Robot-Assisted Therapy and Constraint-Induced Movement Therapy for Motor Recovery in Stroke: Results From a Randomized Clinical Trial

Thais Tavares Terranova, Marcel Simis, Artur César Aquino Santos, Fábio Marcon Alfieri, Marta Imamura, Felipe Fregni, Linamara Rizzo Battistella, Thais Tavares Terranova, Marcel Simis, Artur César Aquino Santos, Fábio Marcon Alfieri, Marta Imamura, Felipe Fregni, Linamara Rizzo Battistella

Abstract

Background: Stroke is one of the leading causes of adult disability, and up to 80% of stroke survivors undergo upper extremity motor dysfunction. Constraint-Induced Movement Therapy (CIMT) and Robot-Assisted Therapy (RT) are used for upper limb stroke rehabilitation. Although CIMT and RT are different techniques, both are beneficial; however, their results must be compared. The objective is to establish the difference between RT and CIMT after a rehabilitation program for chronic stroke patients. Method: This is a randomized clinical trial, registered at ClinicalTrials.gov (ID number NCT02700061), in which patients with stroke received sessions of RT or CIMT protocol, combined with a conventional rehabilitation program for 12 weeks. The primary outcome was measured by Wolf Motor Function Test (WMFT) and Fugl-Meyer Assessment-Upper Limb (FMA-UL). Activities of daily living were also assessed. Results: Fifty one patients with mild to moderate upper limb impairment were enrolled in this trial, 25 women and 26 men, mean age of 60,02 years old (SD 14,48), with 6 to 36 months after stroke onset. Function significantly improved regardless of the treatment group. However, no statistical difference was found between both groups as p-values of the median change of function measured by WMFT and FMA were 0.293 and 0.187, respectively. Conclusion: This study showed that Robotic Therapy (RT) was not different from Constraint-Induced Movement Therapy (CIMT) regardless of the analyzed variables. There was an overall upper limb function, motor recovery, functionality, and activities of daily living improvement regardless of the interventions. At last, the combination of both techniques should be considered in future studies.

Keywords: constraint-induced movement therapy; exoskeleton; motor recovery; robot-assisted therapy; stroke.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Terranova, Simis, Santos, Alfieri, Imamura, Fregni and Battistella.

Figures

Figure 1
Figure 1
Inclusion, treatment, and analysis flow diagram.

