Hepatic insulin resistance both in prediabetic and diabetic patients determines postprandial lipoprotein metabolism: from the CORDIOPREV study

A Leon-Acuña, J F Alcala-Diaz, J Delgado-Lista, J D Torres-Peña, J Lopez-Moreno, A Camargo, A Garcia-Rios, C Marin, F Gomez-Delgado, J Caballero, B Van-Ommen, M M Malagon, P Perez-Martinez, J Lopez-Miranda, A Leon-Acuña, J F Alcala-Diaz, J Delgado-Lista, J D Torres-Peña, J Lopez-Moreno, A Camargo, A Garcia-Rios, C Marin, F Gomez-Delgado, J Caballero, B Van-Ommen, M M Malagon, P Perez-Martinez, J Lopez-Miranda

Abstract

Background/aims: Previous evidences have shown the presence of a prolonged and exaggerated postprandial response in type 2 diabetes mellitus (T2DM) and its relation with an increase of cardiovascular risk. However, the response in prediabetes population has not been established. The objective was to analyze the degree of postprandial lipemia response in the CORDIOPREV clinical trial (NCT00924937) according to the diabetic status.

Methods: 1002 patients were submitted to an oral fat load test meal (OFTT) with 0.7 g fat/kg body weight [12 % saturated fatty acids (SFA), 10 % polyunsaturated fatty acids (PUFA), 43 % monounsaturated fatty acids (MUFA), 10 % protein and 25 % carbohydrates]. Serial blood test analyzing lipid fractions were drawn at 0, 1, 2, 3 and 4 h during postprandial state. Postprandial triglycerides (TG) concentration at any point >2.5 mmol/L (220 mg/dL) has been established as undesirable response. We explored the dynamic response in 57 non-diabetic, 364 prediabetic and 581 type 2 diabetic patients. Additionally, the postprandial response was evaluated according to basal insulin resistance subgroups in patients non-diabetic and diabetic without pharmacological treatment (N = 642).

Results: Prevalence of undesirable postprandial TG was 35 % in non-diabetic, 48 % in prediabetic and 59 % in diabetic subgroup, respectively (p < 0.001). Interestingly, prediabetic patients displayed higher plasma TG and large triacylglycerol-rich lipoproteins (TRLs-TG) postprandial response compared with those non-diabetic patients (p < 0.001 and p = 0.003 respectively). Moreover, the area under the curve (AUC) of TG and AUC of TRLs-TG was greater in the prediabetic group compared with non-diabetic patients (p < 0.001 and p < 0.005 respectively). Patients with liver insulin resistance (liver-IR) showed higher postprandial response of TG compared with those patients with muscle-IR or without any insulin-resistance respectively (p < 0.001).

Conclusions: Our findings demonstrate that prediabetic patients show a lower phenotypic flexibility after external aggression, such as OFTT compared with nondiabetic patients. The postprandial response increases progressively according to non-diabetic, prediabetic and type 2 diabetic state and it is higher in patients with liver insulin-resistance. To identify this subgroup of patients is important to treat more intensively in order to avoid future cardiometabolic complications.

Keywords: CORDIOPREV study; Insulin resistance; Phenotypic flexibility; Postprandial lipemia; Prediabetic; Triglycerides.

Figures

Fig. 1
Fig. 1
Prevalence of undesirable postprandial triglycerides (TG) in the CORDIOPREV population according to diabetic status: non-diabetic, prediabetic and diabetic subgroups. The black bars represent the percentage of patients with postprandial TG concentration at any point >220 mg/dL within each group
Fig. 2
Fig. 2
Evolution of (a) triglycerides (TG) and (b) large triacylglycerol-rich lipoproteins (TRLs)-TG after the oral fat tolerance test, according to the presence of prediabetes, non-diabetes or diabetes state. Results are plotted as mean ± SD. Variables were compared using repeated measured ANOVA, with age, gender and BMI as covariates
Fig. 3
Fig. 3
Evolution of triglycerides (TG) after the oral fat tolerance test according to the different basal insulin-resistance groups: muscle-IR and liver-IR, non muscle-IR and non liver-IR, liver-IR and muscle-IR. Results are plotted as mean ± SD. Variables were compared using repeated measured ANOVA, with age, gender and BMI as covariates
Fig. 4
Fig. 4
Dispersion diagram and regression line according to AUC-TG and logarithm of HIRI (a) and MISI (b). Dispersion diagram and regression line according to iAUC-TG and logarithm of HIRI (c)

