A randomized, double-blind, placebo-controlled, multiple-dose, parallel-group clinical trial to assess the effects of teduglutide on gastric emptying of liquids in healthy subjects

Jolene Kay Berg, Eric H Kim, Benjamin Li, Bo Joelsson, Nader N Youssef, Jolene Kay Berg, Eric H Kim, Benjamin Li, Bo Joelsson, Nader N Youssef

Abstract

Background: Teduglutide, a recombinant analog of human glucagon-like peptide (GLP)-2, is a novel therapy recently approved for the treatment of adult patients with short bowel syndrome who are dependent on parenteral support. Previous studies assessing the effect of GLP-2 on gastric emptying in humans have yielded inconsistent results, with some studies showing no effect and others documenting a GLP-2-dependent delay in gastric emptying. The primary objective of this study was to assess the effect of teduglutide on gastric emptying of liquids in healthy subjects, as measured by the pharmacokinetics of acetaminophen.

Methods: This double-blind, parallel-group, single-center study enrolled and randomized 36 healthy subjects (22 men, 14 women) to receive subcutaneous doses of teduglutide 4 mg or placebo (2:1 ratio; 23:13) once daily on Days 1 through 10 in the morning. Gastric emptying of a mixed nutrient liquid meal was assessed by measuring acetaminophen levels predose and at 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 3, 3.5, 4, 5, 6, 8, 10, 12, and 14 hours after administration of 1000 mg acetaminophen on Days 0 and 10. The primary study endpoint was a pharmacokinetic analysis of acetaminophen absorption in subjects receiving teduglutide or placebo.

Results: No significant differences in gastric emptying of liquids (acetaminophen area under the concentration [AUC] vs time curve from time 0 to the last measurable concentration, AUC extrapolated to infinity, maximum concentration [Cmax], and time to Cmax) were observed on Day 10 in subjects receiving teduglutide 4 mg versus subjects receiving placebo. There were no serious adverse events (AEs), deaths, or discontinuations due to an AE reported during the study.

Conclusions: Teduglutide 4 mg/day for 10 days does not affect gastric emptying of liquids in healthy subjects as measured by acetaminophen pharmacokinetics. No unexpected safety signals were observed.

Trial registration: This study was registered at ClinicalTrials.gov, identifier NCT01209351.

Figures

Figure 1
Figure 1
Study design. SC = subcutaneous.
Figure 2
Figure 2
Plasma acetaminophen concentrations vs time. A, Day 0, before administration of study drug. B, Day 10, following 10 days of study drug administration. LOQ = limit of quantification.

