Predictive factors for major postoperative complications related to gastric conduit reconstruction in thoracoscopic esophagectomy for esophageal cancer: a case control study

Shinichiro Kobayashi, Kengo Kanetaka, Yasuhiro Nagata, Masahiko Nakayama, Ryo Matsumoto, Mitsuhisa Takatsuki, Susumu Eguchi, Shinichiro Kobayashi, Kengo Kanetaka, Yasuhiro Nagata, Masahiko Nakayama, Ryo Matsumoto, Mitsuhisa Takatsuki, Susumu Eguchi

Abstract

Background: Regardless of developments in thoracoscopic esophagectomy (TE), postoperative complications relative to gastric conduit reconstruction are common after esophagectomy. The aim of the present study was to evaluate the predictive factors of major complications related to gastric conduit after TE.

Methods: From 2006 to 2015, 75 patients with esophageal cancer who underwent TE were evaluated to explore the predictive factors of major postoperative complications related to gastric conduit.

Results: Patients with major complications related to gastric conduit had a significantly longer postoperative hospital stay than patients without these complications (P < 0.01). Multivariate analysis demonstrated that three-field lymph node dissection (3FLND) and high serum levels of creatine phosphokinase (CPK) and C-reactive protein (CRP) at 1 postoperative day (1POD) after TE were significant predictive factors of major complications related to gastric conduit [odds ratio (OR) 5.37, 95% confidence interval (CI) 1.41-24.33, P = 0.02; OR 5.40, 95% CI 1.60-20.20, P < 0.01; OR 5.07, 95% CI 1.47-20.25, P = 0.01, respectively]. The incidence rates of major complications related to gastric conduit for 0, 1, 2, and 3 predictive factors were 5.3%, 18.8%, 58.8%, and 85.7%, respectively (P < 0.01).

Conclusions: Two or more factors in 3FLND and the high levels of CPK and CRP at 1POD after TE were identified as the risk model for major complications related to gastric conduit after TE.

Trial registration: UMIN Clinical Trials Registry, ID: UMIN000024436 , Registered date: Oct/17/2016.

Keywords: Esophageal cancer; Esophagectomy; Thoracoscopic surgery.

Conflict of interest statement

Ethics approval and consent to participate

This study was approved by the Ethics Committee of Nagasaki University Hospital (16082215). The written informed consent from the patients was waved from the Ethics Committee because the information on the opportunity to opt out was presented on the web site (http://www.mh.nagasaki-u.ac.jp/research/rinsho/patients/open_surgery2.html).

Consent for publication

Not applicable. Individual identifying data were not included in this manuscript.

Competing interests

Shinichiro Kobayashi, Kengo Kanetaka, Yasuhiro Nagata, Masahiko Nakayama, Ryo Matsumoto, Mitsuhisa Takatsuki, and Susumu Eguchi do not have any financial relationships relevant to this publication to disclose.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Major complications related to gastric conduit reconstruction in 75 patients who underwent thoracoscopic esophagectomy. Seventeen patients developed anastomotic leakage. Refractory esophageal strictures were defined as more than 5 sessions of balloon dilation 6 months after the operation. Six patients developed refractory esophageal strictures. Two patients who had developed anastomotic leakage developed refractory esophageal strictures
Fig. 2
Fig. 2
ROC curve analysis of CRP (a) and CPK (b) at the first postoperative day after thoracoscopic esophagectomy. At a threshold of 9.6 x 104μg/L CRP at 1POD, the optimal sensitivity and specificity were 73.9% and 65.4%, respectively, in patients developing major postoperative complications related to gastric conduit reconstruction. At a threshold of 1164 IU/L CPK at 1POD, the sensitivity and the specificity were 69.6% and 75.0%, respectively, in patients developing major postoperative complications related to gastric conduit reconstruction. ROC, receiver operating characteristic; CRP, C-reactive protein; POD, postoperative days; CPK, creatine phosphokinase. AUC, area under the ROC curve; CI, confidence interval
Fig. 3
Fig. 3
Prevalence of major complications related to gastric conduit reconstruction compared according to the number of predictive factors after thoracoscopic esophagectomy. P-value based on the Cochrane-Armitage trend test

