The Role of Genetic Polymorphism and Other Factors on Clopidogrel Resistance (CR) in an Asian Population with Coronary Heart Disease (CHD)

Mohammed Ahmed Akkaif, Nur Aizati Athirah Daud, Abubakar Sha'aban, Mei Li Ng, Muhamad Ali Sk Abdul Kader, Dzul Azri Mohamed Noor, Baharudin Ibrahim, Mohammed Ahmed Akkaif, Nur Aizati Athirah Daud, Abubakar Sha'aban, Mei Li Ng, Muhamad Ali Sk Abdul Kader, Dzul Azri Mohamed Noor, Baharudin Ibrahim

Abstract

Clopidogrel is a widely-used antiplatelet drug. It is important for the treatment and prevention of coronary heart disease. Clopidogrel can effectively reduce platelet activity and therefore reduce stent thrombosis. However, some patients still have ischemic events despite taking the clopidogrel due to the alteration in clopidogrel metabolism attributable to various genetic and non-genetic factors. This review aims to summarise the mechanisms and causes of clopidogrel resistance (CR) and potential strategies to overcome it. This review summarised the possible effects of genetic polymorphism on CR among the Asian population, especially CYP2C19 *2 / *3 / *17, where the prevalence rate among Asians was 23.00%, 4.61%, 15.18%, respectively. The review also studied the effects of other factors and appropriate strategies used to overcome CR. Generally, CR among the Asian population was estimated at 17.2-81.6%. Therefore, our overview provides valuable insight into the causes of RC. In conclusion, understanding the prevalence of drug metabolism-related genetic polymorphism, especially CYP2C19 alleles, will enhance clinical understanding of racial differences in drug reactions, contributing to the development of personalised medicine in Asia.

Keywords: CYP2C19 polymorphism 5; antiplatelet 3; clopidogrel 2; clopidogrel resistance 4; personalized medicine.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The metabolic pathway of clopidogrel and its target receptors.
Figure 2
Figure 2
Prevalence of the CYP2C19 * 2/*3/*17 alleles in the Asian population.
Figure 3
Figure 3
Drug interaction mechanism of clopidogrel with statins, calcium channel blockers (CCBs) and proton pump inhibitors (PPIs).