References

    1. Drucker DJ, Asa S. Glucagon gene expression in vertebrate brain. J Biol Chem. 1988;263(27):13475–13478.
    1. Drucker DJ, Brubaker PL. Proglucagon gene expression is regulated by a cyclic AMP-dependent pathway in rat intestine. Proc Natl Acad Sci USA. 1989;86(11):3953–3957. doi: 10.1073/pnas.86.11.3953.
    1. Baggio LL, Drucker DJ. Clinical endocrinology and metabolism. Glucagon-like peptide-1 and glucagon-like peptide-2. Best Pract Res Clin Endocrinol Metab. 2004;18(4):531–554. doi: 10.1016/j.beem.2004.08.001.
    1. Orskov C, Holst JJ, Knuhtsen S, Baldissera FG, Poulsen SS, Nielsen OV. Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology. 1986;119(4):1467–1475. doi: 10.1210/endo-119-4-1467.
    1. Elliott RM, Morgan LM, Tredger JA, Deacon S, Wright J, Marks V. Glucagon-like peptide-1 (7–36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J Endocrinol. 1993;138(1):159–166. doi: 10.1677/joe.0.1380159.
    1. Xiao Q, Boushey RP, Drucker DJ, Brubaker PL. Secretion of the intestinotropic hormone glucagon-like peptide 2 is differentially regulated by nutrients in humans. Gastroenterology. 1999;117(1):99–105. doi: 10.1016/S0016-5085(99)70555-X.
    1. Anvari M, Paterson CA, Daniel EE, McDonald TJ. Effects of GLP-1 on gastric emptying, antropyloric motility, and transpyloric flow in response to a nonnutrient liquid. Dig Dis Sci. 1998;43(6):1133–1140. doi: 10.1023/A:1018863716749.
    1. Imeryuz N, Yegen BC, Bozkurt A, Coskun T, Villanueva-Penacarrillo ML, Ulusoy NB. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am J Physiol. 1997;273(4 Pt 1):G920–927.
    1. Naslund E, Gutniak M, Skogar S, Rossner S, Hellstrom PM. Glucagon-like peptide 1 increases the period of postprandial satiety and slows gastric emptying in obese men. Am J Clin Nutr. 1998;68(3):525–530.
    1. Rotondo A, Amato A, Lentini L, Baldassano S, Mule F. Glucagon-like peptide-1 relaxes gastric antrum through nitric oxide in mice. Peptides. 2011;32(1):60–64. doi: 10.1016/j.peptides.2010.09.028.
    1. Tolessa T, Gutniak M, Holst JJ, Efendic S, Hellstrom PM. Glucagon-like peptide-1 retards gastric emptying and small bowel transit in the rat: effect mediated through central or enteric nervous mechanisms. Dig Dis Sci. 1998;43(10):2284–2290. doi: 10.1023/A:1026678925120.
    1. Wettergren A, Wojdemann M, Holst JJ. The inhibitory effect of glucagon-like peptide-1 (7–36)amide on antral motility is antagonized by its N-terminally truncated primary metabolite GLP-1 (9–36)amide. Peptides. 1998;19(5):877–882. doi: 10.1016/S0196-9781(98)00020-5.
    1. Fehmann HC, Habener JF. Insulinotropic hormone glucagon-like peptide-I(7–37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma beta TC-1 cells. Endocrinology. 1992;130(1):159–166.
    1. Orskov C, Holst JJ, Nielsen OV. Effect of truncated glucagon-like peptide-1 [proglucagon-(78–107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology. 1988;123(4):2009–2013. doi: 10.1210/endo-123-4-2009.
    1. Kreymann B, Williams G, Ghatei MA, Bloom SR. Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet. 1987;2(8571):1300–1304.
    1. Drucker DJ, Erlich P, Asa SL, Brubaker PL. Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc Natl Acad Sci USA. 1996;93(15):7911–7916. doi: 10.1073/pnas.93.15.7911.
    1. Tsai CH, Hill M, Asa SL, Brubaker PL, Drucker DJ. Intestinal growth-promoting properties of glucagon-like peptide-2 in mice. Am J Physiol Endocrinol Metab. 1997;273:E77–84.
    1. Benjamin MA, McKay DM, Yang PC, Cameron H, Perdue MH. Glucagon-like peptide-2 enhances intestinal epithelial barrier function of both transcellular and paracellular pathways in the mouse. Gut. 2000;47(1):112–119. doi: 10.1136/gut.47.1.112.
    1. Kato Y, Yu D, Schwartz MZ. Glucagonlike peptide-2 enhances small intestinal absorptive function and mucosal mass in vivo. J Pediatr Surg. 1999;34(1):18–20. doi: 10.1016/S0022-3468(99)90221-X. discussion 20–11.
    1. Sorensen LB, Flint A, Raben A, Hartmann B, Holst JJ, Astrup A. No effect of physiological concentrations of glucagon-like peptide-2 on appetite and energy intake in normal weight subjects. Int J Obes Relat Metab Disord. 2003;27(4):450–456. doi: 10.1038/sj.ijo.0802247.
    1. Meier JJ, Nauck MA, Pott A, Heinze K, Goetze O, Bulut K, Schmidt WE, Gallwitz B, Holst JJ. Glucagon-like peptide 2 stimulates glucagon secretion, enhances lipid absorption, and inhibits gastric acid secretion in humans. Gastroenterology. 2006;130(1):44–54. doi: 10.1053/j.gastro.2005.10.004.
