Modulation of the immune response to respiratory viruses by vitamin D

Claire L Greiller, Adrian R Martineau, Claire L Greiller, Adrian R Martineau

Abstract

Background: Vitamin D deficiency has been shown to be independently associated with increased risk of viral acute respiratory infection (ARI) in a number of observational studies, and meta-analysis of clinical trials of vitamin D supplementation for prevention of ARI has demonstrated protective effects. Several cellular studies have investigated the effects of vitamin D metabolites on immune responses to respiratory viruses, but syntheses of these reports are lacking.

Scope: In this article, we review the literature reporting results of in vitro experiments investigating immunomodulatory actions of vitamin D metabolites in human respiratory epithelial cells infected with respiratory viruses.

Key findings: Vitamin D metabolites do not consistently influence replication or clearance of rhinovirus, respiratory syncytial virus (RSV) or influenza A virus in human respiratory epithelial cell culture, although they do modulate expression and secretion of type 1 interferon, chemokines including CXCL8 and CXCL10 and pro-inflammatory cytokines, such as TNF and IL-6.

Future research: More studies are needed to clarify the effects of vitamin D metabolites on respiratory virus-induced expression of cell surface markers mediating viral entry and bacterial adhesion to respiratory epithelial cells.

Keywords: antiviral immunity; respiratory viruses; vitamin D.

Figures

Figure 1
Figure 1
Pathogen recognition receptor signalling following viral infection. Ligand-induced dimerisation occurs following PAMP recognition by endosomal TLRs, which engages the Toll-IL-1 receptor (TIR) domains to initiate adaptor molecule recruitment and signal transduction. MYD88-dependent signalling results in the formation of an IRAK/TRAF6 complex, which phosphorylates IRF7 to initiate transcription of type I IFN genes, and activates a TAK1/TAB2/3 complex to drive transcription of pro-inflammatory cytokine genes via activation of NF-κB, AP1 and CREB. TRIF-dependent signalling can also activate NF-κB, AP-1 and CREB via recruitment of TRAF6 and RIP1. Alternatively, TRAF3 is recruited, resulting in phosphorylation of IRF3 which translocates into the nucleus to induce expression of type I IFNs. RIG-I and MDA5 are also able to activate NF-κB and IRF3 via interaction with IPS-1 localized on the mitochondrial membrane through homophilic interactions between their CARD domains. Similarly, CARD domains of NOD2 also interact with IPS-1 resulting in transcription of type I IFN genes. The type I IFNs produced bind to their receptor, and, via STAT-mediating signalling, initiate gene transcription.
Figure 2
Figure 2
Metabolism of 1α,25(OH)2D3. Vitamin D3 is either obtained from dietary sources or UV synthesis, before two hydroxylations occur to produce the active metabolite 1α,25(OH)2D3. TLR ligation can also increase levels of CYP27B1, resulting in enhanced 1α-hydroxylation of 25(OH)D3. The 1α,25(OH)2D3 then binds to nuclear or membrane vitamin D receptors (VDRs). Nuclear VDR ligation results in heterodimerization with retinoid X receptor (RXR) and binding to vitamin D responsive elements (VDRE) in promoter regions of responsive genes. Components of the RNA polymerase II complex are then recruited for induction of gene transcription, or transcription is repressed. Membrane caveolae-associated VDR ligation results in the activation of second messenger systems, with one effect being the initiation of Ras/MAPK signal transduction. Nuclear MAPK modulates gene expression and engages in cross-talk with the VDR-RXR-VDRE complex. (Adapted from Slatopolsky et al. [104], and Parton and Simons [105]).
Figure 3
Figure 3
The immunomodulatory actions of 1,25(OH)2D. 1,25(OH)2D has diverse and extensive effects on the immune compartment. The innate immune response is affected, with monocytes producing more LL-37 and β-defensin, with increased NOD2 expression and autophagy, while also producing diminished amounts of inflammatory cytokines, with decreased expression of TLR2 and TLR4. Differentiation into macrophages is increased, with macrophages having an increased capacity for phagocytosis and chemotaxis. However, their APC and T-cell stimulatory capacity is decreased. Monocyte and macrophage production of ROS and iNOS is able to both be induced and inhibited, thus regulating their balance. Differentiation into DCs is inhibited, with DCs expressing decreased levels of maturation surface markers. DC production of IL-12 and IL-23 is decreased, while mannose receptor expression and production of IL-10 and CCL22 are increased. When these tolerogenic DCs interact with T-cells, development of Tregs and Th2 cells is increased, with increased production of IL-10, TGF-β, IL-4 and IL-5. The development of Th1 and Th17 cells is inhibited, with decreased production of IL-2, IFN-γ and TNF-α, and attenuation of macrophage activation. B-cells are also affected by 1,25(OH)2D, demonstrating decreased immunoglobulin production, proliferation and differentiation, but increased apoptosis.
Figure 4
Figure 4
The immunomodulatory actions of 1,25(OH)2D against respiratory viruses. Rhinovirus infection of epithelial cells results in increased production and secretion of pro-inflammatory cytokines and chemokines, with the secretion of CXCL8 and CXCL10 further enhanced following treatment with 1,25(OH)2D. During RSV infection, IκBα expression is reduced, resulting in increased transcription of NF-κB-driven genes. STAT1 is also phosphorylated and able to translocate into the nucleus resulting in increased expression of IRF1 and IRF7. Pre-treatment with 1,25(OH)2D increases IκBα expression and decreases STAT1 phosphorylation, resulting in decreased production of CXCL10, IFN-β, MxA, ISG15, IRF1 and IRF7. Similarly, influenza A infection causes increased expression of pro-inflammatory cytokines and chemokines, with 1,25(OH)2D treatment causing decreased expression of TNF-α, IFN-β, ISG15, CXCL8, IL-6 and CCL5. Finally, 1,25(OH)2D is also able to increase LL-37 and HBD2 production, which have been shown to have antiviral effects against both RSV and influenza.

References

    1. Atmar R., Piedra P., Patel S., Greenberg S., Couch R., Glezen W. Picornavirus, the most common respiratory virus causing infection among patients of all ages hospitalized with acute respiratory illness. J. Clin. Microbiol. 2012;50:506–508. doi: 10.1128/JCM.05999-11.
    1. Lu Y., Wang S., Zhang L., Xu C., Bian C., Wang Z., Ma Y., Wang K., Ma L., Meng C., et al. Epidemiology of Human Respiratory Viruses in Children with Acute Respiratory Tract Infections in Jinan, China. Clin. Dev. Immunol. 2013;2013:8. doi: 10.1155/2013/210490.
    1. Bicer S., Giray T., Çöl D., Erdağ G., Vitrinel A., Gürol Y., Çelik G., Kaspar C., Küçük Ö. Virological and Clinical Characterizations of Respiratory Infections in Hospitalized Children. Ital. J. Pediatr. 2013;39:22. doi: 10.1186/1824-7288-39-22.
    1. Del Valle Mendoza J., Cornejo-Tapia A., Weilg P., Verne E., Nazario-Fuertes R., Ugarte C., del Valle L., Pumarola T. Incidence of Respiratory Viruses in Peruvian Children with Acute Respiratory Infections. J. Med. Virol. 2015;87:917–924. doi: 10.1002/jmv.24159.
    1. Hengst M., Häusler M., Honnef D., Scheithauer S., Ritter K., Kleines M. Human Bocavirus-infection (HBoV): An important cause of severe viral obstructive bronchitis in children. Klin. Padiatr. 2008;220:296–301. doi: 10.1055/s-0028-1083806.
