Association Between the Gut Microbiota and Blood Pressure in a Population Cohort of 6953 Individuals

Joonatan Palmu, Aaro Salosensaari, Aki S Havulinna, Susan Cheng, Michael Inouye, Mohit Jain, Rodolfo A Salido, Karenina Sanders, Caitriona Brennan, Gregory C Humphrey, Jon G Sanders, Erkki Vartiainen, Tiina Laatikainen, Pekka Jousilahti, Veikko Salomaa, Rob Knight, Leo Lahti, Teemu J Niiranen, Joonatan Palmu, Aaro Salosensaari, Aki S Havulinna, Susan Cheng, Michael Inouye, Mohit Jain, Rodolfo A Salido, Karenina Sanders, Caitriona Brennan, Gregory C Humphrey, Jon G Sanders, Erkki Vartiainen, Tiina Laatikainen, Pekka Jousilahti, Veikko Salomaa, Rob Knight, Leo Lahti, Teemu J Niiranen

Abstract

Background Several small-scale animal studies have suggested that gut microbiota and blood pressure (BP) are linked. However, results from human studies remain scarce and conflicting. We wanted to elucidate the multivariable-adjusted association between gut metagenome and BP in a large, representative, well-phenotyped population sample. We performed a focused analysis to examine the previously reported inverse associations between sodium intake and Lactobacillus abundance and between Lactobacillus abundance and BP. Methods and Results We studied a population sample of 6953 Finns aged 25 to 74 years (mean age, 49.2±12.9 years; 54.9% women). The participants underwent a health examination, which included BP measurement, stool collection, and 24-hour urine sampling (N=829). Gut microbiota was analyzed using shallow shotgun metagenome sequencing. In age- and sex-adjusted models, the α (within-sample) and β (between-sample) diversities of taxonomic composition were strongly related to BP indexes (P<0.001 for most). In multivariable-adjusted models, β diversity was only associated with diastolic BP (P=0.032). However, we observed significant, mainly positive, associations between BP indexes and 45 microbial genera (P<0.05), of which 27 belong to the phylum Firmicutes. Interestingly, we found mostly negative associations between 19 distinct Lactobacillus species and BP indexes (P<0.05). Of these, greater abundance of the known probiotic Lactobacillus paracasei was associated with lower mean arterial pressure and lower dietary sodium intake (P<0.001 for both). Conclusions Although the associations between overall gut taxonomic composition and BP are weak, individuals with hypertension demonstrate changes in several genera. We demonstrate strong negative associations of certain Lactobacillus species with sodium intake and BP, highlighting the need for experimental studies.

Keywords: Lactobacillus; blood pressure; gastrointestinal microbiota; hypertension; salt intake.

Conflict of interest statement

Dr Salomaa has received honoraria from Novo Nordisk and Sanofi for consultations. He also has ongoing research collaboration with Bayer Ltd (all unrelated to the present study). The remaining authors have no disclosures to report.

Figures

Figure 1. Associations between blood pressure (BP)…
Figure 1. Associations between blood pressure (BP) variables and microbial diversity.
The blue heat maps on the left express the change in BP variables per 1‐SD increase in α diversity (Shannon index); log odds are reported for hypertension. The bar plots on the right represent the proportion of variability (R2) in β diversity (Bray‐Curtis distance) explained by BP indexes. Multivariable‐adjusted model is adjusted for age, sex, body mass index, smoking, exercise, diuretics, β blockers, calcium channel blockers, and renin‐angiotensin system blockers. Significant results are marked with asterisk (P<0.05). α indicates effect size for α diversity; and MAP, mean arterial pressure.
Figure 2. Principal coordinate analysis (PCoA) for…
Figure 2. Principal coordinate analysis (PCoA) for species‐level bacterial abundances (Bray‐Curtis distance).
Figure 3. Associations for common microbial genera…
Figure 3. Associations for common microbial genera and Lactobacillus species with blood pressure (BP) indexes.
We observed 45 distinct microbial genera and 19 Lactobacillus species that were significantly associated with BP indexes using DESeq2 (P<0.05 for all). The heat map expresses the fold change associated with BP indexes in base 2 logarithm ratios of microbial abundances. For hypertension, the range signifies a change of microbial abundance from 0.5 (blue) to 2 (red) times the bacterial abundance in normotensive participants. For continuous variables, the fold change is expressed per 1‐SD change in BP variable. The models are adjusted for age, sex, body mass index, smoking, exercise, diuretics, β blockers, calcium channel blockers, and renin‐angiotensin system blockers. Association with bacterial plasmid is denoted using asterisk. MAP indicates mean arterial pressure.
Figure 4. Lactobacillus abundance in groups by…
Figure 4. Lactobacillus abundance in groups by 24‐hour urinary sodium excretion.
We observed significant association between 24‐hour urinary sodium excretion and two Lactobacillus species with false discovery rate–corrected P<0.05 while the genus‐level association remained insignificant. For Lactobacillus paracasei (log2 fold change, −0.018±0.002; P<0.001), the 24‐hour urinary sodium excretion levels were as follows: quartile (Q) 1, 205.4±68.5 mmol; Q2, 143.0±43.8 mmol; Q3, 123.9±41.1 mmol; and Q4, 96.6±33.7 mmol. For Lactobacillus salivarius (log2 fold change, 0.007±0.002; P=0.004), the 24‐hour urinary sodium excretion levels were as follows: Q1, 132.7±60.3 mmol; Q2, 142.3±63.3 mmol; Q3, 144.0±58.3 mmol; and Q4, 150.1±68.6 mmol. We visualize the associations using quartiles of DESeq2‐fitted abundances against 24‐hour urinary sodium.

