Association between cholesterol efflux capacity and peripheral artery disease in coronary heart disease patients with and without type 2 diabetes: from the CORDIOPREV study

Elena M Yubero-Serrano, Juan F Alcalá-Diaz, Francisco M Gutierrez-Mariscal, Antonio P Arenas-de Larriva, Patricia J Peña-Orihuela, Ruth Blanco-Rojo, Javier Martinez-Botas, Jose D Torres-Peña, Pablo Perez-Martinez, Jose M Ordovas, Javier Delgado-Lista, Diego Gómez-Coronado, Jose Lopez-Miranda, Elena M Yubero-Serrano, Juan F Alcalá-Diaz, Francisco M Gutierrez-Mariscal, Antonio P Arenas-de Larriva, Patricia J Peña-Orihuela, Ruth Blanco-Rojo, Javier Martinez-Botas, Jose D Torres-Peña, Pablo Perez-Martinez, Jose M Ordovas, Javier Delgado-Lista, Diego Gómez-Coronado, Jose Lopez-Miranda

Abstract

Background: Peripheral artery disease (PAD) is recognized as a significant predictor of mortality and adverse cardiovascular outcomes in patients with coronary heart disease (CHD). In fact, coexisting PAD and CHD is strongly associated with a greater coronary event recurrence compared with either one of them alone. High-density lipoprotein (HDL)-mediated cholesterol efflux capacity (CEC) is found to be inversely associated with an increased risk of incident CHD. However, this association is not established in patients with PAD in the context of secondary prevention. In this sense, our main aim was to evaluate the association between CEC and PAD in patients with CHD and whether the concurrent presence of PAD and T2DM influences this association.

Methods: CHD patients (n = 1002) from the CORDIOPREV study were classified according to the presence or absence of PAD (ankle-brachial index, ABI ≤ 0.9 and ABI > 0.9 and < 1.4, respectively) and T2DM status. CEC was quantified by incubation of cholesterol-loaded THP-1 cells with the participants' apoB-depleted plasma was performed.

Results: The presence of PAD determined low CEC in non-T2DM and newly-diagnosed T2DM patients. Coexisting PAD and newly-diagnosed T2DM provided and additive effect providing an impaired CEC compared to non-T2DM patients with PAD. In established T2DM patients, the presence of PAD did not determine differences in CEC, compared to those without PAD, which may be restored by glucose-lowering treatment.

Conclusions: Our findings suggest an inverse relationship between CEC and PAD in CHD patients. These results support the importance of identifying underlying mechanisms of PAD, in the context of secondary prevention, that provide potential therapeutic targets, that is the case of CEC, and establishing strategies to prevent or reduce the high risk of cardiovascular events of these patients. Trial registration https://ichgcp.net/clinical-trials-registry/NCT00924937 . Unique Identifier: NCT00924937.

Keywords: Cholesterol efflux capacity; Coronary heart disease; Peripheral artery disease; Secondary prevention; Type 2 diabetes mellitus.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Cholesterol efflux capacity in patients with CHD. A) According to the presence or absence of PAD and B) According to the presence or absence of PAD and diabetes status * Significant differences between PAD and no PAD in each diabetes status s group. Different common letter superscripts denote significant differences among non-T2DM, newly-diagnosed T2DM and established T2DM. p1, effect of presence or absence of PAD; p2, effect of diabetes status; p3, interaction between presence of absence of PAD and diabetes status. CHD, coronary heart disease; PAD, peripheral artery disease; T2DM, type 2 diabetes mellitus Analyses were adjusted age, smoking habit, hypertension, eGFR, and medications—glucose-lowering treatment, lipid-lowering therapy, and anti-hypertensive drugs
Fig. 2
Fig. 2
Multiple logistic regression analysis for the presence of PAD in patients with CHD. Squares denote hazard ratios; horizontal lines represent 95% confidence intervals. R2 = 0.201, constant = − 4.493 (p = 0.000). Predictive variables tested by backward (conditional) method: age (years), diabetes status (non-T2DM, newly-diagnosed T2DM and established T2DM), HbA1c (%), Fasting glucose (mg/dL), hypertension, HDL-cholesterol (mg/dL), Triglycerides (mg/dL), Cholesterol efflux (%), hsCRP (mg/mL), eGFR (mL/min/1.73 m2), oral antidiabetics use (%) and lipid-lowering therapy (%). HbA1c (%), Fasting glucose (mg/dL), HDL-cholesterol (mg/dL), eGFR (mL/min/1.73 m2), oral antidiabetics use (%), lipid-lowering therapy (%) have been eliminated from the model (p > 0.05). CHD, cardiovascular heart disease; T2DM, type2 diabetes mellitus; hsCRP, high sensitive C-reactive protein; eGFR, estimated glomerular filtration rate. HDL, high-density lipoprotein; HbA1c, glycated haemoglobin