    1. Osterholm M., Kelley N., Sommer A., Belongia E. Efficacy and effectiveness of influenza vaccines: A systemic review and meta-analysis. Lancet Infect. Dis. 2012;12:36–44. doi: 10.1016/S1473-3099(11)70295-X.
    1. Hsu J., Santesso N., Mustafa R., Brozek J., Chen Y., Hopkins J., Cheung A., Hovhannisyan G., Ivanova L., Flottorp S., et al. Antivirals for treatment of influenza: A systematic review and meta-analysis of observational studies. Ann. Intern. Med. 2012;156:512–524. doi: 10.7326/0003-4819-156-7-201204030-00411.
    1. Dobson J., Whitley R., Pocock S., Monto A. Oseltamivir treatment for influenza in adults: A meta-analysis of randomised controlled trials. Lancet. 2015;385:1729–1737. doi: 10.1016/S0140-6736(14)62449-1.
    1. Jefferson T., Jones M., Doshi P., Spencer E., Onakpoya I., Heneghan C. Oseltamivir for influenza in adults and children: Systematic review of clinical study reports and summary of regulatory comments. BMJ. 2014;348:g2545. doi: 10.1136/bmj.g2545.
    1. Legand A., Briand S., Shindo N., Brooks W., de Jong M., Farrar J., Aguilera X., Hayden F. Addressing the public health burden of respiratory viruses: The Battle against Respiratory Viruses (BRaVe) Initiative. Future Virol. 2013;8:953–968. doi: 10.2217/fvl.13.85.
    1. Baeke F., Takiishi T., Korf H., Gysemans C., Mathieu C. Vitamin D: Modulator of the immune system. Curr. Opin. Pharmacol. 2010;10:482–496. doi: 10.1016/j.coph.2010.04.001.
    1. Hewison M. Vitamin D and Innate and Adaptive Immunity. Vitam. Horm. 2011;86:23–62.
    1. Jolliffe D., Griffiths C., Martineau A. Vitamin D in the prevention of acute respiratory infection: Systematic review of clinical studies. J. Steroid Biochem. Mol. Biol. 2013;136:321–329. doi: 10.1016/j.jsbmb.2012.11.017.
    1. Aloia J., Talwar S., Pollack S., Yeh J. A randomized controlled trial of vitamin D3 supplementation in African American women. Arch. Intern. Med. 2005;165:1618–1623. doi: 10.1001/archinte.165.14.1618.
    1. Aloia J., Li-Ng M. Re: Epidemic influenza and vitamin D. Epidemiol. Infect. 2007;135:1095–1097.
    1. Laaksi I., Ruohola J., Mattila V., Auvinen A., Ylikomi T., Pihlajamäki H. Vitamin D supplementation for the prevention of acute respiratory tract infection: A randomized, double-blinded trial among young Finnish men. J. Infect. Dis. 2010;202:809–814. doi: 10.1086/654881.
    1. Urashima M., Segawa T., Okazaki M., Kurihara M., Wada Y., Ida H. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am. J. Clin. Nutr. 2010;91:1255–1260. doi: 10.3945/ajcn.2009.29094.
    1. Camargo C., Ganmaa D., Frazier A., Kirchberg F., Stuart J., Kleinman K., Sumberzul N., Rich-Edwards J. Randomized trial of vitamin D supplementation and risk of acute respiratory infection in Mongolia. Pediatrics. 2012;130:e561–e567. doi: 10.1542/peds.2011-3029.
    1. Majak P., Olszowiec-Chlebna M., Smejda K., Stelmach I. Vitamin D supplementation in children may prevent asthma exacerbation triggered by acute respiratory infection. J. Allergy Clin. Immunol. 2011;127:1294–1296. doi: 10.1016/j.jaci.2010.12.016.
    1. Li-Ng M., Aloia J., Pollack S., Cunha B., Mikhail M., Yeh J., Berbari N. A randomized controlled trial of vitamin D3 supplementation for the prevention of symptomatic upper respiratory tract infections. Epidemiol. Infect. 2009;137:1396–1404. doi: 10.1017/S0950268809002404.
    1. Murdoch D., Slow S., Chambers S., Jennings L., Stewart A., Priest P., Florkowski C., Livesey J., Camargo C., Scragg R. Effect of vitamin D3 supplementation on upper respiratory tract infections in healthy adults: The VIDARIS randomized controlled trial. JAMA. 2012;308:1333–1339. doi: 10.1001/jama.2012.12505.
    1. Kumar G., Sachdev H., Chellani H., Rehman A., Singh V., Arora H., Filteau S. Effect of weekly vitamin D supplements on mortality, morbidity, and growth of low birthweight term infants in India up to age 6 months: Randomised controlled trial. BMJ. 2011;342:d2975. doi: 10.1136/bmj.d2975.
    1. Manaseki-Holland S., Maroof Z., Bruce J., Mughal M., Masher M., Bhutta Z., Walraven G., Chandramohan D. Effect on the incidence of pneumonia of vitamin D supplementation by quarterly bolus dose to infants in Kabul: A randomised controlled superiority trial. Lancet. 2012;379:1419–1427. doi: 10.1016/S0140-6736(11)61650-4.
    1. Jorde R., Witham M., Janssens W., Rolighed L., Borchhardt K., de Boer I., Grimnes G., Hutchinson M. Vitamin D supplementation did not prevent influenza-like illness as diagnosed retrospectively by questionnaires in subjects participating in randomized clinical trials. Scand. J. Infect. Dis. 2012;44:126–132. doi: 10.3109/00365548.2011.621446.
    1. Castro M., King T., Kunselman S., Cabana M., Denlinger L., Holguin F., Kazani S., Moore W., Moy J., Sorkness C., et al. Effect of vitamin D3 on asthma treatment failures in adults with symptomatic asthma and lower vitamin D levels: The VIDI randomized clinical trial. JAMA. 2014;311:2083–2091. doi: 10.1001/jama.2014.5052.
    1. Martineau A., MacLaughlin B., Hooper R., Barnes N., Jolliffe D., Greiller C., Kilpin K., McLaughlin D., Fletcher G., Mein C., et al. Double-blind randomised placebo-controlled trial of bolus-dose vitamin D3 supplementation in adults with asthma (ViDiAs) Thorax. 2015;70:451–457. doi: 10.1136/thoraxjnl-2014-206449.
    1. Martineau A., James W., Hooper R., Barnes N., Jolliffe D., Greiller C., Islam K., McLaughlin D., Bhowmik A., Timms P., et al. Vitamin D3 supplementation in patients with chronic obstructive pulmonary disease (ViDiCO): A multicentre, double-blind, randomised controlled trial. Lancet Respir. Med. 2015;3:120–130. doi: 10.1016/S2213-2600(14)70255-3.
    1. Bergman P., Lindh A., Björkhem-Bergman L., Lindh J. Vitamin D and respiratory tract infections: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE. 2013;8:e65835. doi: 10.1371/journal.pone.0065835.
    1. Sha Q., Truong-Tran A., Plitt J., Beck L., Schleimer R. Activation of airway epithelial cells by toll-like receptor agonists. Am. J. Respir. Cell Mol. Biol. 2004;31:358–364. doi: 10.1165/rcmb.2003-0388OC.
    1. Holt P., Strickland D., Wikström M., Jahnsen F. Regulation of immunological homeostasis in the respiratory tract. Nat. Rev. Immunol. 2008;8:142–152. doi: 10.1038/nri2236.
    1. Malmgaard L., Melchjorsen J., Bowie A., Mogensen S., Paludan S. Viral activation of macrophages through TLR-dependent and -independent pathways. J. Immunol. 2004;173:6890–6898. doi: 10.4049/jimmunol.173.11.6890.