References

    1. Verhage RJ, Hazebroek EJ, Boone J, Van Hillegersberg R. Minimally invasive surgery compared to open procedures in esophagectomy for cancer: a systematic review of the literature. Minerva Chir. 2009;64(2):135–146.
    1. Blencowe NS, Strong S, McNair AG, Brookes ST, Crosby T, Griffin SM, Blazeby JM. Reporting of short-term clinical outcomes after esophagectomy: a systematic review. Ann Surg. 2012;255(4):658–666. doi: 10.1097/SLA.0b013e3182480a6a.
    1. Dhungel B, Diggs BS, Hunter JG, Sheppard BC, Vetto JT, Dolan JP. Patient and peri-operative predictors of morbidity and mortality after esophagectomy: American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP), 2005-2008. J Gastrointest Surg. 2010;14(10):1492–1501. doi: 10.1007/s11605-010-1328-2.
    1. Mamidanna R, Bottle A, Aylin P, Faiz O, Hanna GB. Short-term outcomes following open versus minimally invasive esophagectomy for cancer in England: a population-based national study. Ann Surg. 2012;255(2):197–203. doi: 10.1097/SLA.0b013e31823e39fa.
    1. Takeuchi H, Miyata H, Gotoh M, Kitagawa Y, Baba H, Kimura W, Tomita N, Nakagoe T, Shimada M, Sugihara K, et al. A risk model for esophagectomy using data of 5354 patients included in a Japanese nationwide web-based database. Ann Surg. 2014;260(2):259–266. doi: 10.1097/SLA.0000000000000644.
    1. Yerokun BA, Sun Z, Yang CJ, Gulack BC, Speicher PJ, Adam MA, D'Amico TA, Onaitis MW, Harpole DH, Berry MF, et al. Minimally invasive versus open Esophagectomy for esophageal cancer: a population-based analysis. Ann Thorac Surg. 2016;102(2):416–423. doi: 10.1016/j.athoracsur.2016.02.078.
    1. Takeuchi H, Miyata H, Ozawa S, Udagawa H, Osugi H, Matsubara H, Konno H, Seto Y, Kitagawa Y. Comparison of short-term outcomes between open and minimally invasive Esophagectomy for esophageal cancer using a Nationwide database in Japan. Ann Surg Oncol. 2017;24(7):1821–1827. doi: 10.1245/s10434-017-5808-4.
    1. Findlay JM, Gillies RS, Millo J, Sgromo B, Marshall RE, Maynard ND. Enhanced recovery for esophagectomy: a systematic review and evidence-based guidelines. Ann Surg. 2014;259(3):413–431. doi: 10.1097/SLA.0000000000000349.
    1. Honda M, Kuriyama A, Noma H, Nunobe S, Furukawa TA. Hand-sewn versus mechanical esophagogastric anastomosis after esophagectomy: a systematic review and meta-analysis. Ann Surg. 2013;257(2):238–248. doi: 10.1097/SLA.0b013e31826d4723.
    1. Cassivi SD. Leaks, strictures, and necrosis: a review of anastomotic complications following esophagectomy. Semin Thorac Cardiovasc Surg. 2004;16(2):124–132. doi: 10.1053/j.semtcvs.2004.03.011.
    1. Nishikawa K, Fujita T, Yuda M, Yamamoto S, Tanaka Y, Matsumoto A, Tanishima Y, Yano F, Mitsumori N, Yanaga K. Early postoperative endoscopy for targeted management of patients at risks of anastomotic complications after esophagectomy. Surgery. 2016;160(5):1294–1301. doi: 10.1016/j.surg.2016.06.022.
    1. Fujiwara H, Nakajima Y, Kawada K, Tokairin Y, Miyawaki Y, Okada T, Nagai K, Kawano T. Endoscopic assessment 1 day after esophagectomy for predicting cervical esophagogastric anastomosis-relating complications. Surg Endosc. 2016;30(4):1564–1571. doi: 10.1007/s00464-015-4379-3.
    1. Kuwano H, Nishimura Y, Oyama T, Kato H, Kitagawa Y, Kusano M, Shimada H, Takiuchi H, Toh Y, Doki Y, et al. Guidelines for diagnosis and treatment of carcinoma of the esophagus April 2012 edited by the Japan esophageal society. Esophagus. 2015;12(1):1–30. doi: 10.1007/s10388-014-0465-1.
    1. Edge SB BD, Compton CC, Fritz AG, Greene FL, Trotti A. AJCC cancer staging manual. 7th ed. New York: Springer-Verlag; 2009. p.103–15.
