Bright light therapy versus physical exercise to prevent co-morbid depression and obesity in adolescents and young adults with attention-deficit / hyperactivity disorder: study protocol for a randomized controlled trial

Jutta S Mayer, Katharina Hees, Juliane Medda, Oliver Grimm, Philip Asherson, Mariano Bellina, Michael Colla, Pol Ibáñez, Elena Koch, Antonio Martinez-Nicolas, Adrià Muntaner-Mas, Anna Rommel, Nanda Rommelse, Saskia de Ruiter, Ulrich W Ebner-Priemer, Meinhard Kieser, Francisco B Ortega, Johannes Thome, Jan K Buitelaar, Jonna Kuntsi, J Antoni Ramos-Quiroga, Andreas Reif, Christine M Freitag, Jutta S Mayer, Katharina Hees, Juliane Medda, Oliver Grimm, Philip Asherson, Mariano Bellina, Michael Colla, Pol Ibáñez, Elena Koch, Antonio Martinez-Nicolas, Adrià Muntaner-Mas, Anna Rommel, Nanda Rommelse, Saskia de Ruiter, Ulrich W Ebner-Priemer, Meinhard Kieser, Francisco B Ortega, Johannes Thome, Jan K Buitelaar, Jonna Kuntsi, J Antoni Ramos-Quiroga, Andreas Reif, Christine M Freitag

Abstract

Background: The risk for major depression and obesity is increased in adolescents and adults with attention-deficit / hyperactivity disorder (ADHD) and adolescent ADHD predicts adult depression and obesity. Non-pharmacological interventions to treat and prevent these co-morbidities are urgently needed. Bright light therapy (BLT) improves day-night rhythm and is an emerging therapy for major depression. Exercise intervention (EI) reduces obesity and improves depressive symptoms. To date, no randomized controlled trial (RCT) has been performed to establish feasibility and efficacy of these interventions targeting the prevention of co-morbid depression and obesity in ADHD. We hypothesize that the two manualized interventions in combination with mobile health-based monitoring and reinforcement will result in less depressive symptoms and obesity compared to treatment as usual in adolescents and young adults with ADHD.

Methods: This trial is a prospective, pilot phase-IIa, parallel-group RCT with three arms (two add-on treatment groups [BLT, EI] and one treatment as usual [TAU] control group). The primary outcome variable is change in the Inventory of Depressive Symptomatology total score (observer-blinded assessment) between baseline and ten weeks of intervention. This variable is analyzed with a mixed model for repeated measures approach investigating the treatment effect with respect to all three groups. A total of 330 participants with ADHD, aged 14 - < 30 years, will be screened at the four study centers. To establish effect sizes, the sample size was planned at the liberal significance level of α = 0.10 (two-sided) and the power of 1-β = 80% in order to find medium effects. Secondary outcomes measures including change in obesity, ADHD symptoms, general psychopathology, health-related quality of life, neurocognitive function, chronotype, and physical fitness are explored after the end of the intervention and at the 12-week follow-up.

Discussion: This is the first pilot RCT on the use of BLT and EI in combination with mobile health-based monitoring and reinforcement targeting the prevention of co-morbid depression and obesity in adolescents and young adults with ADHD. If at least medium effects can be established with regard to the prevention of depressive symptoms and obesity, a larger scale confirmatory phase-III trial may be warranted.

Trial registration: German Clinical Trials Register, DRKS00011666. Registered on 9 February 2017. ClinicalTrials.gov, NCT03371810. Registered on 13 December 2017.

Keywords: Attention-deficit / hyperactivity disorder; Bright light therapy; Co-morbidity; Depression; Exercise; Obesity.

Conflict of interest statement

Authors’ information

Not applicable.

Ethics approval and consent to participate

The study protocol was first ethically reviewed and approved by the institutional review board of the Medical Faculty, Goethe University, Frankfurt am Main, German (No. 353/16, 13 January 2017). Subsequent approval of this vote was done by the ethical committee of Vall d’Hebron Research Institute, Barcelona, Spain (No. PR(AG)105/2017, 19 April 2017), King’s College London, UK (No. 17/LO/0958, 11 July 2017), and Radboud University Medical Centre, Nijmegen, The Netherlands (No. 2017-3238, 05 October 2017). The Informed Consent Form will be provided by the investigator before the participants’ inclusion in the study.

