Metabolomics analysis of type 2 diabetes remission identifies 12 metabolites with predictive capacity: a CORDIOPREV clinical trial study

Marina Mora-Ortiz, Juan F Alcala-Diaz, Oriol Alberto Rangel-Zuñiga, Antonio Pablo Arenas-de Larriva, Fernando Abollo-Jimenez, Diego Luque-Cordoba, Feliciano Priego-Capote, Maria M Malagon, Javier Delgado-Lista, Jose M Ordovas, Pablo Perez-Martinez, Antonio Camargo, Jose Lopez-Miranda, Marina Mora-Ortiz, Juan F Alcala-Diaz, Oriol Alberto Rangel-Zuñiga, Antonio Pablo Arenas-de Larriva, Fernando Abollo-Jimenez, Diego Luque-Cordoba, Feliciano Priego-Capote, Maria M Malagon, Javier Delgado-Lista, Jose M Ordovas, Pablo Perez-Martinez, Antonio Camargo, Jose Lopez-Miranda

Abstract

Background: Type 2 diabetes mellitus (T2DM) is one of the most widely spread diseases, affecting around 90% of the patients with diabetes. Metabolomics has proven useful in diabetes research discovering new biomarkers to assist in therapeutical studies and elucidating pathways of interest. However, this technique has not yet been applied to a cohort of patients that have remitted from T2DM.

Methods: All patients with a newly diagnosed T2DM at baseline (n = 190) were included. An untargeted metabolomics approach was employed to identify metabolic differences between individuals who remitted (RE), and those who did not (non-RE) from T2DM, during a 5-year study of dietary intervention. The biostatistical pipeline consisted of an orthogonal projection on the latent structure discriminant analysis (O-PLS DA), a generalized linear model (GLM), a receiver operating characteristic (ROC), a DeLong test, a Cox regression, and pathway analyses.

Results: The model identified a significant increase in 12 metabolites in the non-RE group compared to the RE group. Cox proportional hazard models, calculated using these 12 metabolites, showed that patients in the high-score tercile had significantly (p-value < 0.001) higher remission probabilities (Hazard Ratio, HR, high versus low = 2.70) than those in the lowest tercile. The predictive power of these metabolites was further studied using GLMs and ROCs. The area under the curve (AUC) of the clinical variables alone is 0.61, but this increases up to 0.72 if the 12 metabolites are considered. A DeLong test shows that this difference is statistically significant (p-value = 0.01).

Conclusions: Our study identified 12 endogenous metabolites with the potential to predict T2DM remission following a dietary intervention. These metabolites, combined with clinical variables, can be used to provide, in clinical practice, a more precise therapy.

Trial registration: ClinicalTrials.gov, NCT00924937.

Keywords: Diabetes; Insulin resistance; Metabolomics; Prospective human study.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
CORDIOPREV study design
Fig. 2
Fig. 2
O-PLS DA analysis loading and score plot calculated using all spectra as a matrix of independent variables and diabetic remission as the predictor
Fig. 3
Fig. 3
Adjusted Cox for the analysis of the patient risk scored grouped in tertiles. a Survival probability chart overtime (expressed in months). b Hazard ratio of the risk score for the three tertiles and the covariables
Fig. 4
Fig. 4
ROCs were obtained for the clinical variables and in combination with the metabolites or glycated haemoglobin (HbA1c)