    1. Li H, Yang S, Zhang Y, Xiang J, Chen H. Thoracic recurrent laryngeal lymph node metastases predict cervical node metastases and benefit from three-field dissection in selected patients with thoracic esophageal squamous cell carcinoma. J Surg Oncol. 2012;105(6):548–552. doi: 10.1002/jso.22148.
    1. Lewis SJ, Andersen HK, Thomas S. Early enteral nutrition within 24 h of intestinal surgery versus later commencement of feeding: a systematic review and meta-analysis. J Gastrointest Surg. 2009;13(3):569–575. doi: 10.1007/s11605-008-0592-x.
    1. Kochman ML, McClave SA, Boyce HW. The refractory and the recurrent esophageal stricture: a definition. Gastrointest Endosc. 2005;62(3):474–475. doi: 10.1016/j.gie.2005.04.050.
    1. Yano T, Yoda Y, Nomura S, Toyosaki K, Hasegawa H, Ono H, Tanaka M, Morimoto H, Horimatsu T, Nonaka S, et al. Prospective trial of biodegradable stents for refractory benign esophageal strictures after curative treatment of esophageal cancer. Gastrointest Endosc. 2017;86(3):492–499. doi: 10.1016/j.gie.2017.01.011.
    1. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36. doi: 10.1148/radiology.143.1.7063747.
    1. Lasko TA, Bhagwat JG, Zou KH, Ohno-Machado L. The use of receiver operating characteristic curves in biomedical informatics. J Biomed Inform. 2005;38(5):404–415. doi: 10.1016/j.jbi.2005.02.008.
    1. Biere SS, van Berge Henegouwen MI, Maas KW, Bonavina L, Rosman C, Garcia JR, Gisbertz SS, Klinkenbijl JH, Hollmann MW, de Lange ES, et al. Minimally invasive versus open oesophagectomy for patients with oesophageal cancer: a multicentre, open-label, randomised controlled trial. Lancet. 2012;379(9829):1887–1892. doi: 10.1016/S0140-6736(12)60516-9.
    1. Straatman J, van der Wielen N, Cuesta MA, Daams F, Roig Garcia J, Bonavina L, Rosman C, van Berge Henegouwen MI, Gisbertz SS, van der Peet DL. Minimally invasive versus open esophageal resection: three-year follow-up of the previously reported randomized controlled trial: the TIME trial. Ann Surg. 2017;266(2):232–236. doi: 10.1097/SLA.0000000000002171.
    1. Decker G, Coosemans W, De Leyn P, Decaluwe H, Nafteux P, Van Raemdonck D, Lerut T. Minimally invasive esophagectomy for cancer. Eur J Cardiothorac Surg. 2009;35(1):13–21.
    1. Hirahara N, Matsubara T, Mizota Y, Ishibashi S, Tajima Y. Prognostic value of preoperative inflammatory response biomarkers in patients with esophageal cancer who undergo a curative thoracoscopic esophagectomy. BMC Surg. 2016;16(1):66. doi: 10.1186/s12893-016-0179-5.
    1. Baba Y, Yoshida N, Shigaki H, Iwatsuki M, Miyamoto Y, Sakamoto Y, Watanabe M, Baba H. Prognostic impact of postoperative complications in 502 patients with surgically resected esophageal squamous cell carcinoma: a retrospective single-institution study. Ann Surg. 2016;264(2):305–311. doi: 10.1097/SLA.0000000000001510.
    1. Tsurumaru M, Kajiyama Y, Udagawa H, Akiyama H. Outcomes of extended lymph node dissection for squamous cell carcinoma of the thoracic esophagus. Ann Thorac Cardiovasc Surg. 2001;7(6):325–329.
    1. Tachibana M, Kinugasa S, Yoshimura H, Shibakita M, Tonomoto Y, Dhar DK, Nagasue N. Clinical outcomes of extended esophagectomy with three-field lymph node dissection for esophageal squamous cell carcinoma. Am J Surg. 2005;189(1):98–109. doi: 10.1016/j.amjsurg.2004.10.001.
    1. Hsu WH, Hsu PK, Hsieh CC, Huang CS, Wu YC. The metastatic lymph node number and ratio are independent prognostic factors in esophageal cancer. J Gastrointest Surg. 2009;13(11):1913–1920. doi: 10.1007/s11605-009-0982-8.