Consent for publication

Not applicable.

Competing interests

AR has received grant support and speaker’s honoraria from Medice and Servier.

CMF receives royalties for books on ADHD and ASD. She has served as consultant for Desitin and Roche with regard to ASD.

JARQ was on the speakers’ bureau and/or acted as consultant for Eli-Lilly, Janssen-Cilag, Novartis, Shire, Lundbeck, Almirall, B-Gaze, and Rubió in the last three years. He also received travel awards (air tickets and hotel) for taking part in psychiatric meetings from Janssen-Cilag, Rubió, Shire, and Eli- Lilly. The ADHD Program chaired by him received unrestricted educational and research support from the following pharmaceutical companies in the last three years: Eli-Lilly, Lundbeck, Janssen- Cilag, Actelion, Shire, and Rubió.

JKB has been in the past three years a consultant to / member of advisory board of / and/or speaker for Janssen Cilag BV, Eli Lilly, Lundbeck, Shire, Roche, Medice, Novartis, and Servier. He has received research support from Roche and Vifor. He is not an employee of any of these companies and is not a stock shareholder of any of these companies. He has no other financial or material support, including expert testimony, patents, royalties.

MB received travel awards (air tickets and hotel) for taking part in psychiatric meetings from Janssen-Cilag and Shire in the last three years.

PA has received funding for research by Vifor Pharma and has given sponsored talks and been an advisor for Shire, Janssen–Cilag, Eli-Lilly, Flynn Pharma, and Pfizer, regarding the diagnosis and treatment of ADHD. All funds are received by King’s College London and used for studies of ADHD.

The remaining authors do not report any conflicts of interest.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
M-Health system consisting of the smartphone and the sensor (adapted with permission of movisens). Example from the EI intervention. The “home screen” of the movisensXS app shows four different buttons: (1) Goal of the week; (2) Learn about the exercises; (3) Start exercise; (4) Feedback. If participants press button three (Start exercise), the exercise videos are played
Fig. 2
Fig. 2
Trial time flow. T, time-point; I, intervention; EI, exercise intervention; BLT, bright light therapy; TAU, treatment as usual
Fig. 3
Fig. 3
Schedule of enrolment, interventions, and assessments at the different time-points (T1–T5)