References

    1. De Luca L, Di Pasquale G, Gonzini L, Chiarella F, Di Chiara A, Boccanelli A, Casella G, Olivari Z, De Servi S, Gulizia MM, et al. Trends in management and outcome of patients with non-ST elevation acute coronary syndromes and peripheral arterial disease. Eur J Intern Med. 2019;59:70–76. doi: 10.1016/j.ejim.2018.08.010.
    1. Hussein AA, Uno K, Wolski K, Kapadia S, Schoenhagen P, Tuzcu EM, Nissen SE, Nicholls SJ. Peripheral arterial disease and progression of coronary atherosclerosis. J Am Coll Cardiol. 2011;57(10):1220–1225. doi: 10.1016/j.jacc.2010.10.034.
    1. Criqui MH, Aboyans V. Epidemiology of peripheral artery disease. Circ Res. 2015;116(9):1509–1526. doi: 10.1161/CIRCRESAHA.116.303849.
    1. Sozmen K, Unal B. Prevalence of low ankle brachial index and relationship with cardiovascular risk factors in a Western urban population in Turkey. Angiology. 2014;65(1):43–50. doi: 10.1177/0003319712466581.
    1. Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, Hiratzka LF, Murphy WR, Olin JW, Puschett JB, et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation. 2006;113(11):e463–654. doi: 10.1161/CIRCULATIONAHA.106.174526.
    1. Haine A, Kavanagh S, Berger JS, Hess CN, Norgren L, Fowkes FGR, Katona BG, Mahaffey KW, Blomster JI, Patel MR, et al. Sex-specific risks of major cardiovascular and limb events in patients with symptomatic peripheral artery disease. J Am Coll Cardiol. 2020;75(6):608–617. doi: 10.1016/j.jacc.2019.11.057.
    1. Abboud H, Monteiro Tavares L, Labreuche J, Arauz A, Bryer A, Lavados PM, Massaro A, Munoz Collazos M, Steg PG, Yamout BI, et al. Impact of low ankle-brachial index on the risk of recurrent vascular events. Stroke. 2019;50(4):853–858. doi: 10.1161/STROKEAHA.118.022180.
    1. Martinez-Aguilar E, Orbe J, Fernandez-Montero A, Fernandez-Alonso S, Rodriguez JA, Fernandez-Alonso L, Paramo JA, Roncal C. Reduced high-density lipoprotein cholesterol: a valuable, independent prognostic marker in peripheral arterial disease. J Vasc Surg. 2017;66(5):1527–1533. doi: 10.1016/j.jvs.2017.04.056.
    1. Group HTC, Landray MJ, Haynes R, Hopewell JC, Parish S, Aung T, Tomson J, Wallendszus K, Craig M, Jiang L, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371(3):203–212. doi: 10.1056/NEJMoa1300955.
    1. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, Chaitman BR, Holme IM, Kallend D, Leiter LA, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367(22):2089–2099. doi: 10.1056/NEJMoa1206797.
    1. Ronsein GE, Heinecke JW. Time to ditch HDL-C as a measure of HDL function? Curr Opin Lipidol. 2017;28(5):414–418. doi: 10.1097/MOL.0000000000000446.
    1. Rosenson RS, Brewer HB, Jr, Chapman MJ, Fazio S, Hussain MM, Kontush A, Krauss RM, Otvos JD, Remaley AT, Schaefer EJ. HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. Clin Chem. 2011;57(3):392–410. doi: 10.1373/clinchem.2010.155333.
    1. Schwertani A, Choi HY, Genest J. HDLs and the pathogenesis of atherosclerosis. Curr Opin Cardiol. 2018;33(3):311–316. doi: 10.1097/HCO.0000000000000508.
    1. Favari E, Thomas MJ, Sorci-Thomas MG. High-density lipoprotein functionality as a new pharmacological target on cardiovascular disease: unifying mechanism that explains high-density lipoprotein protection toward the progression of atherosclerosis. J Cardiovasc Pharmacol. 2018;71(6):325–331. doi: 10.1097/FJC.0000000000000573.