    1. Japan Esophageal Society. Japanese classification of esophageal cancer. 11th edition, part I. Esophagus. 2017;17(1):1–36.
    1. Lerut T, Nafteux P, Moons J, Coosemans W, Decker G, De Leyn P, Van Raemdonck D, Ectors N. Three-field lymphadenectomy for carcinoma of the esophagus and gastroesophageal junction in 174 R0 resections: impact on staging, disease-free survival, and outcome: a plea for adaptation of TNM classification in upper-half esophageal carcinoma. Ann Surg. 2004;240(6):962–74.
    1. Chen J, Wu S, Zheng X, Pan J, Zhu K, Chen Y, Li J, Liao L, Lin Y, Liao Z. Cervical lymph node metastasis classified as regional nodal staging in thoracic esophageal squamous cell carcinoma after radical esophagectomy and three-field lymph node dissection. BMC Surg. 2014;14:110. doi: 10.1186/1471-2482-14-110.
    1. Ye T, Sun Y, Zhang Y, Chen H. Three-field or two-field resection for thoracic esophageal cancer: a meta-analysis. Ann Thorac Surg. 2013;96(6):1933–1941. doi: 10.1016/j.athoracsur.2013.06.050.
    1. Ma GW, Situ DR, Ma QL, Long H, Zhang LJ, Lin P, Rong TH. Three-field vs two-field lymph node dissection for esophageal cancer: a meta-analysis. World J Gastroenterol. 2014;20(47):18022–18030. doi: 10.3748/wjg.v20.i47.18022.
    1. Zheng QF, Wang JJ, Ying MG, Liu SY. Omentoplasty in preventing anastomotic leakage of oesophagogastrostomy following radical oesophagectomy with three-field lymphadenectomy. Eur J Cardiothorac Surg. 2013;43(2):274–278. doi: 10.1093/ejcts/ezs285.
    1. Chen H, Lu JJ, Zhou J, Zhou X, Luo X, Liu Q, Tam J. Anterior versus posterior routes of reconstruction after esophagectomy: a comparative anatomic study. Ann Thorac Surg. 2009;87(2):400–404. doi: 10.1016/j.athoracsur.2008.11.016.
    1. Hu H, Ye T, Tan D, Li H, Chen H. Is anterior mediastinum route a shorter choice for esophageal reconstruction? A comparative anatomic study. Eur J Cardiothorac Surg. 2011;40(6):1466–1469.
    1. Urschel JD, Urschel DM, Miller JD, Bennett WF, Young JE. A meta-analysis of randomized controlled trials of route of reconstruction after esophagectomy for cancer. Am J Surg. 2001;182(5):470–475. doi: 10.1016/S0002-9610(01)00763-2.
    1. Tachimori Y, Ozawa S, Numasaki H, Ishihara R, Matsubara H, Muro K, Oyama T, Toh Y, Udagawa H, Uno T. Comprehensive registry of esophageal cancer in Japan, 2010. Esophagus. 2017;14(3):189–214. doi: 10.1007/s10388-017-0578-4.
    1. Miki Y, Toyokawa T, Kubo N, Tamura T, Sakurai K, Tanaka H, Muguruma K, Yashiro M, Hirakawa K, Ohira M. C-reactive protein indicates early stage of postoperative infectious complications in patients following minimally invasive Esophagectomy. World J Surg. 2017;41(3):796–803. doi: 10.1007/s00268-016-3803-8.
    1. Hoeboer SH, Groeneveld AB, Engels N, van Genderen M, Wijnhoven BP, van Bommel J. Rising C-reactive protein and procalcitonin levels precede early complications after esophagectomy. J Gastrointest Surg. 2015;19(4):613–624. doi: 10.1007/s11605-015-2745-z.
    1. Kanda T, Nakatomi Y, Ishikawa H, Hitomi M, Matsubara Y, Ono T, Muto T. Intestinal fatty acid-binding protein as a sensitive marker of intestinal ischemia. Dig Dis Sci. 1992;37(9):1362–1367. doi: 10.1007/BF01296004.
    1. Kanda T, Tsukahara A, Ueki K, Sakai Y, Tani T, Nishimura A, Yamazaki T, Tamiya Y, Tada T, Hirota M, et al. Diagnosis of ischemic small bowel disease by measurement of serum intestinal fatty acid-binding protein in patients with acute abdomen: a multicenter, observer-blinded validation study. J Gastroenterol. 2011;46(4):492–500. doi: 10.1007/s00535-011-0373-2.