References

    1. Association AD. Standars of medical care in diabetes. Diabet Care. 2015;38(Suppl 1):S9–S15.
    1. Paulweber B, Valensi P, Lindstrom J, Lalic NM, Greaves CJ, McKee M, et al. A European evidence-based guideline for the prevention of type 2 diabetes. Horm Metab. 2010;42(Suppl 1):S3–S36. doi: 10.1055/s-0029-1240928.
    1. Fujioka Y IY, Ishikawa Y. Remnant lipoproteins as strong key particles to atherogenesis. J Atheroscler Thromb. 2009;16:145–154. doi: 10.5551/jat.E598.
    1. van Ommen BKJ, Heil SG, Kaput J. Challenging homeostasis to define biomarkers for nutrition related health. Mol Nutr Food Res. 2009;53:795–804. doi: 10.1002/mnfr.200800390.
    1. Kolovou GD, Mikhailidis DP, Kovar J, Lairon D, Nordestgaard BG, Ooi TC, et al. Assessment and clinical relevance of non-fasting and postprandial triglycerides: an expert panel statement. Curr Vasc Pharmacol. 2011;9:258–270. doi: 10.2174/157016111795495549.
    1. Tushuizen ME, Diamant M, Heine RJ. Postprandial dysmetabolism and cardiovascular disease in type 2 diabetes. Postgrad Med J. 2005;81:1–6. doi: 10.1136/pgmj.2004.020511.
    1. Nakamura A, Monma Y, Kajitani S, Kozu K, Ikeda S, Noda K, et al. Different postprandial lipid metabolism and insulin resistance between non-diabetic patients with and without coronary artery disease. J Cardiol. 2015;66:435–444. doi: 10.1016/j.jjcc.2015.02.005.
    1. Delgado-Lista J, Perez-Martinez P, Garcia-Rios A, Alcala-Diaz JF, Perez-Caballero AI, Gomez-Delgado F, Fuentes F, Quintana-Navarro G, Lopez-Segura F, Ortiz-Morales AM, Delgado-Casado N, Yubero-Serrano E, Camargo A, Marin C, Rodriguez-Cantalejo F, Gomez-Luna P, Ordovas J, Lopez-Miranda J, Perez-Jimenez F. Coronary diet intervention with olive oil and cardiovascular prevention study (CORDIOPREV study): rationale, methods and baseline characteristics. Am Heart J (in press).
    1. Garcia-Rios A, Gomez-Delgado FJ, Garaulet M, Alcala-Diaz JF, Delgado-Lista FJ, Marin C, et al. Beneficial effect of CLOCK gene polymorphism rs1801260 in combination with low-fat diet on insulin metabolism in the patients with metabolic syndrome. Chronobiol Int. 2014;31:401–408. doi: 10.3109/07420528.2013.864300.
    1. Bastard JP, Faraj M, Karelis AD, Lavasseur J, Garrel D, Prud’homme D, et al. Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test: response to Abdul-Ghani et al. Diabet Care. 2007;30:e83. doi: 10.2337/dc07-0622.
    1. Abdul-Ghani MA, Matsuda M, Balas B, DeFronzo RA. Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabet Care. 2007;30:89–94. doi: 10.2337/dc06-1519.
    1. Abdul-Ghani MA, Matsuda M, DeFronzo RA. Strong association between insulin resistance in liver and skeletal muscle in non-diabetic subjects. Diabet Med. 2008;25:1289–1294.
    1. Mihas C, Kolovou GD, Mikhailidis DP, Kovar J, Lairon D, Nordestgaard BG, et al. Diagnostic value of postprandial triglyceride testing in healthy subjects: a meta-analysis. Curr Vasc Pharmacol. 2011;9:271–280. doi: 10.2174/157016111795495530.
    1. Delgado-Lista J, Perez-Martinez P, Perez-Jimenez F, Garcia-Rios A, Fuentes F, Marin C, et al. ABCA1 gene variants regulate postprandial lipid metabolism in healthy men. Arterioscler Thromb Vasc Biol. 2010;30:1051–1057. doi: 10.1161/ATVBAHA.109.202580.
    1. Tentolouris N, Stylianou A, Lourida E, Perrea D, Kyriaki D, Papavasiliou EC, et al. High postprandial triglyceridemia in patients with type 2 diabetes and microalbuminuria. J Lipid Res. 2007;48:218–225. doi: 10.1194/jlr.M600367-JLR200.
    1. Leonard A, Tun TK, Gaffney R, Sharma J, Gibney J, Boran G. Factors influencing elevated serum apolipoprotein B48 in diabetic and control participants. Br J Biomed Sci. 2014;71:145–150.
    1. Lorenzo C, Wagenknecht LE, Rewers MJ, Karter AJ, Bergman RN, Hanley AJ, et al. Disposition index, glucose effectiveness, and conversion to type 2 diabetes: the insulin resistance atherosclerosis study (IRAS) Diabet Care. 2010;33:2098–2103. doi: 10.2337/dc10-0165.
    1. Shojaee-Moradie F, Ma Y, Lou S, Hovorka R, Umpleby AM. Prandial hypertriglyceridemia in metabolic syndrome is due to an overproduction of both chylomicron and VLDL triacylglycerol. Diabetes. 2013;62:4063–4069. doi: 10.2337/db13-0935.