    1. Klancic T, Woodward L, Hofmann SM, Fisher EA. High density lipoprotein and metabolic disease: Potential benefits of restoring its functional properties. Mol Metab. 2016;5(5):321–327. doi: 10.1016/j.molmet.2016.03.001.
    1. Qiu C, Zhao X, Zhou Q, Zhang Z. High-density lipoprotein cholesterol efflux capacity is inversely associated with cardiovascular risk: a systematic review and meta-analysis. Lipids Health Dis. 2017;16(1):212. doi: 10.1186/s12944-017-0604-5.
    1. Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, Wedin KE, Neeland IJ, Yuhanna IS, Rader DR, de Lemos JA, et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med. 2014;371(25):2383–2393. doi: 10.1056/NEJMoa1409065.
    1. Saleheen D, Scott R, Javad S, Zhao W, Rodrigues A, Picataggi A, Lukmanova D, Mucksavage ML, Luben R, Billheimer J, et al. Association of HDL cholesterol efflux capacity with incident coronary heart disease events: a prospective case-control study. Lancet Diabetes Endocrinol. 2015;3(7):507–513. doi: 10.1016/S2213-8587(15)00126-6.
    1. Gipson GT, Carbone S, Wang J, Dixon DL, Jovin IS, Carl DE, Gehr TW, Ghosh S. Impaired delivery of cholesterol effluxed from macrophages to hepatocytes by serum from CKD patients may underlie increased cardiovascular disease risk. Kidney Int Rep. 2020;5(2):199–210. doi: 10.1016/j.ekir.2019.11.003.
    1. Garg PK, Jorgensen NW, McClelland RL, Allison M, Stein JH, Yvan-Chavret L, Tall AR, Shea S. Cholesterol mass efflux capacity and risk of peripheral artery disease: The Multi-Ethnic Study of Atherosclerosis. Atherosclerosis. 2020;297:81–86. doi: 10.1016/j.atherosclerosis.2020.02.007.
    1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, et al. Executive summary: heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation. 2014;129(3):399–410. doi: 10.1161/01.cir.0000442015.53336.12.
    1. DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia. 2010;53(7):1270–1287. doi: 10.1007/s00125-010-1684-1.
    1. Signorelli SS, Katsiki N. Oxidative stress and inflammation: their role in the pathogenesis of peripheral artery disease with or without type 2 diabetes mellitus. Curr Vasc Pharmacol. 2018;16(6):547–554. doi: 10.2174/1570161115666170731165121.
    1. Wattanakit K, Folsom AR, Selvin E, Weatherley BD, Pankow JS, Brancati FL, Hirsch AT. Risk factors for peripheral arterial disease incidence in persons with diabetes: the Atherosclerosis Risk in Communities (ARIC) Study. Atherosclerosis. 2005;180(2):389–397. doi: 10.1016/j.atherosclerosis.2004.11.024.
    1. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA. 2002;287(19):2570–2581. doi: 10.1001/jama.287.19.2570.
    1. Blanco-Rojo R, Perez-Martinez P, Lopez-Moreno J, Martinez-Botas J, Delgado-Lista J, van Ommen B, Yubero-Serrano E, Camargo A, Ordovas JM, Perez-Jimenez F, et al. HDL cholesterol efflux normalised to apoA-I is associated with future development of type 2 diabetes: from the CORDIOPREV trial. Sci Rep. 2017;7(1):12499. doi: 10.1038/s41598-017-12678-9.
