Effects of Lactobacillus plantarum PS128 on Children with Autism Spectrum Disorder in Taiwan: A Randomized, Double-Blind, Placebo-Controlled Trial

Yen-Wenn Liu, Min Tze Liong, Yu-Chu Ella Chung, Hui-Yi Huang, Wu-Shun Peng, Yun-Fang Cheng, Yu-Siou Lin, Yu-Yu Wu, Ying-Chieh Tsai, Yen-Wenn Liu, Min Tze Liong, Yu-Chu Ella Chung, Hui-Yi Huang, Wu-Shun Peng, Yun-Fang Cheng, Yu-Siou Lin, Yu-Yu Wu, Ying-Chieh Tsai

Abstract

This four-week, randomized, double-blind, placebo-controlled study investigated the effects of Lactobacillus plantarum PS128 (PS128) on boys with autism spectrum disorder (ASD) aged 7-15 in Taiwan. All subjects fulfilled the criteria for ASD diagnosis of DSM-V and the Autism Diagnostic Interview-Revised (ADI-R). Questionnaires used for the primary outcome measure include the Autism Behavior Checklist-Taiwan version (ABC-T), the Social Responsiveness Scale (SRS) and the Child Behavior Checklist (CBCL). The Swanson, Nolan, and Pelham-IV-Taiwan version (SNAP-IV) and the Clinical Global Impression-improvement (CGI-I) were used for the secondary outcome measure. The results showed that PS128 ameliorated opposition/defiance behaviors, and that the total score of SNAP-IV for younger children (aged 712) improved significantly compared with the placebo group. Additionally, several elements were also notably improved in the PS128 group after 28-day consumption of PS128. Further studies are needed to better clarify the effects of PS128 for younger children with ASD on broader symptoms.

Keywords: Lactobacillus plantarum PS128; anxiety; autism spectrum disorder (ASD); hyperactivity; psychobiotic.

Conflict of interest statement

Y.-C.T. owns stock in Bened Biomedical Co., Ltd. Other authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Trial profile.

References

    1. American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders (DSM-5®) 5th ed. American Psychiatric Publishing; Washington, DC, USA: 2013.
    1. Veenstra-Vanderweele J., Christian S.L., Cook E.H., Jr. Autism as a paradigmatic complex genetic disorder. Annu. Rev. Genom. Hum. Genet. 2004;5:379–405. doi: 10.1146/annurev.genom.5.061903.180050.
    1. Kuo P.H., Chuang L.C., Su M.H., Chen C.H., Wu J.Y., Yen C.J., Wu Y.Y., Liu S.K., Chou M.C., Chou W.J., et al. Genome-wide association study for autism spectrum disorder in Taiwanese Han population. PLoS ONE. 2015;10:e0138695. doi: 10.1371/journal.pone.0138695.
    1. Moosa A., Shu H., Sarachana T., Hu V.W. Are endocrine disrupting compounds environmental risk factors for autism spectrum disorder? Horm. Behav. 2017 doi: 10.1016/j.yhbeh.2017.10.003.
    1. Strasser L., Downes M., Kung J., Cross J.H., De Haan M. Prevalence and risk factors for autism spectrum disorder in epilepsy: A systematic review and meta-analysis. Dev. Med. Child Neurol. 2017 doi: 10.1111/dmcn.13598.
    1. Muhle R.A., Reed H.E., Stratigos K.A., Veenstra-VanderWeele J. The emerging clinical neuroscience of autism spectrum disorder: A review. JAMA Psychiatry. 2018 doi: 10.1001/jamapsychiatry.2017.4685.
    1. Lotter V. Epidemiology of autistic conditions in young children. Soc Psychiatry. 1966;1:124–135. doi: 10.1007/BF00584048.
    1. Iwainsky H. Mode of Action, Biotransformation and Pharmacokinetics of Antituberculosis Drugs in Animals and Man. Springer; Berlin/Heidelberg, Germany: 1988.