    1. Takeuchi O., Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–820. doi: 10.1016/j.cell.2010.01.022.
    1. Kim Y., Brinkmann M., Paquet M., Ploegh H. UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature. 2008;452:234–238. doi: 10.1038/nature06726.
    1. Lund J., Alexopoulou L., Sato A., Karow M., Adams N., Gale N., Iwasaki A., Flavell R. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl. Acad. Sci. USA. 2004;101:5598–5603. doi: 10.1073/pnas.0400937101.
    1. Lund J., Sato A., Akira S., Medzhitov R., Iwasaki A. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 2003;198:513–520. doi: 10.1084/jem.20030162.
    1. Alexopoulou L., Holt A., Medzhitov R., Flavell R. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001;413:732–738. doi: 10.1038/35099560.
    1. Kohlmeier J., Woodland D. Immunity to respiratory viruses. Annu. Rev. Immunol. 2009;27:61–82. doi: 10.1146/annurev.immunol.021908.132625.
    1. Kurt-Jones E., Popova L., Kwinn L., Haynes L., Jones L., Tripp R., Walsh E., Freeman M., Golenbock D., Anderson L., et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol. 2000;1:398–401. doi: 10.1038/80833.
    1. Shibata T., Motoi Y., Tanimura N., yamakawa N., Akashi-Takamura S., Miyake K. Intracellular TLR4-MD-2 in macrophages senses Gram-negative bacteria and induces a unique set of LPS-dependent genes. Int. Immunol. 2011;23:503–510. doi: 10.1093/intimm/dxr044.
    1. Dietrich N., Lienenklaus S., Weiss S., Gekara N. Murine toll-like receptor 2 activation induces type I interferon responses from endolysosomal compartments. PLoS ONE. 2010;5:e10250. doi: 10.1371/journal.pone.0010250.
    1. Murawski M., Bowen G., Cerny A., Anderson L., Haynes L., Tripp R., Kurt-Jones E., Finberg R. Respiratory syncytial virus activates innate immunity through Toll-like receptor 2. J. Virol. 2009;83:1492–1500. doi: 10.1128/JVI.00671-08.
    1. Pichlmair A., Schulz O., Tan C., Näslund T., Liljeström P., Weber F., Reis e Sousa C. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science. 2006;314:997–1001. doi: 10.1126/science.1132998.
    1. Feng Q., Hato S., Langereis M., Zoll J., Virgen-Slane R., Peisley A., Hur S., Semler B., van Rij R., van Kuppeveld F. MDA5 detects the double-stranded RNA replicative form in picornavirus-infected cells. Cell Rep. 2012;2:1187–1196. doi: 10.1016/j.celrep.2012.10.005.
    1. Sabbah A., Chang T., Harnack R., Frohlich V., Tominaga K., Dube P., Xiang Y., Bose S. Activation of innate immune antiviral responses by Nod2. Nat. Immunol. 2009;10:1073–1080. doi: 10.1038/ni.1782.
    1. Loo Y., Fornek J., Crochet N., Bajwa G., Perwitasari O., Martinez-Sobrido L., Akira S., Gill M., García-Sastre A., Katze M., et al. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol. 2008;82:335–345. doi: 10.1128/JVI.01080-07.
    1. Bowie A., Unterholzner L. Viral evasion and subversion of pattern-recognition receptor signalling. Nat. Rev. Immunol. 2008;8:911–922. doi: 10.1038/nri2436.
    1. Newton K., Dixit V. Signaling in innate immunity and inflammation. Cold Spring Harb. Perspect. Biol. 2012;4 doi: 10.1101/cshperspect.a006049.
    1. Godaly G., Bergsten G., Hang L., Fischer H., Frendéus B., Lundstedt A., Samuelsson M., Samuelsson P., Svanborg C. Neutrophil recruitment, chemokine receptors, and resistance to mucosal infection. J. Leukoc. Biol. 2001;69:899–906.
    1. Verbist K., Rose D., Cole C., Field M., Klonowski K. IL-15 participates in the respiratory innate immune response to influenza virus infection. PLoS ONE. 2012;7:e37539. doi: 10.1371/journal.pone.0037539.
    1. Wareing M., Shea A., Inglis C., Dias P., Sarawar S. CXCR2 is required for neutrophil recruitment to the lung during influenza virus infection, but is not essential for viral clearance. Viral Immunol. 2007;20:369–378. doi: 10.1089/vim.2006.0101.
    1. Kugathasan K., Roediger E., Small C., McCormick S., Yang P., Xing Z. CD11c+ antigen presenting cells from the alveolar space, lung parenchyma and spleen differ in their phenotype and capabilities to activate naive and antigen-primed T cells. BMC Immunol. 2008;9:1186–1197. doi: 10.1186/1471-2172-9-48.
    1. Gordon S., Read R. Macrophage defences against respiratory tract infections. Br. Med. Bull. 2002;61:45–61. doi: 10.1093/bmb/61.1.45.
    1. Gwyer Findlay E., Currie S., Davidson D. Cationic host defence peptides: Potential as antiviral therapeutics. BioDrugs. 2013;27:479–493. doi: 10.1007/s40259-013-0039-0.
    1. Barlow P., Svoboda P., Mackellar A., Nash A., York I., Pohl J., Davidson D., Donis R. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS ONE. 2011;6:e25333. doi: 10.1371/journal.pone.0025333.
    1. Lai Y., Adhikarakunnathu S., Bhardwaj K., Ranjith-Kumar C., Wen Y., Jordan J., Wu L., Dragnea B., San Mateo L., Kao C. LL37 and cationic peptides enhance TLR3 signaling by viral double-stranded RNAs. PLoS ONE. 2011;6:e26632. doi: 10.1371/journal.pone.0026632.
    1. Currie S., Findlay E., McHugh B., Mackellar A., Man T., Macmillan D., Wang H., Fitch P., Schwarze J., Davidson D. The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus. PLoS ONE. 2013;8:e73659. doi: 10.1371/journal.pone.0073659.
    1. Reed J., Brewah Y., Delaney T., Welliver T., Burwell T., Benjamin E., Kuta E., Kozhich A., McKinney L., Suzich J., et al. Macrophage impairment underlies airway occlusion in primary respiratory syncytial virus bronchiolitis. J. Infect. Dis. 2008;198:1783–1793. doi: 10.1086/593173.
    1. Schneider C., Nobs S., Heer A., Kurrer M., Klinke G., van Rooijen N., Vogel J., Kopf M. Alveolar macrophages are essential for protection from respiratory failure and associated morbidity following influenza virus infection. PLoS Pathog. 2014;10:e1004053. doi: 10.1371/journal.ppat.1004053.
    1. Braciale T., Sun J., Kim T. Regulating the adaptive immune response to repiratory virus infection. Nat. Rev. Immunol. 2012;12:295–305. doi: 10.1038/nri3166.
    1. Förster R., Davalos-Misslitz A., Rot A. CCR7 and its ligand: Balancing immunity and tolerance. Nat. Rev. Immunol. 2008;8:362–371. doi: 10.1038/nri2297.
    1. Trifilo M., Bergmann C., Kuziel W., Lane T. CC chemokine ligand 3 (CCL3) regulates CD8(+)-T-cells effector function and migration following viral infection. J. Virol. 2003;77:4004–4014. doi: 10.1128/JVI.77.7.4004-4014.2003.
    1. Freeman C., Curtis J., Chensue S. CC chemokine receptor 5 and CXC chemokine receptor 6 expression by lung CD8+ cells correlates with chronic obstructive pulmonary disease severity. Am. J. Pathol. 2007;171:767–776. doi: 10.2353/ajpath.2007.061177.
