Enhanced immune activation within the tumor microenvironment and circulation of female high-risk melanoma patients and improved survival with adjuvant CTLA4 blockade compared to males

Mariam Saad, Sandra J Lee, Aik Choon Tan, Issam M El Naqa, F Stephen Hodi, Lisa H Butterfield, William A LaFramboise, Walter Storkus, Arivarasan D Karunamurthy, Jose Conejo-Garcia, Patrick Hwu, Howard Streicher, Vernon K Sondak, John M Kirkwood, Ahmad A Tarhini, Mariam Saad, Sandra J Lee, Aik Choon Tan, Issam M El Naqa, F Stephen Hodi, Lisa H Butterfield, William A LaFramboise, Walter Storkus, Arivarasan D Karunamurthy, Jose Conejo-Garcia, Patrick Hwu, Howard Streicher, Vernon K Sondak, John M Kirkwood, Ahmad A Tarhini

Abstract

Background: We hypothesized that a gender difference in clinical response may exist to adjuvant CTLA4 blockade with ipilimumab versus high-dose IFNα (HDI). We investigated differences in candidate immune biomarkers in the circulation and tumor microenvironment (TME).

Patients and methods: This gender-based analysis was nested within the E1609 trial that tested adjuvant therapy with ipilimumab 3 mg/kg (ipi3) and 10 mg/kg (ipi10) versus HDI in high risk resected melanoma. We investigated gender differences in treatment efficacy with ipi3 and ipi10 versus HDI while adjusting for age, stage, ECOG performance (PS), ulceration, primary tumor status and lymph node number. Forest plots were created to compare overall survival (OS) and relapse free survival (RFS) between ipi and HDI. Gene expression profiling (GEP) was performed on tumors of 718 (454 male, 264 female) patients. Similarly, serum and peripheral blood mononuclear cells (PBMC) samples were tested for soluble and cellular biomarkers (N = 321 patients; 109 female and 212 male).

Results: The subgroups of female, stage IIIC, PS = 1, ulcerated primary, in-transit metastasis demonstrated significant improvement in RFS and/or OS with ipi3 versus HDI. Female gender was significant for both OS and RFS and was further explored. In the RFS comparison, a multivariate Cox regression model including significant variables indicated a significant interaction between gender and treatment (P = 0.024). In peripheral blood, percentages of CD3+ T cells (P = 0.024) and CD3+ CD4+ helper T cells (P = 0.0001) were higher in females compared to males. Trends toward higher circulating levels of IL1β (P = 0.07) and IL6 (P = 0.06) were also found in females. Males had higher percentages of monocytes (P = 0.03) with trends toward higher percentages of regulatory T cells (T-reg). Tumor GEP analysis supported enhanced infiltration with immune cells including gammadelta T cells (P = 0.005), NK cells (P = 0.01), dendritic cells (P = 0.01), CD4+ T cells (P = 0.03), CD8+ T cells (P = 0.03) and T-reg (P = 0.008) in the tumors of females compared to males and a higher T-effector and IFNγ gene signature score (P = 0.0244).

Conclusion: Female gender was associated with adjuvant CTLA4 blockade clinical benefits and female patients were more likely to have evidence of type1 immune activation within the TME and the circulation. Trial registration ClinicalTrials.gov NCT01274338. Registered 11 January 2011, https://www.

Clinicaltrials: gov/ct2/show/NCT01274338.

Keywords: Adjuvant; Female; Interferon; Ipilimumab; Male; Melanoma.