References

    1. Barreca S., Wolf S. L., Fasoli S., Bohannon R. (2003). Treatment interventions for the paretic upper limb of stroke survivors: a critical review. Neurorehabil. Neural Repair 17, 220–226. 10.1177/0888439003259415
    1. Bertani R., Melegari C., De Cola M. C., Bramanti A., Bramanti P., Calabrò R. S. (2017). Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis. Neurol. Sci. 38, 1561–1569. 10.1007/s10072-017-2995-5
    1. Bohannon R. W., Smith M. B. (1987). Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys. Ther. 67, 206–207. 10.1093/ptj/67.2.206
    1. Bosecker C., Dipietro L., Volpe B., Krebs H. I. (2010). Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke. Neurorehabil. Neural Repair 24, 62–69. 10.1177/1545968309343214
    1. Bovolenta F., Goldoni M., Clerici P., Agosti M., Franceschini M. (2009). Robot therapy for functional recovery of the upper limbs: a pilot study on patients after stroke. J. Rehabil. Med. 41, 971–975. 10.2340/16501977-0402
    1. Bovolenta F., Sale P., Dall'Armi V., Clerici P., Franceschini M. (2011). Robot-aided therapy for upper limbs in patients with stroke-related lesions. A brief report of a clinical experience. J. Neuroeng. Rehabil. 8:18. 10.1186/1743-0003-8-18
    1. Brunnstrom S. (1966). Motor testing procedures in hemiplegia: based on sequential recovery stages. Phys. Ther. 46, 357–375. 10.1093/ptj/46.4.357
    1. Corbetta D., Sirtori V., Castellini G., Moja L., Gatti R. (2015). Constraint-induced movement therapy for upper extremities in people with stroke. Cochrane Database Syst. Rev. 2015:CD004433. 10.1002/14651858.CD004433.pub3
    1. Dettmers C., Teske U., hamzei F., Uswatte G., Taub E., Weiller C. (2005). Distributed form of constraint-induced movement therapy improves functional outcome and quality of life after stroke. Phys. Med. Rehabil. 86, 204–209. 10.1016/j.apmr.2004.05.007
    1. Dipietro L., Ferraro M., Palazzolo J. J., Krebs H. I., Volpe B. T., Hogan N. (2005). Customized interactive robotic treatment for stroke: EMG-triggered therapy. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 325–334. 10.1109/TNSRE.2005.850423
    1. Dipietro L., Krebs H. I., Volpe B. T., Stein J., Bever C., Mernoff S. T., et al. . (2012). Learning, not adaptation, characterizes stroke motor recovery: evidence from kinematic changes induced by robot-assisted therapy in trained and untrained task in the same workspace. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 48–57. 10.1109/TNSRE.2011.2175008
    1. Fabbrini S., Casati G., Bonaiuti D. (2014). Is CIMT a rehabilitative practice for everyone? predictive factors and feasibility. Eur. J. Phys. Rehabil. Med. 50, 505–514.
    1. Fasoli S. E., Krebs H. I., Stein J., Frontera W. R., Hogan N. (2003). Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch. Phys. Med. Rehabil. 84, 477–482. 10.1053/apmr.2003.50110
    1. Ferraro M., Palazzolo J. J., Krol J., Krebs H. I., Hogan N., Volpe B. T. (2003). Robot-aided sensorimotor arm training improves outcome in patients with chronic stroke. Neurology 61, 1604–1607. 10.1212/01.WNL.0000095963.00970.68
    1. Fugl-Meyer A. R., Jääskö L., Leyman I., Olsson S., Steglind S. (1975). The post-stroke hemiplegic patient. A method for evaluation of physical performance. Scand. J. Rehabil. Med. 7, 13–31.
    1. Grahn B., Ekdahl C., Borgquist L. (2000). Motivation as a predictor of changes in quality of life and working ability in multidisciplinary rehabilitation. A two-year follow-up of a prospective controlled study in patients with prolonged musculoskeletal disorders. Disabil. Rehabil. 22, 639–654. 10.1080/096382800445443
    1. Hatem S. M., Saussez G., Della Faille M., et al. . (2016). Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front. Hum. Neurosci. 10:442. 10.3389/fnhum.2016.00442