    1. Prevalence of Autism Spectrum Disorders—Autism and Developmental Disabilities Monitoring Network, United States. [(accessed on 28 March 2019)];2006 Available online: .
    1. Baio J., Wiggins L., Christensen D.L., Maenner M.J., Daniels J., Warren Z., Kurzius-Spencer M., Zahorodny W., Robinson Rosenberg C., White T., et al. Prevalence of autism spectrum disorder among children aged 8 years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014. Morb. Mortal. Wkly. Rep. Surveill. Summ. 2018;67:1–23. doi: 10.15585/mmwr.ss6706a1.
    1. Chien Y.L., Chou M.C., Chiu Y.N., Chou W.J., Wu Y.Y., Tsai W.C., Gau S.S. ADHD-related symptoms and attention profiles in the unaffected siblings of probands with autism spectrum disorder: Focus on the subtypes of autism and Asperger’s disorder. Mol. Autism. 2017;8:37. doi: 10.1186/s13229-017-0153-9.
    1. Taurines R., Schwenck C., Westerwald E., Sachse M., Siniatchkin M., Freitag C. ADHD and autism: Differential diagnosis or overlapping traits? A selective review. ADHD Atten. Deficit Hyperact. Disord. 2012;4:115–139. doi: 10.1007/s12402-012-0086-2.
    1. De Boo G.M., Prins P.J. Social incompetence in children with ADHD: Possible moderators and mediators in social-skills training. Clin. Psychol. Rev. 2007;27:78–97. doi: 10.1016/j.cpr.2006.03.006.
    1. Gau S.S., Shang C.Y., Liu S.K., Lin C.H., Swanson J.M., Liu Y.C., Tu C.L. Psychometric properties of the Chinese version of the Swanson, Nolan, and Pelham, version IV scale—Parent form. Int. J. Methods Psychiatr. Res. 2008;17:35–44. doi: 10.1002/mpr.237.
    1. Autism: Beware of Potentially Dangerous Therapies and Products. [(accessed on 24 March 2019)]; Available online: .
    1. Label for Risperdal—FDA. [(accessed on 24 March 2019)]; Available online: .
    1. Ospina M.B., Krebs Seida J., Clark B., Karkhaneh M., Hartling L., Tjosvold L., Vandermeer B., Smith V. Behavioural and developmental interventions for autism spectrum disorder: A clinical systematic review. PLoS ONE. 2008;3:e3755. doi: 10.1371/journal.pone.0003755.
    1. Sharma S.R., Gonda X., Tarazi F.I. Autism spectrum disorder: Classification, diagnosis and therapy. Pharmacol. Ther. 2018 doi: 10.1016/j.pharmthera.2018.05.007.
    1. El-Rashidy O., El-Baz F., El-Gendy Y., Khalaf R., Reda D., Saad K. Ketogenic diet versus gluten free casein free diet in autistic children: A case-control study. Metab. Brain Dis. 2017;32:1935–1941. doi: 10.1007/s11011-017-0088-z.
    1. Mychasiuk R., Rho J.M. Genetic modifications associated with ketogenic diet treatment in the BTBRT+Tf/J mouse model of autism spectrum disorder. Autism Res. 2017;10:456–471. doi: 10.1002/aur.1682.
    1. Mazahery H., Camargo C.A., Jr., Conlon C., Beck K.L., Kruger M.C., von Hurst P.R. Vitamin D and autism spectrum disorder: A literature review. Nutrients. 2016;8:236. doi: 10.3390/nu8040236.
    1. Cheng Y.S., Tseng P.T., Chen Y.W., Stubbs B., Yang W.C., Chen T.Y., Wu C.K., Lin P.Y. Supplementation of omega 3 fatty acids may improve hyperactivity, lethargy, and stereotypy in children with autism spectrum disorders: A meta-analysis of randomized controlled trials. Neuropsychiatr. Dis. Treat. 2017;13:2531–2543. doi: 10.2147/NDT.S147305.