References

    1. Wilens TE, Faraone SV, Biederman J. Attention-deficit/hyperactivity disorder in adults. JAMA. 2004;292:619–623. doi: 10.1001/jama.292.5.619.
    1. Simon V, Czobor P, Balint S, Meszaros A, Bitter I. Prevalence and correlates of adult attention-deficit hyperactivity disorder: meta-analysis. Br J Psychiatry. 2009;194:204–211. doi: 10.1192/bjp.bp.107.048827.
    1. Polanczyk GV, Willcutt EG, Salum GA, Kieling C, Rohde LA. ADHD prevalence estimates across three decades: an updated systematic review and meta-regression analysis. Int J Epidemiol. 2014;43:434–442. doi: 10.1093/ije/dyt261.
    1. Kooij JJS, Huss M, Asherson P, Akehurst R, Beusterien K, French A, et al. Distinguishing comorbidity and successful management of adult ADHD. J Atten Disord. 2012;16:3S–19S. doi: 10.1177/1087054711435361.
    1. Jacob CP, Romanos J, Dempfle A, Heine M, Windemuth-Kieselbach C, Kruse A, et al. Co-morbidity of adult attention-deficit/hyperactivity disorder with focus on personality traits and related disorders in a tertiary referral center. Eur Arch Psychiatry Clin Neurosci. 2007;257:309–317. doi: 10.1007/s00406-007-0722-6.
    1. Meinzer MC, Lewinsohn PM, Pettit JW, Seeley JR, Gau JM, Chronis-Tuscano A, et al. Attention-deficit/hyperactivity disorder in adolescence predicts onset of major depressive disorder through early adulthood. Depress Anxiety. 2013;30:546–553. doi: 10.1002/da.22082.
    1. Yoshimasu K, Barbaresi WJ, Colligan RC, Voigt RG, Killian JM, Weaver AL, et al. Adults with persistent ADHD: gender and psychiatric comorbidities-a population-based longitudinal study. J Atten Disord. 2016; 10.1177/1087054716676342.
    1. Cortese S, Moreira-Maia CR, St Fleur D, Morcillo-Penalver C, Rohde LA, Faraone SV. Association between ADHD and obesity: a systematic review and meta-analysis. Am J Psychiatry. 2016;173:34–43. doi: 10.1176/appi.ajp.2015.15020266.
    1. Nigg JT, Johnstone JM, Musser ED, Long HG, Willoughby MT, Shannon J. Attention-deficit/hyperactivity disorder (ADHD) and being overweight/obesity: New data and meta-analysis. Clin Psychol Rev. 2016;43:67–79. doi: 10.1016/j.cpr.2015.11.005.
    1. Cortese S, Tessari L. Attention-deficit/hyperactivity disorder (ADHD) and obesity: update 2016. Curr Psychiatry Rep. 2017;19:4. doi: 10.1007/s11920-017-0754-1.
    1. Nigg JT. Attention-deficit/hyperactivity disorder and adverse health outcomes. Clin Psychol Rev. 2013;33:215–228. doi: 10.1016/j.cpr.2012.11.005.
    1. Dalsgaard S, Østergaard SD, Leckman JF, Mortensen PB, Pedersen MG. Mortality in children, adolescents, and adults with attention deficit hyperactivity disorder: A nationwide cohort study. Lancet. 2015;385:2190–2196. doi: 10.1016/S0140-6736(14)61684-6.
    1. Chronis-Tuscano A, Molina BSG, Pelham WE, Applegate B, Dahlke A, Overmyer M, et al. Very early predictors of adolescent depression and suicide attempts in children with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2010;67:1044–1051. doi: 10.1001/archgenpsychiatry.2010.127.
    1. Faraone SV, Biederman J, Spencer TJ, Aleardi M. Comparing the efficacy of medications for ADHD using meta-analysis. Med Gen Med. 2006;8:4.
    1. Hutchison SL, Ghuman JK, Ghuman HS, Karpov I, Schuster JM. Efficacy of atomoxetine in the treatment of attention-deficit hyperactivity disorder in patients with common comorbidities in children, adolescents and adults: a review. Ther Adv Psychopharmacol. 2016;6:317–334. doi: 10.1177/2045125316647686.