    1. Hesse S., Schimdt H., Werner C., Bardeleben A. (2003). Upper and lower extremity robotics devices for rehabilitation and for studing motor control. Curr. Opin. Neurol. 16, 705–710. 10.1097/00019052-200312000-00010
    1. Hsieh Y., Liing R. J., Lin K. C., Wu C. Y., Liou T. H., Lin J. C., et al. . (2016). Sequencing bilateral robot-assisted arm therapy and constraint-induced therapy improves reach to press and trunk kinematics in patients with stroke. J. Neuroeng. Rehabil. 22:31. 10.1186/s12984-016-0138-5
    1. Hsieh Y., Lin K. C., Horng Y. S., Wu C. Y., Wu T. C., Ku F. L. (2014). Sequential combination of robot-assisted therapy and constraint-induced therapy in stroke rehabilitation: a randomized controlled trial. J. Neurol. 261, 1037–1045. 10.1007/s00415-014-7345-4
    1. Hughes A. M., Burridge J., Freeman C. T., Donnovan-Hall M., Chappell P. H., Lewin P. L., et al. . (2011). Stroke participants' perceptions of robotic and electrical stimulation therapy: a new approach. Disabil. Rehabil. Assist. Technol. 6, 130–138. 10.3109/17483107.2010.509882
    1. Johnson W., Onuma O., Owolabi M., Sachdev S. (2016). Stroke: a global response is needed [editorial]. Bull. World Health Organ. 94, 634–634A. 10.2471/BLT.16.181636
    1. Kahn L. E., Zygman M. L., Rymer W. Z., Reinkensmeyer D. J. (2006). Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke a randomized controlled pilot study. J. Neuroeng. Rehabil. 3:12. 10.1186/1743-0003-3-12
    1. Krebs H. I., Dipietro L., Levy-Tzedek S. (2008). A paradigm shift for rehabilitation robotics. IEEE-EMBS Magazine 27, 61–70. 10.1109/MEMB.2008.919498
    1. Krebs H. I., Hogan N. (2006). Therapeutic robotics: a technology push: stroke rehabilitation is being aided by robots that guide movement of shoulders and elbows, wrists, hands, arms and ankles to significantly improve recovery of patients. Proc. IEEE Spec. Issue Med. Robot. 94, 1727–1738. 10.1109/JPROC.2006.880721
    1. Kunkel A., Kopp B., Muller G., Villringer K., Villringer A., Taub E., et al. . (1999). Constraint-induced movement therapy for motor recovery in chronic stroke patients. Phys. Med. Rehabil. 80, 624–628. 10.1016/S0003-9993(99)90163-6
    1. Kwakkel G., Veerbeek J. M., van Wegen E. E., Wolf S. L. (2015). Constraint-induced movement therapy after stroke. Lancet Neurol. 14, 224–234. 10.1016/S1474-4422(14)70160-7
    1. Langhorne P., Bernhardt J., Kwakkel G. (2011). Stroke rehabilitation. Lancet 377, 1693–1702. 10.1016/S0140-6736(11)60325-5
    1. Lee K. W., Kim S. B., Lee J. H., Lee S. J., Kim J. W. (2017). Effect of robot-assisted game training on upper extremity function in stroke patients. Ann. Rehabil. Med. 41, 539–546. 10.5535/arm.2017.41.4.539
    1. Levin M. F., Kleim J. A., Wolf S. L. (2009). What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil. Neural Repair. 23, 313–319. 10.1177/1545968308328727
    1. Light K. (2015). Constraint-induced movement therapy: home-training is beneficial and cost-effective. Physiotherapy 101, e873–e874. 10.1016/j.physio.2015.03.1702
    1. Lledó L. D., Díez J. A., Bertomeu-Motos A., Ezquerro S., Badesa F. J., Sabater-Navarro J. M., et al. . (2016). A comparative analysis of 2D and 3D tasks for virtual reality therapies based on robotic-assisted neurorehabilitation for post-stroke patients. Front. Aging Neurosci. 8:205. 10.3389/fnagi.2016.00205
    1. Lo A. C., Guarino P. D., Richards L. G., Haselkorn J. K., Wittenberg G. F., Federman D. G., et al. . (2010). Robot-assisted therapy for long-term upper-limb impairment after stroke. N. Engl. J. Med. 362, 1772–1783. 10.1056/NEJMoa0911341
    1. Masiero S., Celia A., Rosati G., Armani M. (2007). Robotic-assisted rehabilitation of the upper limb after acute stroke. Arch. Phys. Med. Rehabil. 88, 142–149. 10.1016/j.apmr.2006.10.032