References

    1. DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia. 2010;53(7):1270–1287. doi: 10.1007/s00125-010-1684-1.
    1. WHO. Diabetes, Health Topics. . Accessed 7 Feb 2022.
    1. Amin AP, Spertus JA, Reid KJ, Lan X, Buchanan DM, Decker C, Masoudi FA. The prognostic importance of worsening renal function during an acute myocardial infarction on long-term mortality. Am Heart J. 2010;160(6):1065–1071. doi: 10.1016/j.ahj.2010.08.007.
    1. Anavekar NS, McMurray JJ, Velazquez EJ, Solomon SD, Kober L, Rouleau JL, White HD, Nordlander R, Maggioni A, Dickstein K, et al. Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N Engl J Med. 2004;351(13):1285–1295. doi: 10.1056/NEJMoa041365.
    1. Trautner C, Icks A, Haastert B, Plum F, Berger M. Incidence of blindness in relation to diabetes. A population-based study. Diabetes Care. 1997;20(7):1147–1153. doi: 10.2337/diacare.20.7.1147.
    1. Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29(11):1181–1189. doi: 10.1080/004982599238047.
    1. Pauling L, Robinson AB, Teranishi R, Cary P. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc Natl Acad Sci U S A. 1971;68(10):2374–2376. doi: 10.1073/pnas.68.10.2374.
    1. Suhre K. Metabolic profiling in diabetes. J Endocrinol. 2014;221(3):R75–85. doi: 10.1530/JOE-14-0024.
    1. Taylor R, Al-Mrabeh A, Zhyzhneuskaya S, Peters C, Barnes AC, Aribisala BS, Hollingsworth KG, Mathers JC, Sattar N, Lean MEJ. Remission of human type 2 diabetes requires decrease in liver and pancreas fat content but is dependent upon capacity for beta cell recovery. Cell Metab. 2018;28(4):547–556 e543. doi: 10.1016/j.cmet.2018.07.003.
    1. Clemente-Postigo M, Roca-Rodriguez Mdel M, Camargo A, Ocana-Wilhelmi L, Cardona F, Tinahones FJ. Lipopolysaccharide and lipopolysaccharide-binding protein levels and their relationship to early metabolic improvement after bariatric surgery. Surg Obes Relat Dis. 2015;11(4):933–939. doi: 10.1016/j.soard.2014.11.030.
    1. Kirwan JP, Munzberg H, Berthoud HR. Mechanisms responsible for metabolic improvements of bariatric surgeries. Diabetes. 2018;67(6):1043–1044. doi: 10.2337/dbi18-0011.
    1. Zhang L, Xue X, Zhai R, Yang X, Li H, Zhao L, Zhang C. Timing of calorie restriction in mice impacts host metabolic phenotype with correlative changes in gut microbiota. mSystems. 2019;4(6):e00348–19. doi: 10.1128/mSystems.00348-19.
    1. Delgado-Lista J, Perez-Martinez P, Garcia-Rios A, Alcala-Diaz JF, Perez-Caballero AI, Gomez-Delgado F, Fuentes F, Quintana-Navarro G, Lopez-Segura F, Ortiz-Morales AM, et al. CORonary Diet Intervention with Olive oil and cardiovascular PREVention study (the CORDIOPREV study): rationale, methods, and baseline characteristics: a clinical trial comparing the efficacy of a Mediterranean diet rich in olive oil versus a low-fat diet on cardiovascular disease in coronary patients. Am Heart J. 2016;177:42–50. doi: 10.1016/j.ahj.2016.04.011.
    1. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462–1470. doi: 10.2337/diacare.22.9.1462.
    1. Song Y, Manson JE, Tinker L, Howard BV, Kuller LH, Nathan L, Rifai N, Liu S. Insulin sensitivity and insulin secretion determined by homeostasis model assessment and risk of diabetes in a multiethnic cohort of women: the Women’s Health Initiative Observational Study. Diabetes Care. 2007;30(7):1747–1752. doi: 10.2337/dc07-0358.
    1. Tang W, Fu Q, Zhang Q, Sun M, Gao Y, Liu X, Qian L, Shan S, Yang T. The association between serum uric acid and residual beta -cell function in type 2 diabetes. J Diabetes Res. 2014;2014:709691. doi: 10.1155/2014/709691.
    1. Abdul-Ghani MA, Matsuda M, Balas B, DeFronzo RA. Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care. 2007;30(1):89–94. doi: 10.2337/dc06-1519.