    1. Agostini C., Facco M., Siviero M., Carollo D., Galvan S., Cattelan A., Zambello R., Trentin L., Semenzato G. CXC chemokines IP-10 and mig expression and direct migration of pulmonary CD8+/CXCR3+ T cells in the lungs of patients with HIV infection and T-cell alveolitis. Am. J. Respir. Crit. Care Med. 2000;161(4 Pt 1):1466–1473. doi: 10.1164/ajrccm.162.4.2003130.
    1. Bromley S., Mempel T., Luster A. Orchestrating the orchestrators: Chemokines in control of T cell traffic. Nat. Immunol. 2008;9:970–980. doi: 10.1038/ni.f.213.
    1. Gerhard W. The role of the antibody response in influenza virus infection. Curr. Top. Microbiol. Immunol. 2001;260:171–190.
    1. Palladino G., Mozdzanowska K., Washko G., Gerhard W. Virus-neutralizing antibodies of immunoglobulin G (IgG) but not of IgM or IgA isotypes can cure influenza virus pneumonia in SCID mice. J Virol. 1995;69:2075–2081.
    1. Jegaskanda S., Weinfurter J., Friedrich T., Kent S. Antibody-dependent cellular cytotoxicity is associated with control of pandemic H1N1 influenza virus infection of macaques. J. Virol. 2013;87:5512–5522. doi: 10.1128/JVI.03030-12.
    1. Stoermer K., Morrison T. Complement and viral pathogenesis. Virology. 2011;411:362–373. doi: 10.1016/j.virol.2010.12.045.
    1. Zhang J., Li G., Liu X., Wang Z., Liu W., Ye X. Influenza A virus M1 blocks the classical complement pathway through interacting with C1qA. J. Gen. Virol. 2009;90:2751–2758. doi: 10.1099/vir.0.014316-0.
    1. Jones G. Pharmacokinetics of vitamin D toxicity. Am. J. Clin. Nutr. 2008;88:582–586.
    1. Heaney R. Serum 25-hydroxyvitamin D is a reliable indicator of vitamin D status. Am. J. Clin. Nutr. 2011;94:619–620. doi: 10.3945/ajcn.111.019539.
    1. Vieth R. Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am. J. Clin. Nutr. 1999;69:842–856.
    1. Norman A., Mizwicki M., Norman D. Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Mat. Rev. Drug Discov. 2004;3:27–41. doi: 10.1038/nrd1283.
    1. Huhtakangas J., Olivera C., Bishop J., Zanello L., Norman A. The vitamin D receptor is present in caveolae-enriched plamsa membranes and binds 1 alpha,25(OH)2-vitamin D3 in vivo and in vitro. Mol. Endocrinol. 2004;18:2660–2671. doi: 10.1210/me.2004-0116.
    1. Norman A. Minireview: Vitamin D receptor: New assignments for an already busy receptor. Endocrinology. 2006;147:5542–5548. doi: 10.1210/en.2006-0946.
    1. Campbell F., Xu H., El-Tanani M., Crowe P., Bingham V. The yin and yang of vitamin D receptor (VDR) signaling in neoplastic progression: Operational networks and tissue-specific growth control. Biochem. Pharmacol. 2010;79:1–9. doi: 10.1016/j.bcp.2009.09.005.
    1. Provvedini D., Tsoukas C., Deftos L., Manolagas S. 1,25-dihydroxyvitamin D3 receptors in human leukocytes. Science. 1983;221:1181–1183. doi: 10.1126/science.6310748.
    1. Baeke F., Korf H., Overbergh L., Etten E.V., Verstuyf A., Gysemans C., Mathieu C. Human T lymphocytes are direct targets of 1,25-dihydroxyvitamin D3 in the immune system. J. Steroid Biochem. Mol. Biol. 2010;121:221–227. doi: 10.1016/j.jsbmb.2010.03.037.
    1. Hewison M., Freeman L., Hughes S., Evans K., Bland R., Eliopoulos A., Kilby M., Moss P., Chakraverty R. Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells. J. Immunol. 2003;170:5382–5390. doi: 10.4049/jimmunol.170.11.5382.
    1. Chen S., Sims G., Chen X., Gu Y., Chen S., Lipsky P. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J. Immunol. 2007;179:1634–1647. doi: 10.4049/jimmunol.179.3.1634.
    1. Sigmundsdottir H., Pan J., Debes G., Alt C., Habtezion A., Soler D., Butcher E. DCs metabolize sunlight-induced vitamin D3 to ‘program’ T cell attraction to the epidermal chemokine CCL27. Nat. Immunol. 2007;8:285–293. doi: 10.1038/ni1433.
    1. Kriegel M., Manson J., Costenbader K. Does vitamin D affect risk of developing autoimmune disease?: A systematic review. Semin. Arthritis Rheum. 2011;40:512–531. doi: 10.1016/j.semarthrit.2010.07.009.
    1. Krishnan A., Trump D., Johnson C., Feldman F. The role of vitamin D in cancer prevention and treatment. Endocrinol. Metab. Clin. North Am. 2010;39:401–418. doi: 10.1016/j.ecl.2010.02.011.
    1. Wang T., Pencina M., Booth S., Jacques P., Ingelsson E., Lanier K., Benjamin E., D-Agostino R., Wolf M., Vasan R. Vitamin D deficiency and risk of cardiovascular disease. Circulation. 2008;117:503–511. doi: 10.1161/CIRCULATIONAHA.107.706127.
    1. Ginde A., Mansbach J., Camargo C. Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey. Arch. Intern. Med. 2009;169:384–390. doi: 10.1001/archinternmed.2008.560.
    1. Adams J., Ren S., Arbelle J., Horiuchi N., Gray R., Clemens T., Shany S. Regulated production and intracrine action of 1,25-dihydroxyvitamin D3 in the chick myelomonocytic cell line HD-11. Endocrinology. 1994;134:2567–2573.
    1. Reichel H., Koeffler H., Barbers R., Norman A. Regulation of 1,25-dihydroxyvitamin D3 production by cultured alveolar macrophages from normal human donors and from patients with pulmonary sarcoidosis. J. Clin. Endocrinol. Metab. 1987;65:1201–1209. doi: 10.1210/jcem-65-6-1201.
    1. Yuan J., Freemont A., Mawer E., Hayes M. Regulation of 1 alpha, 25-dihydroxyvitamin D3 synthesis in macrophages from arthritic joints by phorbol ester, dibutyryl-cAMP and calcium ionophore (A23187) FEBS Lett. 1992;311:71–74. doi: 10.1016/0014-5793(92)81370-2.
    1. Ren S., Nguyen L., Wu S., Encinas C., Adams J., Hewison M. Alternative splicing of vitamin D-24-hydroxylase: A novel mechanism for the regulation of extrarenal 1,25-dihydroxyvitamin D synthesis. J. Biol. Chem. 2005;280:20604–20611. doi: 10.1074/jbc.M414522200.
    1. White J. Vitamin D signaling, infectious diseases, and regulation of innate immunity. Infect. Immun. 2008;76:3837–3843. doi: 10.1128/IAI.00353-08.
    1. White J. Regulation of intracrine production of 1,25-dihydroxyvitamin D and its role in innate immune defense against infection. Arch. Biochem. Biophys. 2012;523:58–63. doi: 10.1016/j.abb.2011.11.006.
    1. Campbell G., Spector S. Toll-like receptor 8 ligands activate a vitamin D mediated autophagic response that inhibits human immunodeficiency virus type 1. PLoS Pathog. 2012;8:e1003017. doi: 10.1371/journal.ppat.1003017.
    1. Evans K., Taylor H., Zehnder D., Kilby M., Bulmer J., Shah F., Adams J., Hewison M. Increased expression of 25-hydroxyvitamin D-1alpha-hydroxylase in dysgerminomas: A novel form of humoral hypercalcemia of malignancy. Am. J. Pathol. 2004;165:807–813. doi: 10.1016/S0002-9440(10)63343-3.