    1. Zhu J, Lee B, Buhman KK, Cheng JX. A dynamic, cytoplasmic triacylglycerol pool in enterocytes revealed by ex vivo and in vivo coherent anti-Stokes Raman scattering imaging. J Lipid Res. 2009;50:1080–1089. doi: 10.1194/jlr.M800555-JLR200.
    1. Suryabhan LL, Chandrashekhar MI, Ratnendra RS, Prerna DN. A comparative study on the fasting and the postprandial dyslipidaemia in type 2 diabetes mellitus. JCDR. 2013;7:627–630.
    1. Pirillo A, Norata GD, Catapano AL. Postprandial lipemia as a cardiometabolic risk factor. Curr Med Res Opin. 2014;30:1489–1503. doi: 10.1185/03007995.2014.909394.
    1. Katsiki N, Kolovou G. Postprandial lipid profile in patients with type 2 diabetes. Curr Med Res Opin. 2014;30:121. doi: 10.1185/03007995.2013.842545.
    1. Boren J, Matikainen N, Adiels M, Taskinen MR. Postprandial hypertriglyceridemia as a coronary risk factor. Clin Chim Acta. 2014;431:131–142. doi: 10.1016/j.cca.2014.01.015.
    1. Bansal N. Prediabetes diagnosis and treatment: a review. World J Diabet. 2015;6:296–303. doi: 10.4239/wjd.v6.i2.296.
    1. Senechal M, Slaght J, Bharti N, Bouchard DR. Independent and combined effect of diet and exercise in adults with prediabetes. Diabet, Metab Syndr Obes. 2014;7:521–529.
    1. Tabák AG, Herder C, Rathmann W, Brunner EJ, Kivimäki M. Prediabetes: a high-risk state for diabetes development. Lancet. 2012;379:2279–2290. doi: 10.1016/S0140-6736(12)60283-9.
    1. Maraki MI, Sidossis LS. The latest on the effect of prior exercise on postprandial lipaemia. Sports Med. 2013;43:463–481. doi: 10.1007/s40279-013-0046-9.
    1. Taskinen MR, Boren J. New insights into the pathophysiology of dyslipidemia in type 2 diabetes. Atherosclerosis. 2015;239:483–495. doi: 10.1016/j.atherosclerosis.2015.01.039.
    1. Biswas SK, Mohtarin S, Mudi SR, Anwar T, Banu LA, Alam SM, et al. Relationship of Soluble RAGE with Insulin Resistance and Beta Cell Function during Development of Type 2 Diabetes Mellitus. J Diabet Res. 2015;2015:150325. doi: 10.1155/2015/150325.
    1. Pedrini MT, Kranebitter M, Niederwanger A, Kaser S, Engl J, Debbage P, et al. Human triglyceride-rich lipoproteins impair glucose metabolism and insulin signalling in L6 skeletal muscle cells independently of non-esterified fatty acid levels. Diabetologia. 2005;48:756–766. doi: 10.1007/s00125-005-1684-8.
    1. Tatarczyk T, Ciardi C, Niederwanger A, Kranebitter M, Patsch JR, Pedrini MT. Postprandial triglyceride-rich lipoproteins induce hepatic insulin resistance in HepG2 cells independently of their receptor-mediated cellular uptake. Mol Cell Endocrinol. 2011;343:71–78. doi: 10.1016/j.mce.2011.06.008.
    1. Du T, Yuan G, Zhang M, Zhou X, Sun X, Yu X. Clinical usefulness of lipid ratios, visceral adiposity indicators, and the triglycerides and glucose index as risk markers of insulin resistance. Cardiovasc Diabetol. 2014;13:146. doi: 10.1186/s12933-014-0146-3.
    1. Blanco-Rojo JF, Wopereis S, Perez-Martinez P, Quintana-Navarro GM. The insulin resistance phenotype (muscle or liver) interacts with the type of diet to determine changes in disposition Index after 2 years of intervention: the CORDIOPREV_DIAB randomised clinical trial. Diabetologia. 2016;59(1):67–76. doi: 10.1007/s00125-015-3776-4.
    1. Purcell R, Latham SH, Botham KM, Hall WL, Wheeler-Jones CP. High-fat meals rich in EPA plus DHA compared with DHA only have differential effects on postprandial lipemia and plasma 8-isoprostane F2alpha concentrations relative to a control high-oleic acid meal: a randomized controlled trial. Am J Clin Nutr. 2014;100:1019–1028. doi: 10.3945/ajcn.114.091223.
    1. Lopez S, Bermudez B, Pacheco YM, Villar J, Abia R, Muriana FJ. Distinctive postprandial modulation of beta cell function and insulin sensitivity by dietary fats: monounsaturated compared with saturated fatty acids. Am J Clin Nutr. 2008;88:638–644.
    1. Farr S, Taher J, Adeli K. Glucagon-like peptide-1 as a key regulator of lipid and lipoprotein metabolism in fasting and postprandial states. Cardiovasc Hematol Disord: Drug Targets. 2014;14:126–136. doi: 10.2174/1871529X14666140505125300.
    1. Ohno Y, Miyoshi T, Noda Y, Oe H, Toh N, Nakamura K, et al. Bezafibrate improves postprandial hypertriglyceridemia and associated endothelial dysfunction in patients with metabolic syndrome: a randomized crossover study. Cardiovasc Diabetol. 2014;13:71. doi: 10.1186/1475-2840-13-71.

Source: PubMed

3
Abonner