    1. Hanson RL, Pratley RE, Bogardus C, Narayan KM, Roumain JM, Imperatore G, Fagot-Campagna A, Pettitt DJ, Bennett PH, Knowler WC. Evaluation of simple indices of insulin sensitivity and insulin secretion for use in epidemiologic studies. Am J Epidemiol. 2000;151(2):190–198. doi: 10.1093/oxfordjournals.aje.a010187.
    1. Ter Horst KW, van Galen KA, Gilijamse PW, Hartstra AV, de Groot PF, van der Valk FM, Ackermans MT, Nieuwdorp M, Romijn JA, Serlie MJ. Methods for quantifying adipose tissue insulin resistance in overweight/obese humans. Int J Obes (Lond) 2017;41(8):1288–1294. doi: 10.1038/ijo.2017.110.
    1. Quintana-Navarro GM, Alcala-Diaz JF, Lopez-Moreno J, Perez-Corral I, Leon-Acuna A, Torres-Pena JD, Rangel-Zuniga OA, Arenas de Larriva AP, Corina A, Camargo A, et al. Long-term dietary adherence and changes in dietary intake in coronary patients after intervention with a Mediterranean diet or a low-fat diet: the CORDIOPREV randomized trial. Eur J Nutr. 2020;59(5):2099–2110. doi: 10.1007/s00394-019-02059-5.
    1. Fernandez-Ballart JD, Pinol JL, Zazpe I, Corella D, Carrasco P, Toledo E, Perez-Bauer M, Martinez-Gonzalez MA, Salas-Salvado J, Martin-Moreno JM. Relative validity of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain. Br J Nutr. 2010;103(12):1808–1816. doi: 10.1017/S0007114509993837.
    1. Martinez-Gonzalez MA, Fernandez-Jarne E, Serrano-Martinez M, Wright M, Gomez-Gracia E. Development of a short dietary intake questionnaire for the quantitative estimation of adherence to a cardioprotective Mediterranean diet. Eur J Clin Nutr. 2004;58(11):1550–1552. doi: 10.1038/sj.ejcn.1602004.
    1. American Diabetes Association Professional Practice C 2 Classification and diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes Care. 2022;45(Suppl 1):S17–S38. doi: 10.2337/dc22-S002.
    1. Bylesjo M, Rantalainen M, Nicholson JK, Holmes E, Trygg J. K-OPLS package: kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space. BMC Bioinformatics. 2008;9:106. doi: 10.1186/1471-2105-9-106.
    1. Cloarec O, Dumas ME, Craig A, Barton RH, Trygg J, Hudson J, Blancher C, Gauguier D, Lindon JC, Holmes E, et al. Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Anal Chem. 2005;77(5):1282–1289. doi: 10.1021/ac048630x.
    1. Lifestyle Management <em>Standards of Medical Care in Diabetes—2018</em&gt. Diabetes Care. 2018;41(Supplement 1):S38.
    1. Taylor R, Al-Mrabeh A, Zhyzhneuskaya S, Peters C, Barnes AC, Aribisala BS, Hollingsworth KG, Mathers JC, Sattar N, Lean MEJ. Remission of human type 2 diabetes requires decrease in liver and pancreas fat content but is dependent upon capacity for β cell recovery. Cell Metab. 2018;28(4):547–556.e543. doi: 10.1016/j.cmet.2018.07.003.
    1. Martin-Timon I, Sevillano-Collantes C, Segura-Galindo A, Del Canizo-Gomez FJ. Type 2 diabetes and cardiovascular disease: have all risk factors the same strength? World J Diabetes. 2014;5(4):444–470. doi: 10.4239/wjd.v5.i4.444.
    1. Lee WJ, Hur KY, Lakadawala M, Kasama K, Wong SK, Chen SC, Lee YC, Ser KH. Predicting success of metabolic surgery: age, body mass index, C-peptide, and duration score. Surg Obes Relat Dis. 2013;9(3):379–384. doi: 10.1016/j.soard.2012.07.015.
    1. Still CD, Wood GC, Benotti P, Petrick AT, Gabrielsen J, Strodel WE, Ibele A, Seiler J, Irving BA, Celaya MP, et al. Preoperative prediction of type 2 diabetes remission after Roux-en-Y gastric bypass surgery: a retrospective cohort study. Lancet Diabetes Endocrinol. 2014;2(1):38–45. doi: 10.1016/S2213-8587(13)70070-6.
    1. Rangel-Zuniga OA, Vals-Delgado C, Alcala-Diaz JF, Quintana-Navarro GM, Krylova Y, Leon-Acuna A, Luque RM, Gomez-Delgado F, Delgado-Lista J, Ordovas JM, et al. A set of miRNAs predicts T2DM remission in patients with coronary heart disease: from the CORDIOPREV study. Mol Ther Nucleic Acids. 2021;23:255–263. doi: 10.1016/j.omtn.2020.11.001.