    1. Delgado-Lista J, Perez-Martinez P, Garcia-Rios A, Alcala-Diaz JF, Perez-Caballero AI, Gomez-Delgado F, Fuentes F, Quintana-Navarro G, Lopez-Segura F, Ortiz-Morales AM, et al. CORonary Diet Intervention with Olive oil and cardiovascular PREVention study (the CORDIOPREV study): Rationale, methods, and baseline characteristics: A clinical trial comparing the efficacy of a Mediterranean diet rich in olive oil versus a low-fat diet on cardiovascular disease in coronary patients. Am Heart J. 2016;177:42–50. doi: 10.1016/j.ahj.2016.04.011.
    1. Aboyans V, Criqui MH, Abraham P, Allison MA, Creager MA, Diehm C, Fowkes FG, Hiatt WR, Jonsson B, Lacroix P, et al. Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. Circulation. 2012;126(24):2890–2909. doi: 10.1161/CIR.0b013e318276fbcb.
    1. American Diabetes A. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S13–S27.
    1. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–612. doi: 10.7326/0003-4819-150-9-200905050-00006.
    1. Annema W, Dikkers A, de Boer JF, van Greevenbroek MMJ, van der Kallen CJH, Schalkwijk CG, Stehouwer CDA, Dullaart RPF, Tietge UJF. Impaired HDL cholesterol efflux in metabolic syndrome is unrelated to glucose tolerance status: the CODAM study. Sci Rep. 2016;6:27367. doi: 10.1038/srep27367.
    1. Rader DJ, Hovingh GK. HDL and cardiovascular disease. Lancet. 2014;384(9943):618–625. doi: 10.1016/S0140-6736(14)61217-4.
    1. Soria-Florido MT, Schroder H, Grau M, Fito M, Lassale C. High density lipoprotein functionality and cardiovascular events and mortality: a systematic review and meta-analysis. Atherosclerosis. 2020;302:36–42. doi: 10.1016/j.atherosclerosis.2020.04.015.
    1. Mineo C, Shaul PW. Regulation of signal transduction by HDL. J Lipid Res. 2013;54(9):2315–2324. doi: 10.1194/jlr.R039479.
    1. Tang Y, Li SL, Hu JH, Sun KJ, Liu LL, Xu DY. Research progress on alternative non-classical mechanisms of PCSK9 in atherosclerosis in patients with and without diabetes. Cardiovasc Diabetol. 2020;19(1):33. doi: 10.1186/s12933-020-01009-4.
    1. Shi J, Zhang W, Niu Y, Lin N, Li X, Zhang H, Hu R, Ning G, Fan J, Qin L, et al. Association of circulating proprotein convertase subtilisin/kexin type 9 levels and the risk of incident type 2 diabetes in subjects with prediabetes: a population-based cohort study. Cardiovasc Diabetol. 2020;19(1):209. doi: 10.1186/s12933-020-01185-3.
    1. Hafiane A, Gasbarrino K, Daskalopoulou SS. The role of adiponectin in cholesterol efflux and HDL biogenesis and metabolism. Metabolism. 2019;100:153953. doi: 10.1016/j.metabol.2019.153953.
    1. Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, French BC, Phillips JA, Mucksavage ML, Wilensky RL, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364(2):127–135. doi: 10.1056/NEJMoa1001689.
    1. Shimizu T, Miyazaki O, Iwamoto T, Usui T, Sato R, Hiraishi C, Yoshida H. A new method for measuring cholesterol efflux capacity uses stable isotope-labeled, not radioactive-labeled, cholesterol. J Lipid Res. 2019;60(11):1959–1967. doi: 10.1194/jlr.D086884.
    1. Harada A, Toh R, Murakami K, Kiriyama M, Yoshikawa K, Miwa K, Kubo T, Irino Y, Mori K, Tanaka N, et al. Cholesterol uptake capacity: a new measure of HDL functionality for coronary risk assessment. J Appl Lab Med. 2017;2(2):186–200. doi: 10.1373/jalm.2016.022913.
    1. Tsun JG, Shiu SW, Wong Y, Yung S, Chan TM, Tan KC. Impact of serum amyloid A on cellular cholesterol efflux to serum in type 2 diabetes mellitus. Atherosclerosis. 2013;231(2):405–410. doi: 10.1016/j.atherosclerosis.2013.10.008.
