Applying perceptual learning to achieve practical changes in vision

Jenni Deveau, Aaron R Seitz, Jenni Deveau, Aaron R Seitz

Abstract

Research of visual perceptual learning has illuminated the flexibility of processing in the visual system and provides insights into therapeutic approaches to remediating some components of low vision. A key observation from research of perceptual learning is that effects of training are often highly specific to the attributes of the trained stimuli. This observation has been a blessing to basic research, providing important constraints to models of learning, but is a curse to translational research, which has the goal of creating therapies that generalize widely across visual tasks and stimuli. Here we suggest that the curse of specificity can be overcome by adopting a different experimental framework than is standard in the field. Namely, translational studies should integrate many approaches together and sacrifice mechanistic understanding to gain clinical relevance. To validate this argument, we review research from our lab and others, and also present new data, that together shows how perceptual learning on basic stimuli can lead to improvements on standard vision tests as well as real world vision use such as improved reading and even improved sports performance. Furthermore, we show evidence that this integrative approach to perceptual learning can ameliorate effects of presbyopia and provides promise to improve visual function for individuals suffering from low vision.

Keywords: applied vision; perceptual learning; presbyopia; reading; visual therapy.

Figures

FIGURE 1
FIGURE 1
Data from Deveau et al. (2014a). Left, for acuity, Landolt C size thresholds were measured at different locations in the visual field (with an eye-tracker to enforce fixation). Middle, contrast sensitivity thresholds were measured by varying the contrast of an “O” presented at visual field locations. Right, an Optec Visual Analyzer (Stereo Optical Company, Chicago, IL, USA) measured foveal visual acuity and contrast sensitivity. Data from pre-training tests (black) is shown against data of post-training tests (gray). In the left two graphs, lower values represent better performance. Acuity values (left) are based on standard 20/20 scores in the fovea (peripheral scores values are poorer). Weber Contrast (middle). Contrast Sensitivity (right) shows contrast as a function of spatial frequency in central vision (higher values are better). Training-induced benefits are all significant at least to the p< 0.05 levels. Error bars represent SE of the mean.
FIGURE 2
FIGURE 2
(A) Mean difference of reading acuity, critical print size, and reading speed using MNREAD acuity charts in healthy young adults. Trained participants were tested binocularly before and after vision training. Untrained data reproduced from Subramanian and Pardhan (2006) where two different versions of the MNREAD acuity charts were used to measure learning effects. Error bars represent subject SE. (B) Mean difference in LogMAR acuity measurements taken in the right eye, left eye, and binocularly in presbyopic individuals. Participants were tested before and after vision training. Error bars represent within subject SE.