    1. Sanchez-Ceinos J, Rangel-Zuniga OA, Clemente-Postigo M, Podadera-Herreros A, Camargo A, Alcala-Diaz JF, Guzman-Ruiz R, Lopez-Miranda J, Malagon MM. miR-223-3p as a potential biomarker and player for adipose tissue dysfunction preceding type 2 diabetes onset. Mol Ther Nucleic Acids. 2021;23:1035–1052. doi: 10.1016/j.omtn.2021.01.014.
    1. Vals-Delgado C, Alcala-Diaz JF, Molina-Abril H, Roncero-Ramos I, Caspers MPM, Schuren FHJ, Van den Broek TJ, Luque R, Perez-Martinez P, Katsiki N, et al. An altered microbiota pattern precedes type 2 diabetes mellitus development: From the CORDIOPREV study. J Adv Res. 2022;35:99–108. doi: 10.1016/j.jare.2021.05.001.
    1. Taskinen MR. Diabetic dyslipidemia. Atheroscler Suppl. 2002;3(1):47–51. doi: 10.1016/S1567-5688(01)00006-X.
    1. Han CL, Qu CZ. Cardiovascular risk and safety evaluation of a dual peroxisome proliferator-activated receptor-alpha/gamma agonist, aleglitazar, in patients with type 2 diabetes: a meta-analysis. J Cardiovasc Pharmacol. 2020;75(4):351–357. doi: 10.1097/FJC.0000000000000796.
    1. Sun Y, Yan D, Cui L, Li G, Sun Y, Hao Z. Sex-disparities in risk factors and atherosclerosis cardiovascular disease in diabetic patients. Postgrad Med. 2021;133(8):860–864. doi: 10.1080/00325481.2021.1917930.
    1. Ozder A. Lipid profile abnormalities seen in T2DM patients in primary healthcare in Turkey: a cross-sectional study. Lipids Health Dis. 2014;13:183. doi: 10.1186/1476-511X-13-183.
    1. Li K, Sinclair AJ, Zhao F, Li D. Uncommon fatty acids and cardiometabolic health. Nutrients. 2018;10(10):1559. doi: 10.3390/nu10101559.
    1. Villasanta-Gonzalez A, Alcala-Diaz JF, Vals-Delgado C, Arenas AP, Cardelo MP, Romero-Cabrera JL, Rodriguez-Cantalejo F, Delgado-Lista J, Malagon MM, Perez-Martinez P, et al. A plasma fatty acid profile associated to type 2 diabetes development: from the CORDIOPREV study. Eur J Nutr. 2022;61(2):843–857. doi: 10.1007/s00394-021-02676-z.
    1. Wu JH, Micha R, Imamura F, Pan A, Biggs ML, Ajaz O, Djousse L, Hu FB, Mozaffarian D. Omega-3 fatty acids and incident type 2 diabetes: a systematic review and meta-analysis. Br J Nutr. 2012;107(Suppl 2):S214–227. doi: 10.1017/S0007114512001602.
    1. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, et al. HMDB: the Human Metabolome Database. Nucleic Acids Res. 2007;35(Database issue):D521–526. doi: 10.1093/nar/gkl923.
    1. Ferderbar S, Pereira EC, Apolinario E, Bertolami MC, Faludi A, Monte O, Calliari LE, Sales JE, Gagliardi AR, Xavier HT, et al. Cholesterol oxides as biomarkers of oxidative stress in type 1 and type 2 diabetes mellitus. Diabetes Metab Res Rev. 2007;23(1):35–42. doi: 10.1002/dmrr.645.
    1. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23–38. doi: 10.1038/npp.2012.112.
    1. Wang Q, Tang SB, Song XB, Deng TF, Zhang TT, Yin S, Luo SM, Shen W, Zhang CL, Ge ZJ. High-glucose concentrations change DNA methylation levels in human IVM oocytes. Hum Reprod. 2018;33(3):474–481. doi: 10.1093/humrep/dey006.
    1. Wang Y, Chen L, Pandak WM, Heuman D, Hylemon PB, Ren S. High glucose induces lipid accumulation via 25-hydroxycholesterol DNA-CpG methylation. iScience. 2020;23(5):101102. doi: 10.1016/j.isci.2020.101102.
    1. Nagao K, Nakamitsu K, Ishida H, Yoshinaga K, Nagai T, Mizobe H, Kojima K, Yanagita T, Beppu F, Gotoh N. Comparison of the lipid-lowering effects of four different n-3 highly unsaturated fatty acids in HepG2 cells. J Oleo Sci. 2014;63(10):979–985. doi: 10.5650/jos.ess14118.
    1. Elsner M, Gehrmann W, Lenzen S. Peroxisome-generated hydrogen peroxide as important mediator of lipotoxicity in insulin-producing cells. Diabetes. 2011;60(1):200–208. doi: 10.2337/db09-1401.

Source: PubMed

3
Abonner