    1. Schmidt WE, Siegel EG, Creutzfeldt W. Glucagon-like peptide-1 but not glucagon-like peptide-2 stimulates insulin release from isolated rat pancreatic islets. Diabetologia. 1985;28(9):704–707. doi: 10.1007/BF00291980.
    1. Hvidberg A, Nielsen MT, Hilsted J, Orskov C, Holst JJ. Effect of glucagon-like peptide-1 (proglucagon 78-107amide) on hepatic glucose production in healthy man. Metabolism. 1994;43(1):104–108. doi: 10.1016/0026-0495(94)90164-3.
    1. Jonderko G, Jonderko K, Golab T. Effect of glucagon on gastric emptying and on postprandial gastrin and insulin release in man. Mater Med Pol. 1989;21(2):92–96.
    1. Mochiki E, Suzuki H, Takenoshita S, Nagamachi Y, Kuwano H, Mizumoto A, Itoh Z. Mechanism of inhibitory effect of glucagon on gastrointestinal motility and cause of side effects of glucagon. J Gastroenterol. 1998;33(6):835–841. doi: 10.1007/s005350050184.
    1. Wojdemann M, Wettergren A, Hartmann B, Holst JJ. Glucagon-like peptide-2 inhibits centrally induced antral motility in pigs. Scand J Gastroenterol. 1998;33(8):828–832. doi: 10.1080/00365529850171486.
    1. Amato A, Baldassano S, Serio R, Mule F. Glucagon-like peptide-2 relaxes mouse stomach through vasoactive intestinal peptide release. Am J Physiol Gastrointest Liver Physiol. 2009;296(3):G678–684. doi: 10.1152/ajpgi.90587.2008.
    1. Schmidt PT, Naslund E, Gryback P, Jacobsson H, Hartmann B, Holst JJ, Hellstrom PM. Peripheral administration of GLP-2 to humans has no effect on gastric emptying or satiety. Regul Pept. 2003;116(1–3):21–25.
    1. Nagell CF, Wettergren A, Pedersen JF, Mortensen D, Holst JJ. Glucagon-like peptide-2 inhibits antral emptying in man, but is not as potent as glucagon-like peptide-1. Scand J Gastroenterol. 2004;39(4):353–358. doi: 10.1080/00365520410004424.
    1. Jeppesen PB, Hartmann B, Thulesen J, Graff J, Lohmann J, Hansen BS, Tofteng F, Poulsen SS, Madsen JL, Holst JJ. et al.Glucagon-like peptide 2 improves nutrient absorption and nutritional status in short-bowel patients with no colon. Gastroenterology. 2001;120(4):806–815. doi: 10.1053/gast.2001.22555.
    1. Jeppesen PB, Gilroy R, Pertkiewicz M, Allard JP, Messing B, O’Keefe SJ. Randomised placebo-controlled trial of teduglutide in reducing parenteral nutrition and/or intravenous fluid requirements in patients with short bowel syndrome. Gut. 2011;60(7):902–914. doi: 10.1136/gut.2010.218271.
    1. Jeppesen PB, Sanguinetti EL, Buchman A, Howard L, Scolapio JS, Ziegler TR, Gregory J, Tappenden KA, Holst J, Mortensen PB. Teduglutide (ALX-0600), a dipeptidyl peptidase IV resistant glucagon-like peptide 2 analogue, improves intestinal function in short bowel syndrome patients. Gut. 2005;54(9):1224–1231. doi: 10.1136/gut.2004.061440.
    1. Hollwarth ME. Short bowel syndrome: pathophysiological and clinical aspects. Pathophysiology. 1999;6:1–19. doi: 10.1016/S0928-4680(98)00035-2.
    1. O’Keefe SJ, Buchman AL, Fishbein TM, Jeejeebhoy KN, Jeppesen PB, Shaffer J. Short bowel syndrome and intestinal failure: consensus definitions and overview. Clin Gastroenterol Hepatol. 2006;4(1):6–10. doi: 10.1016/j.cgh.2005.10.002.
    1. Tappenden K, Edelman J. Teduglutide, a glucagon-like peptide-2 (GLP-2) analog, enhances the structure of the small intestinal mucosa in parenteral support-dependent short bowel syndrome-intestinal failure (SBS-IF) subjects without inducing dysplasia. Am J Gastroenterol. 2011;106:S98.
    1. Jeppesen PB, Pertkiewicz M, Seidner DL, O’Keefe S, Heinze H, Joelsson B. Teduglutide, a novel analogue of glucagon-like peptide 2 (GLP-2), is effective and safe in reducing parenteral support volume in short bowel syndrome–intestinal failure subjects: results from a 24-week, placebo-controlled phase 3 trial (STEPS) Gastroenterology. 2011;140(5 Suppl 1):S146.
    1. Drucker DJ, Shi Q, Crivici A, Sumner-Smith M, Tavares W, Hill M, DeForest L, Cooper S, Brubaker PL. Regulation of the biological activity of glucagon-like peptide 2 in vivo by dipeptidyl peptidase IV. Nat Biotechnol. 1997;15(7):673–677. doi: 10.1038/nbt0797-673.
    1. Tavares W, Drucker DJ, Brubaker PL. Enzymatic- and renal-dependent catabolism of the intestinotropic hormone glucagon-like peptide-2 in rats. Am J Physiol Endocrinol Metab. 2000;278(1):E134–139.