    1. Stoffels K., Overbergh L., Giulietti A., Verlinden L., Bouillon R., Mathieu C. Immune regulation of 25-hydroxyvitamin-D3-1alpha-hydroxylase in human monocytes. J. Bone Miner. Res. 2006;21:37–47. doi: 10.1359/JBMR.050908.
    1. Fritsche J., Mondal K., Ehrnsperger A., Andreesen R., Kreutz M. Regulation of 25-hydroxyvitamin D3-1 alpha-hydroxylase and production of 1 alpha,25-dihydroxyvitamin D3 by human dendritic cells. Blood. 2003;102:3314–3316. doi: 10.1182/blood-2002-11-3521.
    1. Enioutina E., Bareyan D., Daynes R. TLR-induced local metabolism of vitamin D3 plays an important role in the diversification of adaptive immune responses. J Immunol. 2009;182:4296–4305. doi: 10.4049/jimmunol.0804344.
    1. Enioutina E., Bareyan D., Daynes R. TLR ligands that stimulate the metabolism of vitamin D3 in activated murine dendritic cells can function as effective mucosal adjuvants to subcutaneously administered vaccines. Vaccine. 2008;26:601–613. doi: 10.1016/j.vaccine.2007.11.084.
    1. Hansdottir S., Monick M., Hinde S., Lovan N., Look D., Hunninghake G. Respiratory epithelial cells convert inactive vitamin D to its active form: Potential effects on host defense. J. Immunol. 2008;181:7090–7099. doi: 10.4049/jimmunol.181.10.7090.
    1. Krutzik S., Hewison M., Liu P., Robles J., Stenger S., Adams J., Modlin R. IL-15 links TLR2/1-induced macrophage differentiaition to the vitamin D-dependent antimicrobial pathway. J. Immunol. 2008;181:7115–7120. doi: 10.4049/jimmunol.181.10.7115.
    1. Schrumpf J., van Sterkenburg M., Verhoosel R., Zuyderduyn S., Hiemstra P. Interleukin 13 exposure enhances vitamin D-mediated expression of the human cathelicidin antimicrobial peptide 18/LL-37 in bronchial epithelial cells. Infect. Immun. 2012;80:4485–4494. doi: 10.1128/IAI.06224-11.
    1. Overbergh L., Stoffels K., Waer M., Verstuyf A., Bouillon R., Mathieu C. Immune regulation of 25-hydroxyvitamin D-1 alpha-hydroxylase in human monocytic THP1 cells: Mechanisms of interferon-gamma-mediated induction. J. Clin. Endocrinol. Metab. 2006;91:3566–3574. doi: 10.1210/jc.2006-0678.
    1. Edfeldt K., Liu P., Chun R., Fabri M., Schenk M., Wheelwright M., Keegan C., Krutzik S., Adams J., Hewison M., et al. T-cell cytokines differentially control human monocyte antimicrobial responses by regulating vitamin D metabolism. Proc. Natl. Acad. Sci. USA. 2010;107:22593–22598. doi: 10.1073/pnas.1011624108.
    1. Gyetko M., Hsu C., Wilkinson C., Patel S., Young E. Monocyte 1 alpha-hydroxylase regulation: Induction by inflammatory cytokines and suppression by dexamethasone and uremia toxin. J. Leukoc. Biol. 1993;54:17–22.
    1. Slatopolsky E., Dusso A., Brown A. New analogs of vitamin D3. Kidney Int. Suppl. 1999;73:S46–S51. doi: 10.1046/j.1523-1755.1999.07305.x.
    1. Parton R., Simons K. The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 2007;8:185–194. doi: 10.1038/nrm2122.
    1. Monkawa T., Yoshida T., Hayashi M., Saruta T. Identification of 25-hydroxyvitamin D3 1alpha-hydroxylase gene expression in macrophages. Kidney Int. 2000;58:559–568. doi: 10.1046/j.1523-1755.2000.00202.x.
    1. Sørensen O., Follin P., Johnsen A., Calafat J., Tjabringa G., Hiemstra P., VBorregaard N. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood. 2001;97:3951–3959. doi: 10.1182/blood.V97.12.3951.
    1. Agerberth B., Charo J., Werr J., Olsson B., Idali F., Lindbom L., Kiessling R., Jörnvall H., Wigzell H., Gudmundsson G. The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood. 2000;96:3086–3093.
    1. Bals R., Wang X., Zasloff M., Wilson J. The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc. Natl. Acad. Sci. USA. 1998;95:9541–9546. doi: 10.1073/pnas.95.16.9541.
    1. Yang D., Chen Q., Schmidt A., Anderson G., Wang J., Wooters J., Oppenheim J.J., Chertov O. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med. 2000;192:1069–1074. doi: 10.1084/jem.192.7.1069.
    1. Tjabringa G., Ninaber D., Drijfhout J., Rabe K., Hiemstra P. Human cathelicidin LL-37 is a chemoattractant for eosinophils and neutrophils that acts via formyl-peptide receptors. Int. Arch. Allergy Immunol. 2006;140:103–112. doi: 10.1159/000092305.
    1. Scott M., Davidson D., Gold M., Bowdish D., Hancock R. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J. Immunol. 2002;169:3883–3891. doi: 10.4049/jimmunol.169.7.3883.
    1. Nagaoka I., Tamura H., Hirata M. An antimicrobial cathelicidin peptide, human CAP18/LL-37, suppresses neutrophil apoptosis via the activation of formyl-peptide receptor-like 1 and P2X7. J. Immunol. 2006;176:3044–3052. doi: 10.4049/jimmunol.176.5.3044.
    1. Davidson D., Currie A., Reid G., Bowdish D., MacDonald K., Ma R., Hancock R., Speert D. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J. Immunol. 2004;172:1146–1156. doi: 10.4049/jimmunol.172.2.1146.
    1. Choi K., Chow L., Mookherjee N. Cationic host defence peptides: Multifaceted role in immune modulation and inflammation. J. Innate Immun. 2012;4:361–370. doi: 10.1159/000336630.
    1. Wang T., Nestel F., Bourdeau V., Nagai Y., Wang Q., Liao J., Tavera-Mendoza L., Lin R., Hanrahan J., Mader S., et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol. 2004;173:2909–2912. doi: 10.4049/jimmunol.173.5.2909.
    1. Gombart A., Borregaard N., Koeffler H. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J. 2005;19:1067–1077. doi: 10.1096/fj.04-3284com.
    1. Yim S., Dhawan P., Ragunath C., Christakos S., Diamond G. Induction of cathelicidin in normal and CF bronchial epithelial cells by 1,25-dihydroxyvitamin D(3) J. Cyst. Fibros. 2007;6:403–410. doi: 10.1016/j.jcf.2007.03.003.
    1. Weber G., Heilborn J., Chamorro Jimenez C., Hammarsjo A., Törmä H., Stahle M. Vitamin D induces the antimicrobial protein hCAP18 in human skin. J. Investig. Dermatol. 2005;124:1080–1082. doi: 10.1111/j.0022-202X.2005.23687.x.
    1. Ganz T. Defensins: Antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 2003;3:710–720. doi: 10.1038/nri1180.
    1. Kota S., Sabbah A., Chang T., Harnack R., Xiang Y., Meng X., Bose S. Role of human beta-defensin-2 during tumor necrosis factor-alpha/NF-kappaB-mediated innate antiviral response against human respiratory syncytial virus. J. Biol. Chem. 2008;283:22417–22429. doi: 10.1074/jbc.M710415200.