References

    1. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, et al. A metagenome‐wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60.
    1. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung Y‐M, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63.
    1. O’Keefe SJD, Li JV, Lahti L, Ou J, Carbonero F, Mohammed K, Posma JM, Kinross J, Wahl E, Ruder E, et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun. 2015;6:6342.
    1. Richards EM, Pepine CJ, Raizada MK, Kim S. The gut, its microbiome, and hypertension. Curr Hypertens Rep. 2017;19:36.
    1. Yang T, Santisteban MM, Vermali R, Li E, Ahmari N, Carvajal JM, Zadeh M, Gong M, Qi Y, Zubcevic J, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65:1331–1340.
    1. Adnan S, Nelson JW, Ajami NJ, Venna VR, Petrosino JF, Bryan RM, Durgan DJ. Alterations in the gut microbiota can elicit hypertension in rats. Physiol Genomics. 2016;49:96–104.
    1. Vijay‐Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, Sitaraman SV, Knight R, Ley RE, Gewirtz AT. Metabolic syndrome and altered gut microbiota in mice lacking toll‐like receptor 5. Science. 2010;328:228–231.
    1. Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, Haase S, Mähler A, Balogh A, Markó L, et al. Salt‐responsive gut commensal modulates T H 17 axis and disease. Nature. 2017;551:585–589.
    1. McDonald D, Hyde E, Debelius JW, Morton JT, Gonzalez A, Ackermann G, Aksenov AA, Behsaz B, Brennan C, Chen Y, et al. American gut: an open platform for citizen science microbiome research. mSystems. 2018;3:e00031 ‐18 DOI: .
    1. Jäckel S, Kiouptsi K, Lillich M, Hendrikx T, Khandagale A, Kollar B, Hörmann N, Reiss C, Subramaniam S, Wilms E, et al. Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll‐like receptor‐2. Blood. 2017;130:542–553.
    1. Kiouptsi K, Jäckel S, Pontarollo G, Grill A, Kuijpers MJE, Wilms E, Weber C, Sommer F, Nagy M, Neideck C, et al. The microbiota promotes arterial thrombosis in low‐density lipoprotein receptor‐deficient mice. mBio. 2019;10:e02298 ‐19 DOI: .
    1. Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, Fu X, Wu Y, Mehrabian M, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165:111–124.
    1. Jackson MA, Verdi S, Maxan M‐E, Shin CM, Zierer J, Bowyer RCE, Martin T, Williams FMK, Menni C, Bell JT, et al. Gut microbiota associations with common diseases and prescription medications in a population‐based cohort. Nat Commun. 2018;9:1–8.
    1. Sun S, Lulla A, Sioda M, Winglee K, Wu MC, Jacobs DR, Shikany JM, Lloyd‐Jones DM, Launer LJ, Fodor AA, et al. Gut microbiota composition and blood pressure: the CARDIA study. Hypertension. 2019;73:998–1006.
    1. Jama H, Kaye DM, Marques FZ. Population‐based gut microbiome associations with hypertension. Circ Res. 2018;123:1185–1187.
    1. Borodulin K, Vartiainen E, Peltonen M, Jousilahti P, Juolevi A, Laatikainen T, Mannisto S, Salomaa V, Sundvall J, Puska P. Forty‐year trends in cardiovascular risk factors in Finland. Eur J Public Health. 2015;25:539–546.
    1. Havulinna AS, Sysi‐Aho M, Hilvo M, Kauhanen D, Hurme R, Ekroos K, Salomaa V, Laaksonen R. Circulating ceramides predict cardiovascular outcomes in the population‐based FINRISK 2002 cohort. Arterioscler Thromb Vasc Biol. 2016;36:2424–2430.
    1. Laatikainen T, Pietinen P, Valsta L, Sundvall J, Reinivuo H, Tuomilehto J. Sodium in the Finnish diet: 20‐year trends in urinary sodium excretion among the adult population. Eur J Clin Nutr. 2006;60:965–970.