    1. Marier JF, Beliveau M, Mouksassi MS, Shaw P, Cyran J, Kesavan J, Wallens J, Zahir H, Wells D, Caminis J. Pharmacokinetics, safety, and tolerability of teduglutide, a glucagon-like peptide-2 (GLP-2) analog, following multiple ascending subcutaneous administrations in healthy subjects. J Clin Pharmacol. 2008;48(11):1289–1299. doi: 10.1177/0091270008320605.
    1. Henriksen DB, Alexandersen P, Hartmann B, Adrian CL, Byrjalsen I, Bone HG, Holst JJ, Christiansen C. Four-month treatment with GLP-2 significantly increases hip BMD: a randomized, placebo-controlled, dose-ranging study in postmenopausal women with low BMD. Bone. 2009;45(5):833–842. doi: 10.1016/j.bone.2009.07.008.
    1. Kimura T, Higaki K. Gastrointestinal transit and drug absorption. Biol Pharm Bull. 2002;25(2):149–164. doi: 10.1248/bpb.25.149.
    1. Clements JA, Heading RC, Nimmo WS, Prescott LF. Kinetics of acetaminophen absorption and gastric emptying in man. Clin Pharmacol Ther. 1978;24(4):420–431.
    1. Lien HC, Chen GH, Chang CS, Kao CH, Wang SJ. The effect of coffee on gastric emptying. Nucl Med Commun. 1995;16(11):923–926. doi: 10.1097/00006231-199511000-00008.
    1. Miners JO, Attwood J, Birkett DJ. Influence of sex and oral contraceptive steroids on paracetamol metabolism. Br J Clin Pharmacol. 1983;16(5):503–509. doi: 10.1111/j.1365-2125.1983.tb02207.x.
    1. Nightingale JM, Kamm MA, van der Sijp JR, Morris GP, Walker ER, Mather SJ, Britton KE, Lennard-Jones JE. Disturbed gastric emptying in the short bowel syndrome. Evidence for a ‘colonic brake’. Gut. 1993;34(9):1171–1176. doi: 10.1136/gut.34.9.1171.
    1. Jeppesen PB, Hartmann B, Hansen BS, Thulesen J, Holst JJ, Mortensen PB. Impaired meal stimulated glucagon-like peptide 2 response in ileal resected short bowel patients with intestinal failure. Gut. 1999;45(4):559–563. doi: 10.1136/gut.45.4.559.
    1. Jian R, Vigneron N, Najean Y, Bernier JJ. Gastric emptying and intragastric distribution of lipids in man. A new scintigraphic method of study. Dig Dis Sci. 1982;27(8):705–711. doi: 10.1007/BF01393765.
    1. Cortot A, Phillips SF, Malagelada JR. Gastric emptying of lipids after ingestion of a solid-liquid meal in humans. Gastroenterology. 1981;80(5 pt 1):922–927.
    1. Cortot A, Phillips SF, Malagelada JR. Gastric emptying of lipids after ingestion of an homogenized meal. Gastroenterology. 1979;76(5 Pt 1):939–944.
    1. Nauck MA, Kemmeries G, Holst JJ, Meier JJ. Rapid tachyphylaxis of the glucagon-like peptide 1-induced deceleration of gastric emptying in humans. Diabetes. 2011;60(5):1561–1565. doi: 10.2337/db10-0474.
    1. O’Keefe SJ, Jeppesen PB, Gilroy R, Pertkiewicz M, Allard JP, Messing B. Safety and efficacy of teduglutide after 52 weeks of treatment in patients with short bowel syndrome-intestinal failure. Clin Gastroenterol Hepatol. 2013;11(7):815–823. doi: 10.1016/j.cgh.2012.12.029.
    1. Kolterman OG, Buse JB, Fineman MS, Gaines E, Heintz S, Bicsak TA, Taylor K, Kim D, Aisporna M, Wang Y. et al.Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab. 2003;88(7):3082–3089. doi: 10.1210/jc.2002-021545.
    1. Cervera A, Wajcberg E, Sriwijitkamol A, Fernandez M, Zuo P, Triplitt C, Musi N, DeFronzo RA, Cersosimo E. Mechanism of action of exenatide to reduce postprandial hyperglycemia in type 2 diabetes. Am J Physiol Endocrinol Metab. 2008;294(5):E846–852. doi: 10.1152/ajpendo.00030.2008.
    1. Dupre J, Behme MT, McDonald TJ. Exendin-4 normalized postcibal glycemic excursions in type 1 diabetes. J Clin Endocrinol Metab. 2004;89(7):3469–3473. doi: 10.1210/jc.2003-032001.
    1. Edwards CM, Stanley SA, Davis R, Brynes AE, Frost GS, Seal LJ, Ghatei MA, Bloom SR. Exendin-4 reduces fasting and postprandial glucose and decreases energy intake in healthy volunteers. Am J Physiol Endocrinol Metab. 2001;281(1):E155–161.
    1. Kolterman OG, Kim DD, Shen L, Ruggles JA, Nielsen LL, Fineman MS, Baron AD. Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus. Am J Health Syst Pharm. 2005;62(2):173–181.
    1. DeFronzo RA, Okerson T, Viswanathan P, Guan X, Holcombe JH, MacConell L. Effects of exenatide versus sitagliptin on postprandial glucose, insulin and glucagon secretion, gastric emptying, and caloric intake: a randomized, cross-over study. Curr Med Res Opin. 2008;24(10):2943–2952. doi: 10.1185/03007990802418851.

Source: PubMed

3
Abonner