    1. Ooi Y.P., Weng S.J., Jang L.Y., Low L., Seah J., Teo S., Ang R.P., Lim C.G., Liew A., Fung D.S., et al. Omega-3 fatty acids in the management of autism spectrum disorders: Findings from an open-label pilot study in Singapore. Eur. J. Clin. Nutr. 2015;69:969–971. doi: 10.1038/ejcn.2015.28.
    1. Sheppard K.W., Boone K.M., Gracious B., Klebanoff M.A., Rogers L.K., Rausch J., Bartlett C., Coury D.L., Keim S.A. Effect of omega-3 and -6 supplementation on language in preterm toddlers exhibiting autism spectrum disorder symptoms. J. Autism Dev. Disord. 2017;47:3358–3369. doi: 10.1007/s10803-017-3249-3.
    1. Bostock E.C., Kirkby K.C., Taylor B.V. The current status of the ketogenic diet in psychiatry. Front. Psychiatry. 2017;8:43. doi: 10.3389/fpsyt.2017.00043.
    1. Horvath A., Lukasik J., Szajewska H. Omega-3 fatty acid supplementation does not affect autism spectrum disorder in children: A systematic review and meta-analysis. J. Nutr. 2017;147:367–376. doi: 10.3945/jn.116.242354.
    1. Sathe N., Andrews J.C., McPheeters M.L., Warren Z.E. Nutritional and dietary interventions for autism spectrum disorder: A systematic review. Pediatrics. 2017:139. doi: 10.1542/peds.2017-0346.
    1. Dinan T.G., Cryan J.F. Microbes, immunity, and behavior: Psychoneuroimmunology meets the microbiome. Neuropsychopharmacology. 2017;42:178–192. doi: 10.1038/npp.2016.103.
    1. Zhou L., Foster J.A. Psychobiotics and the gut-brain axis: In the pursuit of happiness. Neuropsychiatr. Dis. Treat. 2015;11:715–723. doi: 10.2147/NDT.S61997.
    1. Savignac H.M., Kiely B., Dinan T.G., Cryan J.F. Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol. Motil. 2014;26:1615–1627. doi: 10.1111/nmo.12427.
    1. Savignac H.M., Tramullas M., Kiely B., Dinan T.G., Cryan J.F. Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behav. Brain Res. 2015;287:59–72. doi: 10.1016/j.bbr.2015.02.044.
    1. McVey Neufeld K.A., O’Mahony S.M., Hoban A.E., Waworuntu R.V., Berg B.M., Dinan T.G., Cryan J.F. Neurobehavioural effects of Lactobacillus rhamnosus GG alone and in combination with prebiotics polydextrose and galactooligosaccharide in male rats exposed to early-life stress. Nutr. Neurosci. 2017 doi: 10.1080/1028415X.2017.1397875.
    1. Allen A.P., Clarke G., Cryan J.F., Quigley E.M.M., Dinan T.G. Bifidobacterium infantis 35624 and other probiotics in the management of irritable bowel syndrome. Strain specificity, symptoms, and mechanisms. Curr. Med Res. Opin. 2017;33:1349–1351. doi: 10.1080/03007995.2017.1322571.
    1. Slykerman R.F., Hood F., Wickens K., Thompson J.M.D., Barthow C., Murphy R., Kang J., Rowden J., Stone P., Crane J., et al. Effect of Lactobacillus rhamnosus HN001 in pregnancy on postpartum symptoms of depression and anxiety: A randomised double-blind placebo-controlled trial. EBioMedicine. 2017;24:159–165. doi: 10.1016/j.ebiom.2017.09.013.
    1. Wang L.W., Tancredi D.J., Thomas D.W. The prevalence of gastrointestinal problems in children across the United States with autism spectrum disorders from families with multiple affected members. J. Dev. Behav. Pediatrics JDBP. 2011;32:351–360. doi: 10.1097/DBP.0b013e31821bd06a.
    1. Chaidez V., Hansen R.L., Hertz-Picciotto I. Gastrointestinal problems in children with autism, developmental delays or typical development. J. Autism Dev. Disord. 2014;44:1117–1127. doi: 10.1007/s10803-013-1973-x.