    1. Bolaños CA, Barrot M, Berton O, Wallace-Black D, Nestler EJ. Methylphenidate treatment during pre- and periadolescence alters behavioral responses to emotional stimuli at adulthood. Biol Psychiatry. 2003;54:1317–1329. doi: 10.1016/S0006-3223(03)00570-5.
    1. Carlezon WA, Mague SD, Andersen SL. Enduring behavioral effects of early exposure to methylphenidate in rats. Biol Psychiatry. 2003;54:1330–1337. doi: 10.1016/j.biopsych.2003.08.020.
    1. Biederman J, Monuteaux MC, Spencer T, Wilens TE, Faraone SV. Do stimulants protect against psychiatric disorders in youth with ADHD? A 10-year follow-up study. Pediatrics. 2009;124:71–78. doi: 10.1542/peds.2008-3347.
    1. Lee M-J, Yang K-C, Shyu Y-C, Yuan S-S, Yang C-J, Lee S-Y, et al. Attention-deficit hyperactivity disorder, its treatment with medication and the probability of developing a depressive disorder: A nationwide population-based study in Taiwan. J Affect Disord. 2016;189:110–117. doi: 10.1016/j.jad.2015.09.015.
    1. Staikova E, Marks DJ, Miller CJ, Newcorn JH, Halperin JM. Childhood stimulant treatment and teen depression: is there a relationship? J Child Adolesc Psychopharmacol. 2010;20:387–393. doi: 10.1089/cap.2009.0107.
    1. Daviss WB. A review of co-morbid depression in pediatric ADHD: etiology, phenomenology, and treatment. J Child Adolesc Psychopharmacol. 2008;18:565–571. doi: 10.1089/cap.2008.032.
    1. Chang Z, D’Onofrio BM, Quinn PD, Lichtenstein P, Larsson H. Medication for attention-deficit/hyperactivity disorder and risk for depression: a nationwide longitudinal cohort study. Biol Psychiatry. 2016;80:916–922. doi: 10.1016/j.biopsych.2016.02.018.
    1. Chen Q, Sjolander A, Runeson B, D’Onofrio BM, Lichtenstein P, Larsson H. Drug treatment for attention-deficit/hyperactivity disorder and suicidal behaviour: register based study. BMJ. 2014;348:g3769. doi: 10.1136/bmj.g3769.
    1. Bangs ME, Emslie GJ, Spencer TJ, Ramsey JL, Carlson C, Bartky EJ, et al. Efficacy and safety of atomoxetine in adolescents with attention-deficit/hyperactivity disorder and major depression. J Child Adolesc Psychopharmacol. 2007;17:407–420. doi: 10.1089/cap.2007.0066.
    1. Punja S, Shamseer L, Hartling L, Urichuk L, Vandermeer B, Nikles J, et al. Amphetamines for attention deficit hyperactivity disorder (ADHD) in children and adolescents. Cochrane Database Syst Rev. 2016;2:CD009996.
    1. Faraone SV, Biederman J, Morley CP, Spencer TJ. Effect of stimulants on height and weight. J Am Acad Child Adolesc Psychiatry. 2008;47:994–1009.
    1. Frank E, Ozon C, Nair V, Othee K. Examining why patients with attention-deficit/hyperactivity disorder lack adherence to medication over the long term: a review and analysis. J Clin Psychiatry. 2015;76:e1459–e1468. doi: 10.4088/JCP.14r09478.
    1. McCarthy S, Asherson P, Coghill D, Hollis C, Murray M, Potts L, et al. Attention-deficit hyperactivity disorder: treatment discontinuation in adolescents and young adults. Br J Psychiatry. 2009;194:273–277. doi: 10.1192/bjp.bp.107.045245.
    1. Molina BSG, Hinshaw SP, Swanson JM, Arnold LE, Vitiello B, Jensen PS, et al. The MTA at 8 years: prospective follow-up of children treated for combined-type ADHD in a multisite study. J Am Acad Child Adolesc Psychiatry. 2009;48:484–500. doi: 10.1097/CHI.0b013e31819c23d0.
    1. Chan E, Fogler JM, Hammerness PG. Treatment of attention-deficit/hyperactivity disorder in adolescents: a systematic review. JAMA. 2016;315:1997–2008. doi: 10.1001/jama.2016.5453.