    1. Rigby W., Shen L., Ball E., Guyre P., Fanger M. Differentiation of a human monocytic cell line by 1,25-dihydroxyvitamin D3 (calcitriol): A morphologic, phenotypic, and functional analysis. Blood. 1984;64:1110–1115.
    1. Xu H., Soruri A., Gieseler R., Peters J. 1,25-Dihydroxyvitamin D3 exerts opposing effects to IL-4 on MHC class-II antigen expression, accessory activity, and phagocytosis of human monocytes. Scand. J. Immunol. 1993;38:535–540. doi: 10.1111/j.1365-3083.1993.tb03237.x.
    1. Wu S., Sun J. Vitamin D, vitamin D receptor, and macroautophagy in inflammation and infection. Discov. Med. 2011;11:325–335.
    1. Sly L., Lopez M., Nauseef W., Reiner N. 1alpha,25-Dihydroxyvitamin D3-induced monocyte antimycobacterial activity is regulated by phosphatidylinositol 3-kinase and mediated by the NADPH-dependent phagocyte oxidase. J. Biol. Chem. 2001;276:35482–35493. doi: 10.1074/jbc.M102876200.
    1. Kim H., Kim C., Ryu J., Kim M., Park C., Lee J., Holtzman M., Yoon J. Reactive oxygen species induce antiviral innate immune response through IFN-λ regulation in human nasal epithelial cells. Am. J. Respir. Cell Mol. Biol. 2013;49:855–865. doi: 10.1165/rcmb.2013-0003OC.
    1. Strengert M., Jennings R., Davanture S., Hayes P., Gabriel G., Knaus U. Mucosal reactive oxygen species are required for antiviral response: Role of Duox in influenza a virus infection. Antioxid. Redox Signal. 2014;20:2695–2709. doi: 10.1089/ars.2013.5353.
    1. Soucy-Faulkner A., Mukawera E., Fink K., Martel A., Jouan L., Nzengue Y., Lamarre D., Vande Velde C., Grandvaux N. Requirement of NOX2 and reactive oxygen species for efficient RIG-I-mediated antiviral response through regulation of MAVS expression. PLoS Pathog. 2010;6:e1000930. doi: 10.1371/journal.ppat.1000930.
    1. Liu G., Zhai Q., Schaffner D., Bradburne C., Wu A., Hayford A., Popov S., Grene E., Bailey C., Alibek K. IL-15 induces IFN-beta and iNOS gene expression, and antiviral activity of murine macrophage RAW 264.7 cells. Immunol. Lett. 2004;91:171–178. doi: 10.1016/j.imlet.2003.11.015.
    1. Kleinert H., Schwarz P., Förstermann U. Regulation of the expression of inducible nitric oxide synthase. Biol. Chem. 2003;384:1343–1364. doi: 10.1515/BC.2003.152.
    1. Lee Y., Lai C., Hsieh S., Shieh C., Huang L., Wu-Hsieh B. Influenza A virus induction of oxidative stress and MMP-9 is associated with severe lung pathology in a mouse model. Virus Res. 2013;178:411–422. doi: 10.1016/j.virusres.2013.09.011.
    1. Ríos-Ibarra C., Lozano-Sepulveda S., Muñoz-Espinosa L., Rincón-Sánchez A., Cordova-Fletes C., Rivas-Estilla A. Downregulation of inducible nitric oxide synthase (iNOS) expression is implicated in the antiviral activity of acetylsalicylic acid in HCV-expressing cells. Arch. Virol. 2014;159:3321–3328. doi: 10.1007/s00705-014-2201-5.
    1. Rockett K., Brookes R., Udalova I., Vidal V., Hill A., Kwiatkowski D. 1,25-Dihydroxyvitamin D3 induces nitric oxide synthase and suppresses growth of Mycobacterium tuberculosis in a human macrophage-like cell line. Infect. Immun. 1998;66:5314–5321.
    1. Bao B., Ting H., Hsu J., Lee Y. Protective role of 1 alpha, 25-dihydroxyvitamin D3 against oxidative stress in nonmalignant human prostate epithelial cells. Int. J. Cancer. 2008;122:2699–2706. doi: 10.1002/ijc.23460.
    1. Chang J., Kuo M., Kuo H., Hwang S., Tsai J., Chen H., Lai Y. 1-alpha,25-Dihydroxyvitamin D3 regulates inducible nitric oxide synthase messenger RNA expression and nitric oxide release in macrophage-like RAW 264.7 cells. J. Lab. Clin. Med. 2004;143:14–22. doi: 10.1016/j.lab.2003.08.002.
    1. Gombart A. Vitamin D: Oxidative Stress, Immunity, and Aging. CRC Press; Boca Raton, FL, USA: 2012.
    1. Richetta C., Faure M. Autophagy in antiviral innate immunity. Cell. Microbiol. 2013;15:368–376. doi: 10.1111/cmi.12043.
    1. Yuk J., Shin D., Lee H., Yang C., Jin H., Kim K., Lee Z., Lee S., Kim J., Jo E. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe. 2009;6:231–243. doi: 10.1016/j.chom.2009.08.004.
    1. Høyer-Hansen M., Nordbrandt S., Jäättelä M. Autophagy as a basis for the health-promoting effects of vitamin D. Trends Mol. Med. 2010;16:295–302. doi: 10.1016/j.molmed.2010.04.005.
    1. Sadeghi K., Wessner B., Laggner U., Ploder M., Tamandl D., Friedl J., Zügel U., Steinmeyer A., Pollak A., Roth E., et al. Vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. Eur. J. Immunol. 2006;36:361–370. doi: 10.1002/eji.200425995.
    1. Manukyan M., Triantafilou K., Triantafilou M., Mackie A., Nilsen N., Espevik T., Wiesmüller K., Ulmer A., Heine H. Binding of lipopeptide to CD14 induces physical proximity of CD14, TLR2 and TLR1. Eur. J. Immunol. 2005;35:911–921. doi: 10.1002/eji.200425336.
    1. Oberg F., Botling J., Nilsson K. Functional antagonism between vitamin D3 and retinoic acid in the regulation of CD14 and CD23 expression during monocytic differentiation of U-937 cells. J. Immunol. 1993;150(8 Pt 1):3487–3495.
    1. Zhang D., Hetherington C., Gonzalez D., Chen H., Tenen D. Regulation of CD14 expression during monocytic differentiation induced with 1 alpha,25-dihydroxyvitamin D3. J. Immunol. 1994;153:3276–3284.
    1. Schauber J., Dorschner R., Coda A., Büchau A., Liu P., Kiken D., Helfrich Y., Kang S., Elalieh H., Steinmeyer A., et al. Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J. Clin. Investig. 2007;117:803–811. doi: 10.1172/JCI30142.
    1. Wang T., Dabbas B., Laperriere D., Bitton A., Soualhine H., Tavera-Mendoza L., Dionne S., Servant M., Bitton A., Seidman E., et al. Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin beta2 innate immune pathway defective in Crohn disease. J. Biol. Chem. 2010;285:2227–2231. doi: 10.1074/jbc.C109.071225.
    1. Penna G., Adorini L. 1 Alpha,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J. Immunol. 2000;164:2405–2411. doi: 10.4049/jimmunol.164.5.2405.
    1. Berer A., Stöckl J., Majdic O., Wagner T., Kollars M., Lechner K., Geissler K., Oehler L. 1,25-Dihydroxyvitamin D(3) inhibits dendritic cell differentiation and maturation in vitro. Exp. Hematol. 2000;28:575–583. doi: 10.1016/S0301-472X(00)00143-0.
    1. Dam T., Møller B., Hindkjaer J., Kragballe K. The vitamin D3 analog calcipotriol suppresses the number and antigen-presenting function of Langerhans cells in normal human skin. J. Investig. Dermatol. Symp. Proc. 1996;1:72–77.