    1. van der Voort PH, Westra B, Wester JP, Bosman RJ, van Stijn I, Haagen IA, Loupatty FJ, Rijkenberg S. Can serum L-lactate, D-lactate, creatine kinase and I-FABP be used as diagnostic markers in critically ill patients suspected for bowel ischemia. BMC Anesthesiol. 2014;14:111. doi: 10.1186/1471-2253-14-111.
    1. Oezcelik A, Banki F, Ayazi S, Abate E, Zehetner J, Sohn HJ, Hagen JA, DeMeester SR, Lipham JC, Palmer SL, et al. Detection of gastric conduit ischemia or anastomotic breakdown after cervical esophagogastrostomy: the use of computed tomography scan versus early endoscopy. Surg Endosc. 2010;24(8):1948–1951. doi: 10.1007/s00464-010-0884-6.
    1. Page RD, Asmat A, McShane J, Russell GN, Pennefather SH. Routine endoscopy to detect anastomotic leakage after esophagectomy. Ann Thorac Surg. 2013;95(1):292–298. doi: 10.1016/j.athoracsur.2012.09.048.
    1. Schaible A, Sauer P, Hartwig W, Hackert T, Hinz U, Radeleff B, Büchler MW, Werner J. Radiologic versus endoscopic evaluation of the conduit after esophageal resection: a prospective, blinded, intraindividually controlled diagnostic study. Surg Endosc. 2014;28(7):2078–2085. doi: 10.1007/s00464-014-3435-8.
    1. Dewar L, Gelfand G, Finley RJ, Evans K, Inculet R, Nelems B. Factors affecting cervical anastomotic leak and stricture formation following esophagogastrectomy and gastric tube interposition. Am J Surg. 1992;163(5):484–489. doi: 10.1016/0002-9610(92)90393-6.
    1. Walther B, Johansson J, Johnsson F, Von Holstein CS, Zilling T. Cervical or thoracic anastomosis after esophageal resection and gastric tube reconstruction: a prospective randomized trial comparing sutured neck anastomosis with stapled intrathoracic anastomosis. Ann Surg. 2003;238(6):803–14.
    1. Zhang YS, Gao BR, Wang HJ, Su YF, Yang YZ, Zhang JH, Wang C. Comparison of anastomotic leakage and stricture formation following layered and stapler oesophagogastric anastomosis for cancer: a prospective randomized controlled trial. J Int Med Res. 2010;38(1):227–233. doi: 10.1177/147323001003800127.
    1. Kim RH, Takabe K. Methods of esophagogastric anastomoses following esophagectomy for cancer: a systematic review. J Surg Oncol. 2010;101(6):527–533. doi: 10.1002/jso.21510.
    1. Xu QR, Wang KN, Wang WP, Zhang K, Chen LQ. Linear stapled esophagogastrostomy is more effective than hand-sewn or circular stapler in prevention of anastomotic stricture: a comparative clinical study. J Gastrointest Surg. 2011;15(6):915–921. doi: 10.1007/s11605-011-1490-1.
    1. Law S, Fok M, Chu KM, Wong J. Comparison of hand-sewn and stapled esophagogastric anastomosis after esophageal resection for cancer: a prospective randomized controlled trial. Ann Surg. 1997;226(2):169–173. doi: 10.1097/00000658-199708000-00008.
    1. Muramatsu N, Liang J. Hospital length of stay in the United States and Japan: a case study of myocardial infarction patients. Int J Health Serv. 1999;29(1):189–209. doi: 10.2190/8A4W-83KG-J5MU-CVV2.
    1. Akkerman RD, Haverkamp L, van Hillegersberg R, Ruurda JP. Surgical techniques to prevent delayed gastric emptying after esophagectomy with gastric interposition: a systematic review. Ann Thorac Surg. 2014;98(4):1512–1519. doi: 10.1016/j.athoracsur.2014.06.057.
    1. Poghosyan T, Gaujoux S, Chirica M, Munoz-Bongrand N, Sarfati E, Cattan P. Functional disorders and quality of life after esophagectomy and gastric tube reconstruction for cancer. J Visc Surg. 2011;148(5):e327–e335. doi: 10.1016/j.jviscsurg.2011.09.001.

Source: PubMed

3
Abonner