard deviation of the mean for 5 independent experiments for each group. (B) CNOT3 mRNA expression from the same 5 experiments used to generate PRPF31 data. **, p<0.01. (C) Linear regression analysis of PRPF31 and CNOT3 mRNA expression, which shows an inverse trend of the two genes in each cell line. Circles, asymptomatic subjects; triangles, affected individuals; open symbols, CNOT3 expression; Filled symbols, PRPF31 expression. Data having the same value for the x axis have been obtained from the same individual. (D) Quantification of CNOT3 protein abundance relative to β-actin from 3 independent SDS-PAGE gels, after simultaneous detection of the two proteins by quantitative LI-COR western blot.
Figure 2. CNOT3 silencing stimulates PRPF31 expression…
Figure 2. CNOT3 silencing stimulates PRPF31 expression in ARPE-19 cells.
(A) CNOT3 mRNA depletion by 2 different siRNA sequences and its effect on PRPF31 mRNA expression (B). ***, p<0.001. (C) Representative western blot of CNOT3 silencing and effect on PRPF31 protein expression. siRNA_1 and siRNA_2, different CNOT3-specific siRNA sequences; Control, treatment with transfection reagent with no siRNA; Mock, treatment with transfection reagent and scrambled siRNA.
Figure 3. CNOT3 binds to the PRPF31…
Figure 3. CNOT3 binds to the PRPF31 promoter in cells.
(A) CNOT3 ChIP-PCRs on different target sequences. Enrichment is visible only for PRPF31 promoter and CNOT3 promoter (positive control); DHFR 3′UTR, PTEN exon8, and GAPDH promoter sequences are all negative controls. (B) CNOT3 ChIP-q-PCR on PRPF31 promoter sequence. Error bars indicate the standard deviation of the mean for three independent ChIP-qPCR experiments. Serum IgG is used as IP negative control. ***, p<0.001.
Figure 4. Analysis of rs4806718 alleles in…
Figure 4. Analysis of rs4806718 alleles in two unrelated pedigrees.
(A) Family RP856/AD5. The individuals initially tested with NGS are marked with a star. The individuals marked with a triangle belong to a sibship pair, which was previously shown by McGee et al. to have the same isoallele haplotype but different phenotypes. (B) Family ADB1, a Bulgarian gypsy family carrying a heterozygous splice site mutation in PRPF31 (NM_015629.3:c.527+1G>T, or IVS6+1G>T). In both pedigrees carriers of mutations are either in black (affected individuals) or in grey (asymptomatic individuals).