    1. Ding H.T., Taur Y., Walkup J.T. Gut microbiota and autism: Key concepts and findings. J. Autism Dev. Disord. 2017;47:480–489. doi: 10.1007/s10803-016-2960-9.
    1. Strati F., Cavalieri D., Albanese D., De Felice C., Donati C., Hayek J., Jousson O., Leoncini S., Renzi D., Calabro A., et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017;5:24. doi: 10.1186/s40168-017-0242-1.
    1. Son J.S., Zheng L.J., Rowehl L.M., Tian X., Zhang Y., Zhu W., Litcher-Kelly L., Gadow K.D., Gathungu G., Robertson C.E., et al. Comparison of fecal microbiota in children with autism spectrum disorders and neurotypical siblings in the simons simplex collection. PLoS ONE. 2015;10:e0137725. doi: 10.1371/journal.pone.0137725.
    1. Kang D.W., Ilhan Z.E., Isern N.G., Hoyt D.W., Howsmon D.P., Shaffer M., Lozupone C.A., Hahn J., Adams J.B., Krajmalnik-Brown R. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe. 2018;49:121–131. doi: 10.1016/j.anaerobe.2017.12.007.
    1. Tomova A., Husarova V., Lakatosova S., Bakos J., Vlkova B., Babinska K., Ostatnikova D. Gastrointestinal microbiota in children with autism in Slovakia. Physiol. Behav. 2015;138:179–187. doi: 10.1016/j.physbeh.2014.10.033.
    1. Kang D.W., Adams J.B., Gregory A.C., Borody T., Chittick L., Fasano A., Khoruts A., Geis E., Maldonado J., McDonough-Means S., et al. Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study. Microbiome. 2017;5:10. doi: 10.1186/s40168-016-0225-7.
    1. FAO/WHO . Probiotics in Food. Health and Nutritional Properties and Guidelines for Evaluation. FAO; Rome, Italy: 2006.
    1. Ewe J.A., Wan-Abdullah W.N., Liong M.T. Viability and growth characteristics of Lactobacillus in soymilk supplemented with B-vitamins. Int. J. Food Sci. Nutr. 2010;61:87–107. doi: 10.3109/09637480903334163.
    1. Liong MT S.N. Bile salt deconjugation and BSH activity of five bifidobacterial strains and their cholesterol co-precipitating properties. Food Res. Int. 2005;38:135–142. doi: 10.1016/j.foodres.2004.08.003.
    1. Dinan T.G., Stanton C., Cryan J.F. Psychobiotics: A novel class of psychotropic. Biol. Psychiatry. 2013;74:720–726. doi: 10.1016/j.biopsych.2013.05.001.
    1. Desbonnet L., Garrett L., Clarke G., Bienenstock J., Dinan T.G. The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J. Psychiatr. Res. 2008;43:164–174. doi: 10.1016/j.jpsychires.2008.03.009.
    1. Liu Y.W., Liu W.H., Wu C.C., Juan Y.C., Wu Y.C., Tsai H.P., Wang S., Tsai Y.C. Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naive adult mice. Brain Res. 2016;1631:1–12. doi: 10.1016/j.brainres.2015.11.018.
    1. Liang S., Wang T., Hu X., Luo J., Li W., Wu X., Duan Y., Jin F. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience. 2015;310:561–577. doi: 10.1016/j.neuroscience.2015.09.033.
    1. Bravo J.A., Forsythe P., Chew M.V., Escaravage E., Savignac H.M., Dinan T.G., Bienenstock J., Cryan J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA. 2011;108:16050–16055. doi: 10.1073/pnas.1102999108.
    1. Liu W.H., Chuang H.L., Huang Y.T., Wu C.C., Chou G.T., Wang S., Tsai Y.C. Alteration of behavior and monoamine levels attributable to Lactobacillus plantarum PS128 in germ-free mice. Behav. Brain Res. 2016;298:202–209. doi: 10.1016/j.bbr.2015.10.046.