Conflict of interest statement

MS has nothing to disclose. AAT reports grants from National Cancer Institute, National Institute of Health, ECOG-ACRIN, grants from Bristol Myers Squibb, during the conduct of the study; grants from Bristol Myers Squibb, personal fees from Bristol Myers Squibb, grants from Merck, personal fees from Merck, personal fees from Novartis, personal fees from Genentech-Roche, grants from Genentech-Roche, personal fees from Array Biopharma, grants from Incyte, personal fees from Incyte, personal fees from NEWLINK Genetics, personal fees from HUYA, personal fees from BioNTech, grants from Prometheus, personal fees from Prometheus, personal fees from Immunocore, grants from Greenpeptide, grants from Amgen, grants from Clinigen, personal fees from Clinigen, personal fees from Partners Therapeutics, personal fees and grants from Regeneron, personal fees and grants from Sanofi-Genzyme outside the submitted work. SJL has nothing to disclose. ACT reports has nothing to disclose. IEN is a deputy editor for Medical Physics and reports relationship with Scientific Advisory Endectra, LLC. FSH reports clinical trial support from Eastern Cooperative oncology Group, during the conduct of the study; grants, personal fees and other from Bristol Myers Squibb, personal fees from Merck, personal fees from EMD Serono, grants and personal fees from Novartis, personal fees from Takeda, personal fees from Surface, personal fees from Genentech/Roche, personal fees from Compass Therapeutics, personal fees from Apricity, personal fees from Bayer, personal fees from Aduro, personal fees from Partners Therapeutics, personal fees from Sanofi, personal fees from Pfizer, personal fees from Pionyr, from 7 Hills Pharma, personal fees from Verastem, other from Torque, personal fees from Rheos, outside the submitted work; in addition, Dr. Hodi has a patent Methods for Treating MICA-Related Disorders (#20100111973) with royalties paid, a patent Tumor antigens and uses thereof (#7250291) issued, a patent Angiopoiten-2 Biomarkers Predictive of Anti-immune checkpoint response (#20170248603) pending, a patent Compositions and Methods for Identification, Assessment, Prevention, and Treatment of Melanoma using PD-L1 Isoforms (#20160340407) pending, a patent Therapeutic peptides (#20160046716) pending, a patent Therapeutic Peptides (#20140004112) pending, a patent Therapeutic Peptides (#20170022275) pending, a patent Therapeutic Peptides (#20170008962) pending, a patent THERAPEUTIC PEPTIDES Therapeutic Peptides Patent number: 9402905 issued, and a patent METHODS OF USING PEMBROLIZUMAB AND TREBANANIB pending. LHB declares the following unrelated advisory activities: StemImmune/Calidi Scientific and Medical Advisory Board, April 6, 2017-present; Western Oncolytics, Scientific Advisory Board, 2018-present; Torque Therapeutics, Scientific Advisory Board, 2018–2020; Khloris, Scientific Advisory Board, 2019-present; Pyxis, Scientific Advisory Board, 2019-present; Cytomix, Scientific Advisory Board, 2019-present; Vir, Scientific Advisory Board meeting, Feb. 2020; DCprime, Scientific Advisory Board meeting, Nov. 2020; RAPT, Scientific Advisory Board, 2020-present; Takeda, Scientific Advisor, 2020-present; EnaraBio scientific advisor, Feb. 2021. WAL has nothing to disclose. WS has nothing to disclose. ADK has nothing to disclose. JRCG has stock options with Compass Therapeutics, Anixa Biosciences and Alloy Therapeutics, receives honorarium from Anixa Biosciences, Alloy Therapeutics and Leidos, and has sponsored research with Anixa Biosciences. PH reports consulting fees consulting fees from Dragonfly and Immatics. HS has nothing to disclose. VKS reports personal fees from Merck, Bristol-Myers Squibb, Novartis, Array, Polynoma, Pfizer, and Regeneron, outside the submitted work. JMK reports grants and personal fees from Amgen, Bristol Myers Squibb, Castle Biosciences, Checkmate Pharmaceuticals, Immvira Pharma Co., Immunocore, Iovance Biotherapeutics, Lion Biotechnologies, Merck, Novartis Pharmaceuticals, Schering-Plough, personal fees Ankyra Therapeutics, Axio Research / Instil Bio, Becker Pharmaceutical Consulting, DermTech, Elsevier, Fenix Group International, Harbour BioMed, Intellisphere, LLC / Cancer Network, IQVIA, Istari Oncology, Millennium Pharmaceuticals / Takeda Pharmaceutical, Natera, OncoCyte, OncoSec, Pfizer, Replimune, Scopus BioPharma, SR One Captital Management, outside the submitted work.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Forest plots comparing relapse free survival (RFS) and overall survival (OS) for ipilimumab 3 mg/kg versus high dose interferon-alfa
Fig. 2
Fig. 2
Multicolor flow cytometry of peripheral blood mononuclear cells (PBMCs). The percentages of CD3+ T cells (P = 0.04) and CD3+ CD4+ helper T cells (P = 0.001) were significantly higher in female patients compared to males
Fig. 3
Fig. 3
Multicolor flow cytometry of peripheral blood mononuclear cells (PBMCs). Significantly higher percentages of monocytes (P = 0.03) and trends toward higher percentages of CD3+/CD4+/CD25hi+/Foxp3+ (P = 0.1) and CD3+/CD4+/CD25+/CD127low+ (P = 0.1) T-reg in male patients compared to females
Fig. 4
Fig. 4
Gene expression changes in female versus male patients. T-effector and IFNγ gene signature was higher in female tumors as compared to male tumors (P = 0.0244) There was a trend towards a higher score for the IFNγ 6-gene signature in favor of female (P = 0.07). On the otherhand, endothelial cells were estimated to be enriched in the tumors of male patients as estimated by TIMEx (P = 0.0429)