    1. Gauzzi M., Purificato C., Donato K., Jin Y., Wang L., Daniel K., Maghazachi A., Belardelli F., Adorini L., Gessani S. Suppressive effect of 1alpha,25-dihydroxyvitamin D3 on type I IFN-mediated monocyte differentiation into dendritic cells: Impairment of functional activities and chemotaxis. J. Immunol. 2005;174:270–276. doi: 10.4049/jimmunol.174.1.270.
    1. Baeke F., Etten E., Overbergh L., Mathieu C. Vitamin D3 and the immune system: Maintaining the balance in health and disease. Nutr. Res. Rev. 2007;20:106–118. doi: 10.1017/S0954422407742713.
    1. D’Ambrosio D., Cippitelli M., Cocciolo M., Mazzeo D., di Lucia P., Lang R., Sinigaglia F., Panina-Bordignon P. Inhibition of IL-12 production by 1,25-dihydroxyvitamin D3. Involvement of NF-kappaB downregulation in transcriptional repression of the p40 gene. J. Clin. Investig. 1998;101:252–262. doi: 10.1172/JCI1050.
    1. Giovannini L., Panichi V., Migliori M., de Pietro S., Bertelli A., Fulgenzi A., Filippi C., Sarnico I., Taccola D., Palla R., et al. 1,25-dihydroxyvitamin D(3) dose-dependently inhibits LPS-induced cytokines production in PBMC modulating intracellular calcium. Transpl. Proc. 2001;33:2366–2368. doi: 10.1016/S0041-1345(01)02023-1.
    1. Van Halteren A., van Etten E., de Jong E., Bouillon R., Roep B., Mathieu C. Redirection of human autoreactive T-cells upon interaction with dendritic cells modulated by TX527, an analog of 1,25 dihydroxyvitamin D(3) Diabetes. 2002;71:2119–2125. doi: 10.2337/diabetes.51.7.2119.
    1. Lemire J., Archer D., Beck L., Spiegelberg H. Immunosuppressive actions of 1,25-dihydroxyvitamin D3: Preferential inhibition of Th1 functions. J. Nutr. 1995;125(Suppl. S6):1704–1708.
    1. Xystrakis E., Kusumakar S., Boswell S., Peek E., Urry Z., Richards D., Adikibi T., Pridgeon C., Dallman M., Loke T., et al. Reversing the defective induction of IL-10-secreting regulatory T cells in glucocorticoid-resistant asthma patients. J. Clin. Investig. 2006;116:146–155. doi: 10.1172/JCI21759.
    1. Borish L., Aarons A., Rumbyrt J., Cvietusa P., Negri J., Wenzel S. Interleukin-10 regulation in normal subjects and patients with asthma. J. Allergy Clin. Immunol. 1996;97:1288–1296. doi: 10.1016/S0091-6749(96)70197-5.
    1. Tang J., Zhou R., Luger D., Zhu W., Silver P., Grajewski R., Su S., Chan C., Adorini L., Caspi R. Calcitriol suppresses antiretinal autoimmunity through inhibitory effects on the Th17 effector response. J. Immunol. 2009;182:4624–4632. doi: 10.4049/jimmunol.0801543.
    1. Daniel C., Sartory N., Zahn N., Radeke H., Stein J. Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile. J. Pharmacol. Exp. Ther. 2008;324:23–33. doi: 10.1124/jpet.107.127209.
    1. Miossec P., Korn T., Kuchroo V. Interleukin-17 and type 17 helper T cells. N. Engl. J. Med. 2009;361:888–898. doi: 10.1056/NEJMra0707449.
    1. Ma C., Chew G., Simpson N., Priyadarshi A., Wong M., Grimbacher B., Fulcher D., Tangye S., Cook M. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J. Exp. Med. 2008;205:1551–1557. doi: 10.1084/jem.20080218.
    1. Barrat F., Cua D., Boonstra A., Richards D., Crain C., Savelkoul H., de Waal-Malefyt R., Coffman R., Hawrylowicz C. In vitro generation of interleukin 10-producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J. Exp. Med. 2002;195:603–616. doi: 10.1084/jem.20011629.
    1. Jeffery L., Burke F., Mura M., Zheng Y., Qureshi O., Hewison M., Walker L., Lammas D., Raza K., Sansom D. 1,25-dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J. Immunol. 2009;183:5458–5467. doi: 10.4049/jimmunol.0803217.
    1. Rigby W., Denome S., Fanger M. Regulation of lymphokine production and human T lymphocyte activation by 1,25-dihydroxyvitamin D3. Specific inhibition at the level of messenger RNA. J. Clin. Investig. 1987;79:1659–1664. doi: 10.1172/JCI113004.
    1. Cippitelli M., Santoni M. Vitamin D3: A transcriptional modulator of the interferon-gamma gene. Eur. J. Immunol. 1998;28:3017–3030. doi: 10.1002/(SICI)1521-4141(199810)28:10<3017::AID-IMMU3017>;2-6.
    1. Boonstra A., Barrat F., Crain C., Heath V., Savelkoul H., O’Garra A. 1alpha,25-dihydroxyvitamin d3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J. Immunol. 2001;167:4974–4980. doi: 10.4049/jimmunol.167.9.4974.
    1. Yang M., Rui K., Wang S., Lu L. Regulatory B cells in autoimmune diseases. Cell Mol. Immunol. 2013;10:122–132. doi: 10.1038/cmi.2012.60.
    1. Terrier B., Derian N., Schindre Y., Chaara W., Geri G., Zahr N., Mariampillai K., Rosenzwajg M., Carpentier W., Musset L., et al. Restoration of regulatory and effector T cell balance and B cell homeostasis in systemic lupus erythematosus patients through vitamin D supplementation. Arthritis Res. Ther. 2012;14:R221. doi: 10.1186/ar4060.
    1. Cantorna M., Zhao J., Yang L. Vitamin D, invariant natural killer T-cells and experimental autoimmune disease. Proc. Nutr. Soc. 2012;71:62–66. doi: 10.1017/S0029665111003193.
    1. Lysandropoulos A., Jaquiéry E., Jilek S., Pantaleo G., Schluep M., Du Pasquier R. Vitamin D has a direct immunomodulatory effect on CD8+ T cells of patients with early multiple sclerosis and healthy control subjects. J. Neuroimmunol. 2011;233:240–244. doi: 10.1016/j.jneuroim.2010.11.008.
    1. Topilski I., Flaishon L., Naveh Y., Harmelin A., Levo Y., Shachar I. The anti-inflammatory effects of 1,25-dihydroxyvitamin D3 on Th2 cells in vivo are due in part to the control of integrin-mediated T lymphocyte homing. Eur. J. Immunol. 2004;34:1068–1076. doi: 10.1002/eji.200324532.
    1. Matheu V., Back O., Mondoc E., Issazadeh-Navikas S. Dual effects of vitamin D-induced alteration of TH1/TH2 cytokine expression: Enhancing IgE production and decreasing airway eosinophilia in murine allergic airway disease. J. Allergy Clin. Immunol. 2003;112:585–592. doi: 10.1016/S0091-6749(03)01855-4.
    1. Staeva-Vieira T., Freedman L. 1,25-dihydroxyvitamin D3 inhibits IFN-gamma and IL-4 levels in vitro polaization of primary murine CD4+ T cells. J. Immunol. 2002;168:1181–1189. doi: 10.4049/jimmunol.168.3.1181.