    1. Syvanne M, Castro G, Dengremont C, De Geitere C, Jauhiainen M, Ehnholm C, Michelagnoli S, Franceschini G, Kahri J, Taskinen MR. Cholesterol efflux from Fu5AH hepatoma cells induced by plasma of subjects with or without coronary artery disease and non-insulin-dependent diabetes: importance of LpA-I:A-II particles and phospholipid transfer protein. Atherosclerosis. 1996;127(2):245–253. doi: 10.1016/S0021-9150(96)05962-X.
    1. Liu D, Ji L, Zhang D, Tong X, Pan B, Liu P, Zhang Y, Huang Y, Su J, Willard B, et al. Nonenzymatic glycation of high-density lipoprotein impairs its anti-inflammatory effects in innate immunity. Diabetes Metab Res Rev. 2012;28(2):186–195. doi: 10.1002/dmrr.1297.
    1. Gomes Kjerulf D, Wang S, Omer M, Pathak A, Subramanian S, Han CY, Tang C, den Hartigh LJ, Shao B, Chait A. Glycation of HDL blunts its anti-inflammatory and cholesterol efflux capacities in vitro, but has no effect in poorly controlled type 1 diabetes subjects. J Diabetes Compl. 2020;34(12):107693. doi: 10.1016/j.jdiacomp.2020.107693.
    1. de Vries R, Groen AK, Perton FG, Dallinga-Thie GM, van Wijland MJ, Dikkeschei LD, Wolffenbuttel BH, van Tol A, Dullaart RP. Increased cholesterol efflux from cultured fibroblasts to plasma from hypertriglyceridemic type 2 diabetic patients: roles of pre beta-HDL, phospholipid transfer protein and cholesterol esterification. Atherosclerosis. 2008;196(2):733–741. doi: 10.1016/j.atherosclerosis.2006.12.027.
    1. Brownell N, Rohatgi A. Modulating cholesterol efflux capacity to improve cardiovascular disease. Curr Opin Lipidol. 2016;27(4):398–407. doi: 10.1097/MOL.0000000000000317.
    1. Machado AP, Pinto RS, Moyses ZP, Nakandakare ER, Quintao EC, Passarelli M. Aminoguanidine and metformin prevent the reduced rate of HDL-mediated cell cholesterol efflux induced by formation of advanced glycation end products. Int J Biochem Cell Biol. 2006;38(3):392–403. doi: 10.1016/j.biocel.2005.09.016.
    1. Luo F, Guo Y, Ruan G, Li X. Metformin promotes cholesterol efflux in macrophages by up-regulating FGF21 expression: a novel anti-atherosclerotic mechanism. Lipids Health Dis. 2016;15:109. doi: 10.1186/s12944-016-0281-9.
    1. He X, Chen X, Wang L, Wang W, Liang Q, Yi L, Wang Y, Gao Q. Metformin ameliorates Ox-LDL-induced foam cell formation in raw264.7 cells by promoting ABCG-1 mediated cholesterol efflux. Life Sci. 2019;216:67–74. doi: 10.1016/j.lfs.2018.09.024.
    1. Wu YR, Shi XY, Ma CY, Zhang Y, Xu RX, Li JJ. Liraglutide improves lipid metabolism by enhancing cholesterol efflux associated with ABCA1 and ERK1/2 pathway. Cardiovasc Diabetol. 2019;18(1):146. doi: 10.1186/s12933-019-0954-6.
    1. Annema W, Dikkers A, de Boer JF, Dullaart RP, Sanders JS, Bakker SJ, Tietge UJ. HDL cholesterol efflux predicts graft failure in renal transplant recipients. J Am Soc Nephrol. 2016;27(2):595–603. doi: 10.1681/ASN.2014090857.
    1. Fernandez-Suarez ME, Escola-Gil JC, Pastor O, Davalos A, Blanco-Vaca F, Lasuncion MA, Martinez-Botas J, Gomez-Coronado D. Clinically used selective estrogen receptor modulators affect different steps of macrophage-specific reverse cholesterol transport. Sci Rep. 2016;6:32105. doi: 10.1038/srep32105.

Source: PubMed

3
Abonner