References

    1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.
    1. Tarhini AA. The current state of adjuvant therapy of melanoma. Lancet Oncol. 2020;21(11):1394–1395. doi: 10.1016/S1470-2045(20)30544-1.
    1. Eggermont AM, Chiarion-Sileni V, Grob JJ, et al. Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N Engl J Med. 2016;375(19):1845–1855. doi: 10.1056/NEJMoa1611299.
    1. Tarhini AA, Lee SJ, Hodi FS, et al. Phase III study of adjuvant ipilimumab (3 or 10 mg/kg) versus high-dose interferon Alfa-2b for resected high-risk melanoma: North American Intergroup E1609. J Clin Oncol. 2020;38(6):567–575. doi: 10.1200/JCO.19.01381.
    1. Klein SL, Morgan R. The impact of sex and gender on immunotherapy outcomes. Biol Sex Differ. 2020;11(1):24. doi: 10.1186/s13293-020-00301-y.
    1. Hieken TJ, Glasgow AE, Enninga EAL, et al. Sex-based differences in melanoma survival in a contemporary patient cohort. J Womens Health. 2020;29(9):1160–1167. doi: 10.1089/jwh.2019.7851.
    1. Joosse A, Collette S, Suciu S, et al. Sex is an independent prognostic indicator for survival and relapse/progression-free survival in metastasized stage III to IV melanoma: a pooled analysis of five European organisation for research and treatment of cancer randomized controlled trials. J Clin Oncol. 2013;31(18):2337–2346. doi: 10.1200/JCO.2012.44.5031.
    1. Bellenghi M, Puglisi R, Pontecorvi G, De Feo A, Care A, Mattia G. Sex and gender disparities in melanoma. Cancers. 2020;12(7):1819. doi: 10.3390/cancers12071819.
    1. Conforti F, Pala L, Bagnardi V, et al. Cancer immunotherapy efficacy and patients' sex: a systematic review and meta-analysis. Lancet Oncol. 2018;19(6):737–746. doi: 10.1016/S1470-2045(18)30261-4.
    1. Yang F, Markovic SN, Molina JR, et al. Association of sex, age, and Eastern Cooperative Oncology Group performance status with survival benefit of cancer immunotherapy in randomized clinical trials: a systematic review and meta-analysis. JAMA Netw Open. 2020;3(8):e2012534. doi: 10.1001/jamanetworkopen.2020.12534.
    1. Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–264. doi: 10.1093/biostatistics/4.2.249.
    1. Tarhini AA, Lee SJ, Tan AC, et al. Improved prognosis and evidence of enhanced immunogenicity in tumor and circulation of high-risk melanoma patients with unknown primary. J Immunother Cancer. 2022;10(1):e004310. doi: 10.1136/jitc-2021-004310.
    1. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–15550. doi: 10.1073/pnas.0506580102.
    1. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27(12):1739–1740. doi: 10.1093/bioinformatics/btr260.
    1. Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–457. doi: 10.1038/nmeth.3337.
    1. Seiler M, Peng S, Agrawal AA, et al. Somatic mutational landscape of splicing factor genes and their functional consequences across 33 cancer types. Cell Rep. 2018;23(1):282–296. doi: 10.1016/j.celrep.2018.01.088.