    1. Miller E. L., Murray L., Richards L., Zorowitz R. D., Bakas T., Clark P., et al. . (2010). American heart association council on cardiovascular nursing and the stroke council. Comprehensive overview of nursing and interdisciplinary rehabilitation of the stroke patient: a scientific statement from the American heart association. Stroke 41, 2402–2448. 10.1161/STR.0b013e3181e7512b
    1. Morris D. M., Taub E., Mark V. W. (2006). Constraint-induced movement therapy: characterizing the intervention protocol. Eura Medicophys. 42, 257–268.
    1. Nichols-Larsen D. S., Clark P. C., Zeringue A., Greenspan A., Blanton S. (2005). Factors influencing stroke survivors' quality of life during subacute recovery. Stroke. 36, 1480–1484. 10.1161/01.STR.0000170706.13595.4f
    1. Page S. J., Levine P. (2007). Modified constraint-induced movement therapy extension: using remote technologies to improve function. Arch. Phys. Med. Rehabil. 88, 922–927. 10.1016/j.apmr.2007.03.038
    1. Park W., Jeong W., Kwon G. H., Kim Y. H., Kim L. (2013). A rehabilitation device to improve the hand grasp function of stroke patients using a patient-driven approach. IEEE Int. Conf. Rehabil. Robot. 2013:6650482. 10.1109/ICORR.2013.6650482
    1. Pereira N. D., Michaelsen S. M., Menezes I. S., Ovando A. C., Lima R. C. M., Salmela L. F. (2011). Confiabilidade da versão brasileira do Wolf Motor Function Test em adultos com hemiparesia. Rev. Bras Fisioter 15, 257–265. 10.1590/S1413-35552011000300013
    1. Prange G. B., Jannink M. J., Groothuis-Oudshoorn C. G., Hermens H. J., Ijzerman M. J. (2006). Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J. Rehabil. Res. Dev. 43, 171–184. 10.1682/JRRD.2005.04.0076
    1. Resquín F., Gonzalez-Vargas J., Ibáñez J., Brunetti F., Dimbwadyo I., Carrasco L., et al. . (2017). Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: a usability study. J. Neuroeng. Rehabil. 14:104. 10.1186/s12984-017-0312-4
    1. Taub E., Miller N. E., Novack T. A., Cook E. W., Fleming W. C., Nepomuceno C. S., et al. . (1993). Technique to improve chronic motor defict after stroke. Arch. Phys. Med. Rehabil. 74, 347–354.
    1. Taub E., Uswatte G., King D. K., Morris D., Crago J. E., Chatterjee A. (2006). A placebo-controlled trial of constraintinduced movement therapy for upper extremity after stroke. Stroke 37, 1045–1049. 10.1161/01.STR.0000206463.66461.97
    1. Terranova T., Simis M., Santos A., Imamura M., Alfieri F., Fregni F., et al. . (2018). Comparing effects of constraint-induced movement therapy and robotic therapy: randomized clinical trial. Ann. Phys. Rehabil. Med. 61:e34. 10.1016/j.rehab.2018.05.076
    1. Thrane G., Friborg O., Anke A., Indredavik B. (2014). A meta-analysis of constraint-induced movement therapy after stroke. J. Rehabil. Med. 46, 833–842. 10.2340/16501977-1859
    1. Uswatte G., Taub E., Morris D., Barman J., Crago J. (2006). Contribution of the shaping and restraint components of constraint-induced movement therapy to treatment outcome. NeuroRehabilitation 21, 147–156. 10.3233/NRE-2006-21206
    1. Volpe B. T., Lynch D., Rykman-Berland A., Galgano M., Hogan N., Krebs H., et al. . (2008). Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke. Neurorehabil. Neural Repair 22, 305–310. 10.1177/1545968307311102
    1. Wolf S., Blanton S., Baer H., Breshears J., Butler A. J. (2002). Repetitive task practice: a critical review of constraintinduced movement therapy in stroke. Neurologist 8, 325–338. 10.1097/00127893-200211000-00001
    1. Wolf S. L., Lecraw D. E., Barton L. A., Jann B. B. (1989). Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp. Neurol. 104, 125–132. 10.1016/S0014-4886(89)80005-6
    1. Wolf S. L., Winstein C. J., Miller J. P., Taub E., Uswatte G., Morris D., et al. . (2006). Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA 296, 2095–2104. 10.1001/jama.296.17.2095

Source: PubMed

3
Abonner