    1. Vidal R, Castells J, Richarte V, Palomar G, García M, Nicolau R, et al. Group therapy for adolescents with attention-deficit/hyperactivity disorder: a randomized controlled trial. J Am Acad Child Adolesc Psychiatry. 2015;54:275–282. doi: 10.1016/j.jaac.2014.12.016.
    1. Boyer BE, Geurts HM, Prins PJM, van der Oord S. Two novel CBTs for adolescents with ADHD: the value of planning skills. Eur Child Adolesc Psychiatry. 2015;24:1075–1090. doi: 10.1007/s00787-014-0661-5.
    1. Sprich SE, Safren SA, Finkelstein D, Remmert JE, Hammerness P. A randomized controlled trial of cognitive behavioral therapy for ADHD in medication-treated adolescents. J Child Psychol Psychiatry. 2016;57:1218–1226. doi: 10.1111/jcpp.12549.
    1. Young Z, Moghaddam N, Tickle A. The efficacy of cognitive behavioral therapy for adults with ADHD: a systematic review and meta-analysis of randomized controlled trials. J Atten Disord. 2016; 10.1177/1087054716664413.
    1. Jensen CM, Amdisen BL, Jorgensen KJ, Arnfred SMH. Cognitive behavioural therapy for ADHD in adults: systematic review and meta-analyses. Atten Defic Hyperact Disord. 2016;8:3–11. doi: 10.1007/s12402-016-0188-3.
    1. Antshel KM, Faraone SV, Gordon M. Cognitive behavioral treatment outcomes in adolescent ADHD. J Atten Disord. 2014;18:483–495. doi: 10.1177/1087054712443155.
    1. Del Campo N, Chamberlain SR, Sahakian BJ, Robbins TW. The roles of dopamine and noradrenaline in the pathophysiology and treatment of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2011;69:e145–e157. doi: 10.1016/j.biopsych.2011.02.036.
    1. Whitton AE, Treadway MT, Pizzagalli DA. Reward processing dysfunction in major depression, bipolar disorder and schizophrenia. Curr Opin Psychiatry. 2015;28:7–12. doi: 10.1097/YCO.0000000000000122.
    1. van de Giessen E, Celik F, Schweitzer DH, van den Brink W, Booij J. Dopamine D2/3 receptor availability and amphetamine-induced dopamine release in obesity. J Psychopharmacol. 2014;28:866–873. doi: 10.1177/0269881114531664.
    1. Josefsson T, Lindwall M, Archer T. Physical exercise intervention in depressive disorders: meta-analysis and systematic review. Scand J Med Sci Sports. 2014;24:259–272. doi: 10.1111/sms.12050.
    1. Cooney GM, Dwan K, Greig CA, Lawlor DA, Rimer J, Waugh FR, et al. Exercise for depression. Cochrane Database Syst Rev. 2013;9:CD004366.
    1. Carter T, Morres ID, Meade O, Callaghan P. The effect of exercise on depressive symptoms in adolescents: a systematic review and meta-analysis. J Am Acad Child Adolesc Psychiatry. 2016;55:580–590. doi: 10.1016/j.jaac.2016.04.016.
    1. Ortega FB, Ruiz JR, Labayen I, Lavie CJ, Blair SN. The Fat but Fit paradox: what we know and don’t know about it. Br J Sports Med. 2018;52:151–153. doi: 10.1136/bjsports-2016-097400.
    1. Ortega FB, Lavie CJ, Blair SN. Obesity and cardiovascular disease. Circ Res. 2016;118:1752–1770. doi: 10.1161/CIRCRESAHA.115.306883.
    1. Waters E, de Silva-Sanigorski A, Hall BJ, Brown T, Campbell KJ, Gao Y, et al. Interventions for preventing obesity in children. Cochrane Database Syst Rev. 2011;12:CD001871.
    1. Guerra PH, da Silveira JAC, Salvador EP. Physical activity and nutrition education at the school environment aimed at preventing childhood obesity: evidence from systematic reviews. J Pediatr. 2016;92:15–23. doi: 10.1016/j.jped.2015.06.005.
    1. Ruotsalainen H, Kyngas H, Tammelin T, Kaariainen M. Systematic review of physical activity and exercise interventions on body mass indices, subsequent physical activity and psychological symptoms in overweight and obese adolescents. J Adv Nurs. 2015;71:2461–2477. doi: 10.1111/jan.12696.