References

    1. Aberg K. C., Tartaglia E. M., Herzog M. H. (2009). Perceptual learning with Chevrons requires a minimal number of trials, transfers to untrained directions, but does not require sleep. Vision Res. 49 2087–2094. 10.1016/j.visres.2009.05.020
    1. Adini Y., Sagi D., Tsodyks M. (2002). Context-enabled learning in the human visual system. Nature 415 790–793. 10.1038/415790a
    1. Ahissar M., Hochstein S. (1997). Task difficulty and the specificity of perceptual learning. Nature 387 401–406. 10.1038/387401a0
    1. Baker C. I., Peli E., Knouf N., Kanwisher N. G. (2005). Reorganization of visual processing in macular degeneration. J. Neurosci. 25 614–618. 10.1523/JNEUROSCI.3476-04.2005
    1. Ball K., Sekuler R. (1981). Adaptive processing of visual motion. J. Exp. Psychol. Hum. Percept. Perform. 7 780–794. 10.1037/0096-1523.7.4.780
    1. Beste C., Wascher E., Gunturkun O., Dinse H. R. (2011). Improvement and impairment of visually guided behavior through LTP- and LTD-like exposure-based visual learning. Curr. Biol. 21 876–882. 10.1016/j.cub.2011.03.065
    1. Boot W. R., Blakely D. P., Simons D. J. (2011). Do action video games improve perception and cognition? Front. Psychol. 2:226. 10.3389/fpsyg.2011.00226
    1. Chung S. T. (2011). Improving reading speed for people with central vision loss through perceptual learning. Invest. Ophthalmol. Vis. Sci. 52 1164–1170. 10.1167/iovs.10-6034
    1. Chung S. T., Legge G. E., Cheung S. H. (2004). Letter-recognition and reading speed in peripheral vision benefit from perceptual learning. Vision Res. 44 695–709. 10.1016/j.visres.2003.09.028
    1. Crist R. E., Li W., Gilbert C. D. (2001). Learning to see: experience and attention in primary visual cortex. Nat. Neurosci. 4 519–525
    1. Das A., Tadin D., Huxlin K. R. (2014). Beyond blindsight: properties of visual relearning in cortically blind fields. J. Neurosci. 34 11652–11664. 10.1523/JNEUROSCI.1076-14.2014
    1. Deveau J., Lovcik G., Seitz A. R. (2014a). Broad-based visual benefits from training with an integrated perceptual-learning video game. Vision Res. 99 134–140. 10.1016/j.visres.2013.12.015
    1. Deveau J., Ozer D. J., Seitz A. R. (2014b). Improved vision and on field performance in baseball through perceptual learning. Curr. Biol. 24 R146–R147. 10.1016/j.cub.2014.01.004
    1. Dosher B. A., Lu Z. L. (1998). Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. Proc. Natl. Acad. Sci. U.S.A. 95 13988–13993. 10.1073/pnas.95.23.13988
    1. Fahle M. (2004). Perceptual learning: a case for early selection. J. Vis. 4 879–890. 10.1167/4.10.4
    1. Fahle M. (2005). Perceptual learning: specificity versus generalization. Curr. Opin. Neurobiol. 15 154–160. 10.1016/j.conb.2005.03.010
    1. Fahle M., Poggio T. (2002). Perceptual Learning. Cambridge, MA: MIT Press
    1. Fiorentini A., Berardi N. (1980). Perceptual learning specific for orientation and spatial frequency. Nature 287 43–44. 10.1038/287043a0
    1. Fulvio J. M., Green C. S., Schrater P. R. (2014). Task-specific response strategy selection on the basis of recent training experience. PLoS Comput. Biol. 10:e1003425. 10.1371/journal.pcbi.1003425
    1. Furmanski C. S., Schluppeck D., Engel S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. Curr. Biol. 14 573–578. 10.1016/j.cub.2004.03.032
    1. Green C. S., Bavelier D. (2003). Action video game modifies visual selective attention. Nature 423 534–537. 10.1038/nature01647
    1. Green C. S., Bavelier D. (2007). Action-video-game experience alters the spatial resolution of vision. Psychol. Sci. 18 88–94. 10.1111/j.1467-9280.2007.01853.x
    1. Holden B. A., Fricke T. R., Ho S. M., Wong R., Schlenther G., Cronje S., et al. (2008). Global vision impairment due to uncorrected presbyopia. Arch. Ophthalmol. 126 1731–1739. 10.1001/archopht.126.12.1731
    1. Huang C. B., Zhou Y., Lu Z. L. (2008). Broad bandwidth of perceptual learning in the visual system of adults with anisometropic amblyopia. Proc. Natl. Acad. Sci. U.S.A. 105 4068–4073. 10.1073/pnas.0800824105
    1. Hung S. C., Seitz A. R. (2014). Prolonged training at threshold promotes robust retinotopic specificity in perceptual learning. J. Neurosci. 34 8423–8431. 10.1523/JNEUROSCI.0745-14.2014
    1. Hussain Z., Webb B. S., Astle A. T., McGraw P. V. (2012). Perceptual learning reduces crowding in amblyopia and in the normal periphery. J. Neurosci. 32 474–480. 10.1523/JNEUROSCI.3845-11.2012
    1. Huxlin K. R., Martin T., Kelly K., Riley M., Friedman D. I., Burgin W. S., et al. (2009). Perceptual relearning of complex visual motion after V1 damage in humans. J. Neurosci. 29 3981–3991. 10.1523/JNEUROSCI.4882-08.2009