    1. Xie M, Lee K, Lockhart JH, et al. TIMEx: tumor-immune microenvironment deconvolution web-portal for bulk transcriptomics using pan-cancer scRNA-seq signatures. Bioinformatics. 2021 doi: 10.1093/bioinformatics/btab244.
    1. Ayers M, Lunceford J, Nebozhyn M, et al. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127(8):2930–2940. doi: 10.1172/JCI91190.
    1. Fehrenbacher L, Spira A, Ballinger M, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387(10030):1837–1846. doi: 10.1016/S0140-6736(16)00587-0.
    1. Liu D, Lin JR, Robitschek EJ, et al. Evolution of delayed resistance to immunotherapy in a melanoma responder. Nat Med. 2021;27(6):985–992. doi: 10.1038/s41591-021-01331-8.
    1. Butterfield LH, Potter DM, Kirkwood JM. Multiplex serum biomarker assessments: technical and biostatistical issues. J Transl Med. 2011;9:173. doi: 10.1186/1479-5876-9-173.
    1. Tarhini AA, Edington H, Butterfield LH, et al. Immune monitoring of the circulation and the tumor microenvironment in patients with regionally advanced melanoma receiving neoadjuvant ipilimumab. PLoS ONE. 2014;9(2):e87705. doi: 10.1371/journal.pone.0087705.
    1. Joosse A, de Vries E, Eckel R, et al. Gender differences in melanoma survival: female patients have a decreased risk of metastasis. J Invest Dermatol. 2011;131(3):719–726. doi: 10.1038/jid.2010.354.
    1. Wikby A, Mansson IA, Johansson B, Strindhall J, Nilsson SE. The immune risk profile is associated with age and gender: findings from three Swedish population studies of individuals 20–100 years of age. Biogerontology. 2008;9(5):299–308. doi: 10.1007/s10522-008-9138-6.
    1. Afshan G, Afzal N, Qureshi S. CD4+CD25(hi) regulatory T cells in healthy males and females mediate gender difference in the prevalence of autoimmune diseases. Clin Lab. 2012;58(5–6):567–571.
    1. Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med. 2009;206(8):1717–1725. doi: 10.1084/jem.20082492.
    1. Falahat R, Berglund A, Putney RM, et al. Epigenetic reprogramming of tumor cell-intrinsic STING function sculpts antigenicity and T cell recognition of melanoma. Proc Natl Acad Sci USA. 2021;118(15):e2013598118. doi: 10.1073/pnas.2013598118.
    1. Tarhini A, Kudchadkar RR. Predictive and on-treatment monitoring biomarkers in advanced melanoma: moving toward personalized medicine. Cancer Treat Rev. 2018;71:8–18. doi: 10.1016/j.ctrv.2018.09.005.
    1. Kashani-Sabet M, Sagebiel RW, Ferreira CM, Nosrati M, Miller JR., 3rd Vascular involvement in the prognosis of primary cutaneous melanoma. Arch Dermatol. 2001;137(9):1169–1173. doi: 10.1001/archderm.137.9.1169.
    1. Tarhini AA, Frankel P, Margolin KA, et al. Aflibercept (VEGF Trap) in inoperable stage III or stage iv melanoma of cutaneous or uveal origin. Clin Cancer Res. 2011;17(20):6574–6581. doi: 10.1158/1078-0432.CCR-11-1463.
    1. Tarhini AA, Frankel P, Ruel C, et al. NCI 8628: a randomized phase 2 study of ziv-aflibercept and high-dose interleukin 2 or high-dose interleukin 2 alone for inoperable stage III or IV melanoma. Cancer. 2018;124(22):4332–4341. doi: 10.1002/cncr.31734.

Source: PubMed

3
Abonner