    1. Shaw K, Gennat H, O’Rourke P, Del Mar C. Exercise for overweight or obesity. Cochrane Database Syst Rev. 2006;4:CD003817.
    1. Cadenas-Sanchez C, Vanhelst J, Ruiz JR, Castillo-Gualda R, Libuda L, Labayen I, et al. Fitness and fatness in relation with attention capacity in European adolescents: The HELENA study. J Sci Med Sport. 2017;20:373–379. doi: 10.1016/j.jsams.2016.08.003.
    1. Halperin JM, Berwid OG, O’Neill S. Healthy body, healthy mind?: the effectiveness of physical activity to treat ADHD in children. Child Adolesc Psychiatr Clin N Am. 2014;23:899–936. doi: 10.1016/j.chc.2014.05.005.
    1. Rommel A-S, Halperin JM, Mill J, Asherson P, Kuntsi J. Protection from genetic diathesis in attention-deficit/hyperactivity disorder: possible complementary roles of exercise. J Am Acad Child Adolesc Psychiatry. 2013;52:900–910. doi: 10.1016/j.jaac.2013.05.018.
    1. Wigal SB, Nemet D, Swanson JM, Regino R, Trampush J, Ziegler MG, et al. Catecholamine response to exercise in children with attention deficit hyperactivity disorder. Pediatr Res. 2003;53:756–761. doi: 10.1203/01.PDR.0000061750.71168.23.
    1. Peyrin L, Pequignot JM, Lacour JR, Fourcade J. Relationships between catecholamine or 3-methoxy 4-hydroxy phenylglycol changes and the mental performance under submaximal exercise in man. Psychopharmacology. 1987;93:188–192. doi: 10.1007/BF00179932.
    1. Schoenfelder E, Moreno M, Wilner M, Whitlock KB, Mendoza JA. Piloting a mobile health intervention to increase physical activity for adolescents with ADHD. Prev Med Rep. 2017;6:210–213. doi: 10.1016/j.pmedr.2017.03.003.
    1. Kamp CF, Sperlich B, Holmberg H-C. Exercise reduces the symptoms of attention-deficit/hyperactivity disorder and improves social behaviour, motor skills, strength and neuropsychological parameters. Acta Paediatr. 2014;103:709–714.
    1. Sánchez-López M, Pardo-Guijarro MJ, Del Campo DG-D, Silva P, Martínez-Andrés M, Gulías-González R, et al. Physical activity intervention (Movi-Kids) on improving academic achievement and adiposity in preschoolers with or without attention deficit hyperactivity disorder: study protocol for a randomized controlled trial. Trials. 2015;16:456. doi: 10.1186/s13063-015-0992-7.
    1. Baird AL, Coogan AN, Siddiqui A, Donev RM, Thome J. Adult attention-deficit hyperactivity disorder is associated with alterations in circadian rhythms at the behavioural, endocrine and molecular levels. Mol Psychiatry. 2012;17:988–995. doi: 10.1038/mp.2011.149.
    1. Coogan AN, Baird AL, Popa-Wagner A, Thome J. Circadian rhythms and attention deficit hyperactivity disorder: The what, the when and the why. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;67:74–81. doi: 10.1016/j.pnpbp.2016.01.006.
    1. Wynchank DS, Bijlenga D, Lamers F, Bron TI, Winthorst WH, Vogel SW, et al. ADHD, circadian rhythms and seasonality. J Psychiatr Res. 2016;81:87–94. doi: 10.1016/j.jpsychires.2016.06.018.
    1. Vogel SWN, Bijlenga D, Tanke M, Bron TI, van der Heijden KB, Swaab H, et al. Circadian rhythm disruption as a link between Attention-Deficit/Hyperactivity Disorder and obesity? J Psychosom Res. 2015;79:443–450. doi: 10.1016/j.jpsychores.2015.10.002.
    1. McClung CA. Circadian genes, rhythms and the biology of mood disorders. Pharmacol Ther. 2007;114:222–232. doi: 10.1016/j.pharmthera.2007.02.003.
    1. Delezie J, Challet E. Interactions between metabolism and circadian clocks: reciprocal disturbances. Ann N Y Acad Sci. 2011;1243:30–46. doi: 10.1111/j.1749-6632.2011.06246.x.