    1. Kreindler J., Steele C., Nguyen N., Chan Y., Pilewski J., Alcorn J., Vyas Y., Aujla S., Finelli P., Blanchard M., et al. Vitamin D3 attenuates Th2 responses to Aspergillus fumigatus mounted by CD4+ T cells from cystic fibrosis patients with allergic bronchopulmonary aspergillosis. J. Clin. Investig. 2010;120:3242–3254. doi: 10.1172/JCI42388.
    1. Jeffery L., Wood A., Qureshi O., Hou T., Gardner D., Briggs Z., Kaur S., Raza K., Sansom D. Availability of 25-hydroxyvitamin D(3) to APCs controls the balance between regulatory and inflammatory T cell responses. J. Immunol. 2012;189:5155–5164. doi: 10.4049/jimmunol.1200786.
    1. Arruda E., Pitkäranta A., Witek T., Doyle C., Hayden F. Frequency and natural history of rhinovirus infections in adults during autumn. J. Clin. Microbiol. 1997;35:2864–2868.
    1. Kirkpatrick G. The common cold. Prim. Care. 1996;23:657–675. doi: 10.1016/S0095-4543(05)70355-9.
    1. Monto A. Studies of the community and family: Acute respiratory illness and infection. Epidemiol. Rev. 1994;16:351–373.
    1. Brockman-Schneider R., Pickles R., Gern J. Effects of vitamin D on airway epithelial cell morphology and rhinovirus replication. PLoS ONE. 2014;9:e86755. doi: 10.1371/journal.pone.0086755.
    1. Turner T., Kopp B., Paul G., Landgrave L., Hayes D., Thompson R. Respiratory syncytial virus: Current and emerging treatment options. Clin. Outcomes Res. 2014;25:217–225. doi: 10.2147/CEOR.S60710.
    1. Borchers A., Chang C., Gershwin M., Gershwin L. Respiratory syncytial virus--a comprehensive review. Clin. Rev. Allergy Immunol. 2013;45:331–379. doi: 10.1007/s12016-013-8368-9.
    1. Sigurs N., Gustafsson P., Bjarnason R., Lundberg F., Schmidt S., Sigurbergsson F., Kjellman B. Severe respiratory syncytial virus bronchiolitis in infancy and asthma and allergy at age 13. Am. J. Respir. Crit. Care Med. 2005;171:137–141. doi: 10.1164/rccm.200406-730OC.
    1. Belderbos M., Houben M., Wilbrink B., Lentjes E., Bloemen E., Kimpen J., Rovers M., Bont L. Cord blood vitamin D deficiency is associated with respiratory syncytial virus bronchiolitis. Pediatrics. 2011;127:e1513–e1520. doi: 10.1542/peds.2010-3054.
    1. Drysdale S., Prendergast M., Alcazar M., Wilson T., Smith M., Zuckerman M., Broughton S., Rafferty G., Johnston S., Hodemaekers H., et al. Genetic predisposition of RSV infection-related respiratory morbidity in preterm infants. Eur. J. Pediatr. 2014;173:905–912. doi: 10.1007/s00431-014-2263-0.
    1. McNally J., Sampson M., Matheson L., Hutton B., Little J. Vitamin D receptor (VDR) polymorphisms and severe RSV bronchiolitis: A systematic review and meta-analysis. Pediatr. Pulmonol. 2014;49:790–799. doi: 10.1002/ppul.22877.
    1. Kresfelder T., Janssen R., Bont L., Pretorius M., Venter M. Confirmation of an association between single nucleotide polymorphisms in the VDR gene with respiratory syncytial virus related disease in South African children. J. Med. Virol. 2011;83:1834–1840. doi: 10.1002/jmv.22179.
    1. Randolph A., Yip W., Falkenstein-Hagander K., Weiss S., Janssen R., Keisling S., Bont L. Vitamin D-binding protein haplotype is associated with hospitalization for RSV bronchiolitis. Clin. Exp. Allergy. 2014;44:231–237. doi: 10.1111/cea.12247.
    1. Hansdottir S., Monick M., Lovan N., Powers L., Gerke A., Hunninghake G. Vitamin D decreases respiratory syncytial virus induction of NF-kappaB-linked chemokines and cytokines in airway epithelium while maintaining the antiviral state. J. Immunol. 2010;184:965–974. doi: 10.4049/jimmunol.0902840.
    1. Stoppelenburg A., von Hegedus J., Huis In’t Veld R., Bont L., Boes M. Defective control of vitamin D receptor-mediated epithelial STAT1 signaling predisposes to severe respiratory syncytial virus bronchiolitis. J. Pathol. 2013 doi: 10.1002/path.4267.
    1. Sacco R., Nonnecke B., Palmer M., Waters W., Lippolis J., Reinhardt T. Differential expression of cytokines in response to respiratory syncytial virus infection of calves with high or low circulating 25-hydroxyvitamin D3. PLoS ONE. 2012;7:e33074. doi: 10.1371/journal.pone.0033074.
    1. McGill J., Nonnecke B., Lippolis J., Reinhardt T., Sacco R. Differential chemokine and cytokine production by neonatal bovine γδ T-cell subsets in response to viral toll-like receptor agonists and in vivo respiratory syncytial virus infection. Immunology. 2013;139:227–244. doi: 10.1111/imm.12075.
    1. Khare D., Godbole N., Pawar S., Mohan V., Pandey G., Gupta S., Kiumar D., Dhole T., Godbole M. Calcitriol [1, 25[OH]2 D3] pre- and post-treatment suppresses inflammatory response to influenza A (H1N1) infection in human lung A549 epithelial cells. Eur. J. Nutr. 2013;52:1405–1415. doi: 10.1007/s00394-012-0449-7.
    1. Bermejo-Martin J., Ortiz de Lejarazu R., Pumarola T., Rello J., Almansa R., Ramirez P., Martin-Loeches I., Varillas D., Gallegos M., Seron C., et al. Th1 and Th17 hypercytokinemia as early host response signature in severe pandemic influenza. Crit. Care. 2009;13:R201. doi: 10.1186/cc8208.
    1. Doss M., White M., Tecle T., Gantz D., Crouch E., Jung G., Ruchala P., Waring A., Lehrer R., Hartshorn K. Interactions of alpha-, beta-, and theta-defensins with influenza A virus and surfactant protein D. J. Immunol. 2009;182:7878–7887. doi: 10.4049/jimmunol.0804049.
    1. Kriesel J., Spruance J. Calcitriol (1,25-dihydroxy-vitamin D3) coadministered with influenza vaccine does not enhance humoral immunity in human volunteers. Vaccine. 1999;17:1883–1888. doi: 10.1016/S0264-410X(98)00476-9.
    1. Sundaram M., Talbot H., Zhu Y., Griffin M., Spencer S., Shay D., Coleman L. Vitamin D is not associated with serologic response to influenza vaccine in adults over 50 years old. Vaccine. 2013;31:2057–2061. doi: 10.1016/j.vaccine.2013.02.028.
    1. Principi N., Marchision P., Terranova L., Zampiero A., Baggi E., Daleno C., Tirelli S., Pelucchi C., Esposito S. Impact of vitamin D administration on immunogenicity of trivalent inactivated influenza vaccine in previously unvaccinated children. Hum. Vaccin Immunother. 2013;9:969–974. doi: 10.4161/hv.23540.
    1. Cooper C., Thorne A. Vitamin D supplementation does not increase immunogenicity of seasonal influenza vaccine in HIV-infected adults. HIV Clin. Trials. 2011;12:275–276. doi: 10.1310/hct1205-275.
    1. Science M., Maguire J., Russell M., Smieja M., Walter S., Loeb M. Serum 25-hydroxyvitamin d level and influenza vaccine immunogenicity in children and adolescents. PLoS ONE. 2014;9:e83553. doi: 10.1371/journal.pone.0083553.

Source: PubMed

3
Abonner