References

    1. Ahluwalia JK, Hariharan M, Bargaje R, Pillai B, Brahmachari V (2009) Incomplete penetrance and variable expressivity: is there a microRNA connection? Bioessays 31: 981–992.
    1. Zlotogora J (2003) Penetrance and expressivity in the molecular age. Genet Med 5: 347–352.
    1. Berson EL (1993) Retinitis pigmentosa. The Friedenwald Lecture. Invest Ophthalmol Vis Sci 34: 1659–1676.
    1. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368: 1795–1809.
    1. Evans K, al-Maghtheh M, Fitzke FW, Moore AT, Jay M, et al. (1995) Bimodal expressivity in dominant retinitis pigmentosa genetically linked to chromosome 19q. Br J Ophthalmol 79: 841–846.
    1. Moore AT, Fitzke F, Jay M, Arden GB, Inglehearn CF, et al. (1993) Autosomal dominant retinitis pigmentosa with apparent incomplete penetrance: a clinical, electrophysiological, psychophysical, and molecular genetic study. Br J Ophthalmol 77: 473–479.
    1. Berson EL, Simonoff EA (1979) Dominant retinitis pigmentosa with reduced penetrance. Further studies of the electroretinogram. Arch Ophthalmol 97: 1286–1291.
    1. Berson EL, Gouras P, Gunkel RD, Myrianthopoulos NC (1969) Dominant retinitis pigmentosa with reduced penetrance. Arch Ophthalmol 81: 226–234.
    1. Rose AM, Mukhopadhyay R, Webster AR, Bhattacharya SS, Waseem NH (2011) A 112 kb deletion in chromosome 19q13.42 leads to retinitis pigmentosa. Invest Ophthalmol Vis Sci 52: 6597–6603.
    1. Rio Frio T, Wade NM, Ransijn A, Berson EL, Beckmann JS, et al. (2008) Premature termination codons in PRPF31 cause retinitis pigmentosa via haploinsufficiency due to nonsense-mediated mRNA decay. J Clin Invest 118: 1519–1531.
    1. Waseem NH, Vaclavik V, Webster A, Jenkins SA, Bird AC, et al. (2007) Mutations in the gene coding for the pre-mRNA splicing factor, PRPF31, in patients with autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 48: 1330–1334.
    1. Abu-Safieh L, Vithana EN, Mantel I, Holder GE, Pelosini L, et al. (2006) A large deletion in the adRP gene PRPF31: evidence that haploinsufficiency is the cause of disease. Mol Vis 12: 384–388.
    1. Sullivan LS, Bowne SJ, Seaman CR, Blanton SH, Lewis RA, et al. (2006) Genomic rearrangements of the PRPF31 gene account for 2.5% of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 47: 4579–4588.
    1. Vithana EN, Abu-Safieh L, Allen MJ, Carey A, Papaioannou M, et al. (2001) A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19q13.4 (RP11). Mol Cell 8: 375–381.
    1. Tanackovic G, Ransijn A, Thibault P, Abou Elela S, Klinck R, et al. (2011) PRPF mutations are associated with generalized defects in spliceosome formation and pre-mRNA splicing in patients with retinitis pigmentosa. Hum Mol Genet 20: 2116–2130.
    1. Rio Frio T, Civic N, Ransijn A, Beckmann JS, Rivolta C (2008) Two trans-acting eQTLs modulate the penetrance of PRPF31 mutations. Hum Mol Genet 17: 3154–3165.
    1. Rivolta C, McGee TL, Rio Frio T, Jensen RV, Berson EL, et al. (2006) Variation in retinitis pigmentosa-11 (PRPF31 or RP11) gene expression between symptomatic and asymptomatic patients with dominant RP11 mutations. Hum Mutat 27: 644–653.
    1. Vithana EN, Abu-Safieh L, Pelosini L, Winchester E, Hornan D, et al. (2003) Expression of PRPF31 mRNA in patients with autosomal dominant retinitis pigmentosa: a molecular clue for incomplete penetrance? Invest Ophthalmol Vis Sci 44: 4204–4209.
    1. McGee TL, Devoto M, Ott J, Berson EL, Dryja TP (1997) Evidence that the penetrance of mutations at the RP11 locus causing dominant retinitis pigmentosa is influenced by a gene linked to the homologous RP11 allele. Am J Hum Genet 61: 1059–1066.
    1. al-Maghtheh M, Inglehearn CF, Keen TJ, Evans K, Moore AT, et al. (1994) Identification of a sixth locus for autosomal dominant retinitis pigmentosa on chromosome 19. Hum Mol Genet 3: 351–354.
    1. Collart MA, Panasenko OO (2012) The Ccr4–not complex. Gene 492: 42–53.
    1. Morita M, Oike Y, Nagashima T, Kadomatsu T, Tabata M, et al. (2011) Obesity resistance and increased hepatic expression of catabolism-related mRNAs in Cnot3+/− mice. EMBO J 30: 4678–4691.
    1. Hu G, Kim J, Xu Q, Leng Y, Orkin SH, et al. (2009) A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev 23: 837–848.
    1. Chakarova CF, Cherninkova S, Tournev I, Waseem N, Kaneva R, et al. (2006) Molecular genetics of retinitis pigmentosa in two Romani (Gypsy) families. Mol Vis 12: 909–914.
    1. Gratzer W (1994) Human genetics. Silence speaks in spectrin. Nature 372: 620–621.
    1. Gouya L, Puy H, Robreau AM, Bourgeois M, Lamoril J, et al. (2002) The penetrance of dominant erythropoietic protoporphyria is modulated by expression of wildtype FECH. Nat Genet 30: 27–28.
    1. Gouya L, Puy H, Robreau AM, Lyoumi S, Lamoril J, et al. (2004) Modulation of penetrance by the wild-type allele in dominantly inherited erythropoietic protoporphyria and acute hepatic porphyrias. Hum Genet 114: 256–262.
    1. Ivings L, Towns KV, Matin MA, Taylor C, Ponchel F, et al. (2008) Evaluation of splicing efficiency in lymphoblastoid cell lines from patients with splicing-factor retinitis pigmentosa. Mol Vis 14: 2357–2366.
    1. Rio Frio T, McGee TL, Wade NM, Iseli C, Beckmann JS, et al. (2009) A single-base substitution within an intronic repetitive element causes dominant retinitis pigmentosa with reduced penetrance. Hum Mutat 30: 1340–1347.
    1. Winkler GS, Mulder KW, Bardwell VJ, Kalkhoven E, Timmers HT (2006) Human Ccr4-Not complex is a ligand-dependent repressor of nuclear receptor-mediated transcription. EMBO J 25: 3089–3099.
    1. Collart MA, Struhl K (1994) NOT1(CDC39), NOT2(CDC36), NOT3, and NOT4 encode a global-negative regulator of transcription that differentially affects TATA-element utilization. Genes Dev 8: 525–537.
    1. Lau NC, Kolkman A, van Schaik FM, Mulder KW, Pijnappel WW, et al. (2009) Human Ccr4-Not complexes contain variable deadenylase subunits. Biochem J 422: 443–453.
    1. Albert TK, Lemaire M, van Berkum NL, Gentz R, Collart MA, et al. (2000) Isolation and characterization of human orthologs of yeast CCR4-NOT complex subunits. Nucleic Acids Res 28: 809–817.
    1. Kerr SC, Azzouz N, Fuchs SM, Collart MA, Strahl BD, et al. (2011) The Ccr4-Not complex interacts with the mRNA export machinery. PLoS ONE 6: e18302 doi:
    1. Zwartjes CG, Jayne S, van den Berg DL, Timmers HT (2004) Repression of promoter activity by CNOT2, a subunit of the transcription regulatory Ccr4-not complex. J Biol Chem 279: 10848–10854.
    1. Rose AM, Shah AZ, Waseem NH, Chakarova CF, Alfano G, et al. (2012) Expression of PRPF31 and TFPT: regulation in health and retinal disease. Hum Mol Genet In press.
    1. Al-Maghtheh M, Vithana E, Tarttelin E, Jay M, Evans K, et al. (1996) Evidence for a major retinitis pigmentosa locus on 19q13.4 (RP11) and association with a unique bimodal expressivity phenotype. Am J Hum Genet 59: 864–871.
    1. Oberley MJ, Inman DR, Farnham PJ (2003) E2F6 negatively regulates BRCA1 in human cancer cells without methylation of histone H3 on lysine 9. J Biol Chem 278: 42466–42476.

Source: PubMed

3
Abonner