    1. Verwey M, Dhir S, Amir S. Circadian influences on dopamine circuits of the brain: regulation of striatal rhythms of clock gene expression and implications for psychopathology and disease. F1000Res. 2016;5 10.12688/f1000research.9180.1.
    1. van der Heijden KB, Smits MG, van Someren EJW, Ridderinkhof KR, Gunning WB. Effect of melatonin on sleep, behavior, and cognition in ADHD and chronic sleep-onset insomnia. J Am Acad Child Adolesc Psychiatry. 2007;46:233–241. doi: 10.1097/01.chi.0000246055.76167.0d.
    1. van Veen MM, Kooij JJS, Boonstra AM, Gordijn MCM, van Someren EJW. Delayed circadian rhythm in adults with attention-deficit/hyperactivity disorder and chronic sleep-onset insomnia. Biol Psychiatry. 2010;67:1091–1096. doi: 10.1016/j.biopsych.2009.12.032.
    1. Tamarkin L, Reppert SM, Klein DC. Regulation of pineal melatonin in the Syrian hamster. Endocrinology. 1979;104:385–389. doi: 10.1210/endo-104-2-385.
    1. van Maanen A, Meijer AM, van der Heijden KB, Oort FJ. The effects of light therapy on sleep problems: A systematic review and meta-analysis. Sleep Med Rev. 2016;29:52–62. doi: 10.1016/j.smrv.2015.08.009.
    1. Golden RN, Gaynes BN, Ekstrom RD, Hamer RM, Jacobsen FM, Suppes T, et al. The efficacy of light therapy in the treatment of mood disorders: a review and meta-analysis of the evidence. Am J Psychiatry. 2005;162:656–662. doi: 10.1176/appi.ajp.162.4.656.
    1. Martensson B, Pettersson A, Berglund L, Ekselius L. Bright white light therapy in depression: A critical review of the evidence. J Affect Disord. 2015;182:1–7. doi: 10.1016/j.jad.2015.04.013.
    1. Swedo SE, Allen AJ, Glod CA, Clark CH, Teicher MH, Richter D, et al. A controlled trial of light therapy for the treatment of pediatric seasonal affective disorder. J Am Acad Child Adolesc Psychiatry. 1997;36:816–821. doi: 10.1097/00004583-199706000-00019.
    1. Gest S, Holtmann M, Bogen S, Schulz C, Pniewski B, Legenbauer T. Chronotherapeutic treatments for depression in youth. Eur Child Adolesc Psychiatry. 2016;25:151–161. doi: 10.1007/s00787-015-0720-6.
    1. Nussbaumer B, Kaminski-Hartenthaler A, Forneris CA, Morgan LC, Sonis JH, Gaynes BN, et al. Light therapy for preventing seasonal affective disorder. Cochrane Database Syst Rev. 2015;11:CD011269.
    1. Beauchamp MT, Lundgren JD. A systematic review of bright light therapy for eating disorders. Prim Care Companion CNS Disord. 2016;18(5).
    1. Fargason RE, Fobian AD, Hablitz LM, Paul JR, White BA, Cropsey KL, et al. Correcting delayed circadian phase with bright light therapy predicts improvement in ADHD symptoms: A pilot study. J Psychiatr Res. 2017;91:105–110. doi: 10.1016/j.jpsychires.2017.03.004.
    1. Rybak YE, McNeely HE, Mackenzie BE, Jain UR, Levitan RD. An open trial of light therapy in adult attention-deficit/hyperactivity disorder. J Clin Psychiatry. 2006;67:1527–1535. doi: 10.4088/JCP.v67n1006.
    1. Liu F, Kong X, Cao J, Chen S, Li C, Huang J, et al. Mobile phone intervention and weight loss among overweight and obese adults: a meta-analysis of randomized controlled trials. Am J Epidemiol. 2015;181:337–348. doi: 10.1093/aje/kwu260.
    1. Trull TJ, Ebner-Priemer U. Ambulatory assessment. Annu Rev Clin Psychol. 2013;9:151–176. doi: 10.1146/annurev-clinpsy-050212-185510.
    1. Chan A-W, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin JA, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586. doi: 10.1136/bmj.e7586.
    1. Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol. 1976;4:97–110.
    1. . Accessed 14 Oct 2014.