    1. Desbonnet L., Garrett L., Clarke G., Kiely B., Cryan J.F., Dinan T.G. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience. 2010;170:1179–1188. doi: 10.1016/j.neuroscience.2010.08.005.
    1. Gareau M.G., Wine E., Rodrigues D.M., Cho J.H., Whary M.T., Philpott D.J., Macqueen G., Sherman P.M. Bacterial infection causes stress-induced memory dysfunction in mice. Gut. 2011;60:307–317. doi: 10.1136/gut.2009.202515.
    1. Jeong J.J., Kim K.A., Ahn Y.T., Sim J.H., Woo J.Y., Huh C.S., Kim D.H. Probiotic mixture KF attenuates age-dependent memory deficit and lipidemia in Fischer 344 rats. J. Microbiol. Biotechnol. 2015;25:1532–1536. doi: 10.4014/jmb.1505.05002.
    1. Davari S., Talaei S.A., Alaei H., Salami M. Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: Behavioral and electrophysiological proofs for microbiome-gut-brain axis. Neuroscience. 2013;240:287–296. doi: 10.1016/j.neuroscience.2013.02.055.
    1. Hsiao E.Y., McBride S.W., Hsien S., Sharon G., Hyde E.R., McCue T., Codelli J.A., Chow J., Reisman S.E., Petrosino J.F., et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155:1451–1463. doi: 10.1016/j.cell.2013.11.024.
    1. Chao S.H., Wu R.J., Watanabe K., Tsai Y.C. Diversity of lactic acid bacteria in suan-tsai and fu-tsai, traditional fermented mustard products of Taiwan. Int. J. Food Microbiol. 2009;135:203–210. doi: 10.1016/j.ijfoodmicro.2009.07.032.
    1. Mahdavi M., Kheirollahi M., Riahi R., Khorvash F., Khorrami M., Mirsafaie M. Meta-analysis of the association between GABA receptor polymorphisms and autism spectrum disorder (ASD) J. Mol. Neurosci. MN. 2018 doi: 10.1007/s12031-018-1073-7.
    1. Israelyan N., Margolis K.G. Serotonin as a link between the gut-brain-microbiome axis in autism spectrum disorders. Pharmacol. Res. 2018;132:1–6. doi: 10.1016/j.phrs.2018.03.020.
    1. Hamilton P.J., Campbell N.G., Sharma S., Erreger K., Herborg Hansen F., Saunders C., Belovich A.N., Sahai M.A., Cook E.H., Gether U., et al. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder. Mol. Psychiatry. 2013;18:1315–1323. doi: 10.1038/mp.2013.102.
    1. Liu W.H., Yang C.H., Lin C.T., Li S.W., Cheng W.S., Jiang Y.P., Wu C.C., Chang C.H., Tsai Y.C. Genome architecture of Lactobacillus plantarum PS128, a probiotic strain with potential immunomodulatory activity. Gut Pathog. 2015;7:22. doi: 10.1186/s13099-015-0068-y.
    1. Lord C., Rutter M., Le Couteur A. Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J. Autism Dev. Disord. 1994;24:659–685. doi: 10.1007/BF02172145.
    1. Krug D.A., Arick J., Almond P. Behavior checklist for identifying severely handicapped individuals with high levels of autistic behavior. J. Child Psychol. Psychiatry. 1980;21:221–229. doi: 10.1111/j.1469-7610.1980.tb01797.x.
    1. Constantino J.N., Gruber C.P. Social Responsiveness Scale (SRS) Manual. Western Psychological Services; Los Angeles, CA, USA: 2005.
    1. Gau S.S.-F., Liu L.-T., Wu Y.-Y., Chiu Y.-N., Tsai W.-C. Psychometric properties of the Chinese version of the Social Responsiveness Scale. Res. Autism Spectr. Disord. 2013;7:349–360. doi: 10.1016/j.rasd.2012.10.004.