    1. Salosensaari A, Laitinen V, Havulinna AS, Meric G, Cheng S, Perola M, Valsta L, Alfthan G, Inouye M, Watrous JD, et al. Taxonomic signatures of long‐term mortality risk in human gut microbiota. medRxiv. 2020. DOI:
    1. Glenn TC, Nilsen RA, Kieran TJ, Sanders JG, Bayona‐Vásquez NJ, Finger JW, Pierson TW, Bentley KE, Hoffberg SL, Louha S, et al. Adapterama I: universal stubs and primers for 384 unique dual‐indexed or 147,456 combinatorially‐indexed Illumina libraries (iTru & iNext). PeerJ. 2019;7:e7755.
    1. Hillmann B, Al‐Ghalith GA, Shields‐Cutler RR, Zhu Q, Gohl DM, Beckman KB, Knight R, Knights D. Evaluating the information content of shallow shotgun metagenomics. mSystems. 2018;3:e00069 ‐18.
    1. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith‐White B, Ako‐Adjei D, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–D745.
    1. Statistics on reimbursements for prescription medicines. The Social Insurance Institution of Finland (Kela). . Accessed August 5, 2019.
    1. ATC Structure and Principles . WHO Collaborating Centre for Drug Statistics Methodology. . Accessed August 5, 2019.
    1. Lahti L, Shetty S. Tools for microbiome analysis in R: version 1.6.0. 2017. Available at: . Accessed May 2, 2019.
    1. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.
    1. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, et al. The Vegan package: version 2.5.6. 2007. .Accessed April 24, 2019.
    1. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biol. 2014;15:550.
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
    1. Uchiyama T, Irie M, Mori H, Kurokawa K, Yamada T. FuncTree: functional analysis and visualization for large‐scale omics data. PLoS One. 2015;10:e0126967.
    1. Palmu J, Salosensaari A, Lahti L, Niiranen T. RRgutbiota: source code for the manuscript association between gut microbiota and blood pressure in a population cohort of 6953 individuals: version 1.6. Zenodo; 2020. DOI: . Accessed June 24, 2020.
    1. R Core Team . R: A Language and Environment for Statistical Computing: Version 3.6.0. R Foundation for Statistical Computing; 2017. . Accessed May 2, 2019.
    1. Durgan DJ, Ganesh BP, Cope JL, Ajami NJ, Phillips SC, Petrosino JF, Hollister EB, Bryan RM. Role of the gut microbiome in obstructive sleep apnea‐induced hypertension. Hypertension. 2016;67:469–474.
    1. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120:1183–1196.
    1. Angurana SK, Bansal A, Singhi S, Aggarwal R, Jayashree M, Salaria M, Mangat NK. Evaluation of effect of probiotics on cytokine levels in critically ill children with severe sepsis: a double‐blind, placebo‐controlled trial. Crit Care Med. 2018;46:1656–1664.
    1. Hill D, Sugrue I, Tobin C, Hill C, Stanton C, Ross RP. The Lactobacillus casei group: history and health related applications. Front Microbiol. 2018;9:2107 DOI: .
    1. Claesson MJ, Clooney AG, O’Toole PW. A clinician’s guide to microbiome analysis. Nat Rev Gastroenterol Hepatol. 2017;14:585–595.
    1. Thomas AM, Segata N. Multiple levels of the unknown in microbiome research. BMC Biol. 2019;17:48.
    1. Rakova N, Kitada K, Lerchl K, Dahlmann A, Birukov A, Daub S, Kopp C, Pedchenko T, Zhang Y, Beck L, et al. Increased salt consumption induces body water conservation and decreases fluid intake. J Clin Invest. 2017;127:1932–1943.

Source: PubMed

3
Abonner