    1. Terman M, Terman JS. Light therapy for seasonal and nonseasonal depression: efficacy, protocol, safety, and side effects. CNS Spectr. 2005;10:647–663. doi: 10.1017/S1092852900019611.
    1. Rush AJ, Gullion CM, Basco MR, Jarrett RB, Trivedi MH. The Inventory of Depressive Symptomatology (IDS): psychometric properties. Psychol Med. 1996;26:477–486. doi: 10.1017/S0033291700035558.
    1. Drieling T, Scharer LO, Langosch JM. The Inventory of Depressive Symptomatology: German translation and psychometric validation. Int J Methods Psychiatr Res. 2007;16:230–236. doi: 10.1002/mpr.226.
    1. Helmreich I, Wagner S, Mergl R, Allgaier A-K, Hautzinger M, Henkel V, et al. The Inventory Of Depressive Symptomatology (IDS-C(28)) is more sensitive to changes in depressive symptomatology than the Hamilton Depression Rating Scale (HAMD(17)) in patients with mild major, minor or subsyndromal depression. Eur Arch Psychiatry Clin Neurosci. 2011;261:357–367. doi: 10.1007/s00406-010-0175-1.
    1. Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P, et al. Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry. 1997;36:980–988. doi: 10.1097/00004583-199707000-00021.
    1. Kooij JJS, Francken MH. Diagnostic Interview for ADHD in adults (DIVA). 2010. . Accessed 8 Aug 2017.
    1. Wittchen HU, Zaudig M, Fydrich T. SKID Strukturiertes Klinisches Interview für DSM-IV Achse I und II Handanweisung. Göttingen: Hogrefe; 1997.
    1. Kessler RC, Adler L, Ames M, Demler O, Faraone S, Hiripi E, et al. The World Health Organization Adult ADHD Self-Report Scale (ASRS): a short screening scale for use in the general population. Psychol Med. 2005;35:245–256. doi: 10.1017/S0033291704002892.
    1. Marchant BK, Reimherr FW, Robison D, Robison RJ, Wender PH. Psychometric properties of the Wender-Reimherr Adult Attention Deficit Disorder Scale. Psychol Assess. 2013;25:942–950. doi: 10.1037/a0032797.
    1. Bohn MJ, Babor TF, Kranzler HR. The Alcohol Use Disorders Identification Test (AUDIT): validation of a screening instrument for use in medical settings. J Stud Alcohol. 1995;56:423–432. doi: 10.15288/jsa.1995.56.423.
    1. . Accessed 16 Aug 2007.
    1. Thomas S, Reading J, Shephard RJ. Revision of the Physical Activity Readiness Questionnaire (PAR-Q) Can J Sport Sci. 1992;17:338–345.
    1. Wechsler D. Wechsler Adult Intelligence Scale. 4. San Antonio, TX: Psychological Corporation; 2008.
    1. Wechsler D. Wechsler intelligence scale for children – Fourth edition (WISC-IV): The Psychological Corporation. San Antonio, TX: The Psychological Corporation; 2003.
    1. Schmidt M. The Rey auditory verbal learning test. Los Angeles, CA: Western Psychological Services; 1996.
    1. . Accessed 7 Jun 2016.
    1. The Randomizer. . Accessed 8 Aug 2017.
    1. Mallinckrodt CH, Lane PW, Schnell D, Peng Y, Mancuso JP. Recommendations for the primary analysis of continuous endpoints in longitudinal clinical trials. Drug Inf J. 2008;42:303–319. doi: 10.1177/009286150804200402.
    1. Lane P. Handling drop-out in longitudinal clinical trials: a comparison of the LOCF and MMRM approaches. Pharm Stat. 2008;7:93–106. doi: 10.1002/pst.267.
    1. Siddiqui O, Hung HMJ, O’Neill R. MMRM vs. LOCF: a comprehensive comparison based on simulation study and 25 NDA datasets. J Biopharm Stat. 2009;19:227–246. doi: 10.1080/10543400802609797.
    1. Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol. 1986;51:1173–1182. doi: 10.1037/0022-3514.51.6.1173.
    1. CoCA consortium. . Accessed 14 Aug 2017.
    1. ICMJE. . Accessed 14 Aug 2017.

Source: PubMed

3
Abonner