    1. Achenbach T.M. Manual for the Child Behavior Checklist/4-18 and 1991 Profile. Department of Psychiatry, University of Vermont; Burlington, VT, USA: 1991.
    1. Kuo P.H., Lin C.C., Yang H.J., Soong W.T., Chen W.J. A twin study of competence and behavioral/emotional problems among adolescents in Taiwan. Behav. Genet. 2004;34:63–74. doi: 10.1023/B:BEGE.0000009477.70657.9d.
    1. Wadsworth M.E., Hudziak J.J., Heath A.C., Achenbach T.M. Latent class analysis of child behavior checklist anxiety/depression in children and adolescents. J. Am. Acad. Child Adolesc. Psychiatry. 2001;40:106–114. doi: 10.1097/00004583-200101000-00023.
    1. Guy W. ECDEU Assessment Manual for Psychopharmacology. U.S. Department of Health, Education, and Welfare Public Health Service; Alcohol, Drug Abuse, and Mental Health Administration; National Institute of Mental Health; Psychopharmacology Research Branch; Division of Extramural Research Programs; Rockville, MD, USA: 1976.
    1. Swanson J.M., Kraemer H.C., Hinshaw S.P., Arnold L.E., Conners C.K., Abikoff H.B., Clevenger W., Davies M., Elliott G.R., Greenhill L.L., et al. Clinical relevance of the primary findings of the MTA: Success rates based on severity of ADHD and ODD symptoms at the end of treatment. J. Am. Acad. Child Adolesc. Psychiatry. 2001;40:168–179. doi: 10.1097/00004583-200102000-00011.
    1. The MTA Cooperative Group A 14-month randomized clinical trial of treatment strategies for attention-deficit/hyperactivity disorder. The MTA cooperative group. Multimodal treatment study of children with ADHD. Arch. Gen. Psychiatry. 1999;56:1073–1086. doi: 10.1001/archpsyc.56.12.1073.
    1. Bussing R., Fernandez M., Harwood M., Wei H., Garvan C.W., Eyberg S.M., Swanson J.M. Parent and teacher SNAP-IV ratings of attention deficit hyperactivity disorder symptoms: Psychometric properties and normative ratings from a school district sample. Assessment. 2008;15:317–328. doi: 10.1177/1073191107313888.
    1. Hsiao M.N., Tseng W.L., Huang H.Y., Gau S.S. Effects of autistic traits on social and school adjustment in children and adolescents: The moderating roles of age and gender. Res. Dev. Disabil. 2013;34:254–265. doi: 10.1016/j.ridd.2012.08.001.
    1. Constantino J.N., Davis S.A., Todd R.D., Schindler M.K., Gross M.M., Brophy S.L., Metzger L.M., Shoushtari C.S., Splinter R., Reich W. Validation of a brief quantitative measure of autistic traits: Comparison of the social responsiveness scale with the autism diagnostic interview-revised. J. Autism Dev. Disord. 2003;33:427–433. doi: 10.1023/A:1025014929212.
    1. Duarte C.S., Bordin I.A., de Oliveira A., Bird H. The CBCL and the identification of children with autism and related conditions in Brazil: Pilot findings. J. Autism Dev. Disord. 2003;33:703–707. doi: 10.1023/B:JADD.0000006005.31818.1c.
    1. Chiang H.L., Kao W.C., Chou M.C., Chou W.J., Chiu Y.N., Wu Y.Y., Gau S.S. School dysfunction in youth with autistic spectrum disorder in Taiwan: The effect of subtype and ADHD. Autism Res. 2018 doi: 10.1002/aur.1923.
    1. MacDonald R., Parry-Cruwys D., Dupere S., Ahearn W. Assessing progress and outcome of early intensive behavioral intervention for toddlers with autism. Res. Dev. Disabil. 2014;35:3632–3644. doi: 10.1016/j.ridd.2014.08.036.
    1. Shattuck P.T., Durkin M., Maenner M., Newschaffer C., Mandell D.S., Wiggins L., Lee L.C., Rice C., Giarelli E., Kirby R., et al. Timing of identification among children with an autism spectrum disorder: Findings from a population-based surveillance study. J. Am. Acad. Child Adolesc. Psychiatry. 2009;48:474–483. doi: 10.1097/CHI.0b013e31819b3848.