    1. Jeter P. E., Dosher B. A., Liu S. H., Lu Z. L. (2010). Specificity of perceptual learning increases with increased training. Vision Res. 50 1928–1940. 10.1016/j.visres.2010.06.016
    1. Jeter P. E., Dosher B. A., Petrov A., Lu Z. L. (2009). Task precision at transfer determines specificity of perceptual learning. J. Vis. 9 1.1–1.13. 10.1167/9.3.1
    1. Karni A., Sagi D. (1991). Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. Proc. Natl. Acad. Sci. U.S.A. 88 4966–4970. 10.1073/pnas.88.11.4966
    1. Levi D. M., Li R. W. (2009). Improving the performance of the amblyopic visual system. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364 399–407. 10.1098/rstb.2008.0203
    1. Li R., Polat U., Makous W., Bavelier D. (2009). Enhancing the contrast sensitivity function through action video game training. Nat. Neurosci. 12 549–551. 10.1038/nn.2296
    1. McDonnell P. J., Lee P., Spritzer K., Lindblad A. S., Hays R. D. (2003). Associations of presbyopia with vision-targeted health-related quality of life. Arch. Ophthalmol. 121 1577–1581. 10.1001/archopht.121.11.1577
    1. Mollon J. D., Danilova M. V. (1996). Three remarks on perceptual learning. Spat. Vis. 10 51–58. 10.1163/156856896X00051
    1. Ostrovsky Y., Andalman A., Sinha P. (2006). Vision following extended congenital blindness. Psychol. Sci. 17 1009–1014. 10.1111/j.1467-9280.2006.01827.x
    1. Papadopoulos P. A., Papadopoulos A. P. (2014). Current management of presbyopia. Middle East Afr. J. Ophthalmol. 21 10–17. 10.4103/0974-9233.124080
    1. Poggio T., Fahle M., Edelman S. (1992). Fast perceptual learning in visual hyperacuity. Science 256 1018–1021. 10.1126/science.1589770
    1. Polat U. (2009). Making perceptual learning practical to improve visual functions. Vision Res. 49 2566–2573. 10.1016/j.visres.2009.06.005
    1. Polat U., Schor C., Tong J. L., Zomet A., Lev M., Yehezkel O., et al. (2012). Training the brain to overcome the effect of aging on the human eye. Sci. Rep. 2 278. 10.1038/srep00278
    1. Sagi D. (2011). Perceptual learning in Vision Research. Vision Res. 51 1552–1566. 10.1016/j.visres.2010.10.019
    1. Sagi D., Tanne D. (1994). Perceptual learning: learning to see. Curr. Opin. Neurobiol. 4 195–199. 10.1016/0959-4388(94)90072-8
    1. Seitz A. R., Kim D., Watanabe T. (2009). Rewards evoke learning of unconsciously processed visual stimuli in adult humans. Neuron 61 700–707. 10.1016/j.neuron.2009.01.016
    1. Seitz A. R., Kim R., Shams L. (2006). Sound facilitates visual learning. Curr. Biol. 16 1422–1427. 10.1016/j.cub.2006.05.048
    1. Seitz A. R., Watanabe T. (2009). The phenomenon of task-irrelevant perceptual learning. Vision Res. 49 2604–2610. 10.1016/j.visres.2009.08.003
    1. Shams L., Seitz A. R. (2008). Benefits of multisensory learning. Trends Cogn. Sci. 12 411–417. 10.1016/j.tics.2008.07.006
    1. Subramanian A., Pardhan S. (2006). The repeatability of MNREAD acuity charts and variability at different test distances. Optom. Vis. Sci. 83 572–576. 10.1097/01.opx.0000232225.00311.53
    1. Vaina L. M., Gross C. G. (2004). Perceptual deficits in patients with impaired recognition of biological motion after temporal lobe lesions. Proc. Natl. Acad. Sci. U.S.A. 101 16947–16951. 10.1073/pnas.0407668101
    1. Vlahou E. L., Protopapas A., Seitz A. R. (2012). Implicit training of nonnative speech stimuli. J. Exp. Psychol. Gen. 141 363–381. 10.1037/a0025014
    1. von Helmholtz H. (1924). Helmholtz’s Treatise on Physiological Optics Vol. 1 3rd German Edn. Rochester, NY: Optical Society of America. 10.1037/13536-000
    1. Watanabe T., Nanez J. E., Sr., Koyama S., Mukai I., Liederman J., Sasaki Y. (2002). Greater plasticity in lower-level than higher-level visual motion processing in a passive perceptual learning task. Nat. Neurosci. 5 1003–1009. 10.1038/nn915
    1. Xiao L. Q., Zhang J. Y., Wang R., Klein S. A., Levi D. M., Yu C. (2008). Complete transfer of perceptual learning across retinal locations enabled by double training. Curr. Biol. 18 1922–1926. 10.1016/j.cub.2008.10.030
    1. Yu C., Zhang J. Y., Zhang G. L., Xiao L. Q., Klein S. A., Levi D. M. (2010). Rule-based learning explains visual perceptual learning and its specificity and transfer. J. Neurosci. 30 12323–12328. 10.1523/JNEUROSCI.0704-10.2010
    1. Zhang G. L., Cong L. J., Song Y., Yu C. (2013). ERP P1-N1 changes associated with Vernier perceptual learning and its location specificity and transfer. J. Vis. 13 19. 10.1167/13.4.19
    1. Zhou J., Zhang Y., Dai Y., Zhao H., Liu R., Hou F., et al. (2012). The eye limits the brain’s learning potential. Sci. Rep. 2 364. 10.1038/srep00364

Source: PubMed

3
Abonner