    1. Risi S., Lord C., Gotham K., Corsello C., Chrysler C., Szatmari P., Cook E.H., Jr., Leventhal B.L., Pickles A. Combining information from multiple sources in the diagnosis of autism spectrum disorders. J. Am. Acad. Child Adolesc. Psychiatry. 2006;45:1094–1103. doi: 10.1097/01.chi.0000227880.42780.0e.
    1. Shaaban S.Y., El Gendy Y.G., Mehanna N.S., El-Senousy W.M., El-Feki H.S.A., Saad K., El-Asheer O.M. The role of probiotics in children with autism spectrum disorder: A prospective, open-label study. Nutr. Neurosci. 2018;21:676–681. doi: 10.1080/1028415X.2017.1347746.
    1. Parracho H.M.R.T., Gibson G.R., Knott F., Bosscher D., Kleerebezem M., McCartney A.L. A double-blind, placebo-controlled, crossover-designed probiotic feeding study inchildren diagnosed with autistic spectrum disorders. Int. J. Probiotics Prebiotics. 2010;5:69–74.
    1. Craig F., Lamanna A.L., Margari F., Matera E., Simone M., Margari L. Overlap between autism spectrum disorders and attention deficit hyperactivity disorder: searching for distinctive/common clinical features. Autism Res. 2015;8:328–337. doi: 10.1002/aur.1449.
    1. Chen Y.L., Chen S.H., Gau S.S. ADHD and autistic traits, family function, parenting style, and social adjustment for Internet addiction among children and adolescents in Taiwan: A longitudinal study. Res. Dev. Disabil. 2015;39:20–31. doi: 10.1016/j.ridd.2014.12.025.
    1. Havdahl K.A., von Tetzchner S., Huerta M., Lord C., Bishop S.L. Utility of the child behavior checklist as a screener for autism spectrum disorder. Autism Res. 2016;9:33–42. doi: 10.1002/aur.1515.
    1. Snow A.V., Lecavalier L., Houts C. The structure of the autism diagnostic interview-revised: diagnostic and phenotypic implications. J. Child Psychol. Psychiatry. 2009;50:734–742. doi: 10.1111/j.1469-7610.2008.02018.x.
    1. Chenga L.-H., Liu Y.-W., Wu C.-C., Wang S., Tsai Y.-C. Psychobiotics in mental health, neurodegenerative and neurodevelopmental disorders. J. Food Drug Anal. 2019 doi: 10.1016/j.jfda.2019.01.002.
    1. Langella P., Chatel J.M. Risk assessment of probiotics use requires clinical parameters. Nat. Rev. Gastroenterol. Hepatol. 2019 doi: 10.1038/s41575-019-0111-4.
    1. Plaza-Diaz J., Ruiz-Ojeda F.J., Gil-Campos M., Gil A. Mechanisms of action of probiotics. Adv. Nutr. 2019;10:S49–S66. doi: 10.1093/advances/nmy063.
    1. King B.H., Dukes K., Donnelly C.L., Sikich L., McCracken J.T., Scahill L., Hollander E., Bregman J.D., Anagnostou E., Robinson F., et al. Baseline factors predicting placebo response to treatment in children and adolescents with autism spectrum disorders: A multisite randomized clinical trial. JAMA Pediatr. 2013;167:1045–1052. doi: 10.1001/jamapediatrics.2013.2698.
    1. Jones R.M., Carberry C., Hamo A., Lord C. Placebo-like response in absence of treatment in children with Autism. Autism Res. 2017;10:1567–1572. doi: 10.1002/aur.1798.
    1. Taylor J.M. Choosing the number of controls in a matched case-control study, some sample size, power and efficiency considerations. Stat. Med. 1986;5:29–36. doi: 10.1002/sim.4780050106.

Source: PubMed

3
Abonner