References

    1. Hasan M.S., Basri H.B., Hin L.P., Stanslas J. Genetic polymorphisms and drug interactions leading to clopidogrel resistance: Why the Asian population requires special attention. Int. J. Neurosci. 2013;123:143–154. doi: 10.3109/00207454.2012.744308.
    1. Amsterdam E.A., Wenger N.K., Brindis R.G., Casey D.E., Jr., Ganiats T.G., Holmes D.R., Jr., Jaffe A.S., Jneid H., Kelly R.F., Kontos M.C. 2014 AHA/ACC guideline for the management of patients with non–ST-elevation acute coronary syndromes: Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;130:2354–2394. doi: 10.1161/CIR.0000000000000133.
    1. Valgimigli M., Bueno H., Byrne R.A., Collet J.-P., Costa F., Jeppsson A., Jüni P., Kastrati A., Kolh P., Mauri L. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS. Eur. J. Cardio-Thora. Surg. 2018;53:34–78. doi: 10.1093/ejcts/ezx334.
    1. Han Y.-L. De-escalation of anti-platelet therapy in patients with acute coronary syndromes undergoing percutaneous coronary intervention: A narrative review. Chin. Med. J. 2019;132:197–210. doi: 10.1097/CM9.0000000000000047.
    1. Mega J.L., Close S.L., Wiviott S.D., Shen L., Hockett R.D., Brandt J.T., Walker J.R., Antman E.M., Macias W.L., Braunwald E. CLINICAL PERSPECTIVE. Circulation. 2009;119:2553–2560. doi: 10.1161/CIRCULATIONAHA.109.851949.
    1. Xie H.-G., Zou J.-J., Hu Z.-Y., Zhang J.-J., Ye F., Chen S.-L. Individual variability in the disposition of and response to clopidogrel: Pharmacogenomics and beyond. Pharmacol. Ther. 2011;129:267–289. doi: 10.1016/j.pharmthera.2010.10.001.
    1. Yusuf S., Zhao F., Mehta S.R., Chrolavicius S., Tognoni G., Fox K.K. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N. Engl. J. Med. 2001;345:494–502.
    1. Chen Z., Jiang L., Chen Y. COMMIT (ClOpidogrel and Metoprolol in Myorardial Infarction Trial). Dobavleniye klopidogrelya k aspirinu u 45,852 patsiyentov s ostrym infarktom miokarda: Randomizirovannoyep latsebo-kontroliruyemoyeissledovaniye. Lancet. 2005;366:1607–1621.
    1. Michelson A.D., Bhatt D.L. How I use laboratory monitoring of antiplatelet therapy. Blood J. Am. Soc. Hematol. 2017;130:713–721. doi: 10.1182/blood-2017-03-742338.
    1. Gorog D.A., Fuster V. Platelet function tests in clinical cardiology: Unfulfilled expectations. J. Am. Coll. Cardiol. 2013;61:2115–2129. doi: 10.1016/j.jacc.2012.11.080.
    1. Bonello L., Tantry U.S., Marcucci R., Blindt R., Angiolillo D.J., Becker R., Bhatt D.L., Cattaneo M., Collet J.P., Cuisset T. Consensus and future directions on the definition of high on-treatment platelet reactivity to adenosine diphosphate. J. Am. Coll. Cardiol. 2010;56:919–933. doi: 10.1016/j.jacc.2010.04.047.
    1. Alnasser S., Huang W., Gore J., Steg P., Eagle K., Anderson F., Fox K., Gurfinkel E., Brieger D., Klein W., et al. Late Consequences of Acute Coronary Syndromes: Global Registry of Acute Coronary Events (GRACE) Follow-up. Am. J. Med. 2015;128:766–775. doi: 10.1016/j.amjmed.2014.12.007.
    1. Patti G., Micieli G., Cimminiello C., Bolognese L. The Role of Clopidogrel in 2020: A Reappraisal. Cardiovasc. Ther. 2020:8703627. doi: 10.1155/2020/8703627.
    1. Gori A.M., Marcucci R., Migliorini A., Valenti R., Moschi G., Paniccia R., Buonamici P., Gensini G.F., Vergara R., Abbate R. Incidence and clinical impact of dual nonresponsiveness to aspirin and clopidogrel in patients with drug-eluting stents. J. Am. Coll. Cardiol. 2008;52:734–739. doi: 10.1016/j.jacc.2008.05.032.
    1. Saraf S., Christopoulos C., Salha I.B., Stott D.J., Gorog D.A. Impaired endogenous thrombolysis in acute coronary syndrome patients predicts cardiovascular death and nonfatal myocardial infarction. J. Am. Coll. Cardiol. 2010;55:2107–2115. doi: 10.1016/j.jacc.2010.01.033.
    1. Matetzky S., Shenkman B., Guetta V., Shechter M., Beinart R., Goldenberg I., Novikov I., Pres H., Savion N., Varon D. Clopidogrel resistance is associated with increased risk of recurrent atherothrombotic events in patients with acute myocardial infarction. Circulation. 2004;109:3171–3175. doi: 10.1161/01.CIR.0000130846.46168.03.
    1. Müller I., Besta F., Schulz C., Massberg S., Schönig A., Gawaz M. Prevalence of clopidogrel non-responders among patients with stable angina pectoris scheduled for elective coronary stent placement. J. Thromb. Haemost. 2003;89:783–787. doi: 10.1055/s-0037-1613462.
    1. Ma Q., Chen G.-Z., Zhang Y.-H., Zhang L., Huang L.-A. Clinical outcomes and predictive model of platelet reactivity to clopidogrel after acute ischemic vascular events. Chin. Med. J. 2019;132:1053–1062. doi: 10.1097/CM9.0000000000000210.
    1. Pareed S.A., Vijayaraghavan G., Kartha C., Manoj M. Antiplatelet drug resistance in Indians. Ann. Clin. Cardiol. 2020;2:36.
    1. Namazi S., Kojuri J., Khalili A., Azarpira N. The impact of genetic polymorphisms of P2Y12, CYP3A5 and CYP2C19 on clopidogrel response variability in Iranian patients. Biochem. Pharmacol. 2012;83:903–908. doi: 10.1016/j.bcp.2012.01.003.
    1. Sahib H.A., Mohammad B.I., Abdul-Majid B.A. Therapeutic Effectiveness of Clopidogrel-Induced Platelets Inhibition: An Inter-Individual Response Variability among Iraqi Patients. World Heart J. 2016;8:23–28.
    1. Park K.-J., Chung H.-S., Kim S.-R., Kim H.-J., Han J.-Y., Lee S.-Y. Clinical, pharmacokinetic, and pharmacogenetic determinants of clopidogrel resistance in Korean patients with acute coronary syndrome. Korean J. Lab. Med. 2011;31:91–94. doi: 10.3343/kjlm.2011.31.2.91.
    1. Amin A.M., Chin L.S., Noor D.A.M., Mostafa H., Kader M.A.S.A., Hay Y.K., Ibrahim B. The effect of CYP2C19 genetic polymorphism and non-genetic factors on clopidogrel platelets inhibition in East Asian coronary artery disease patients. Thromb. Res. 2017;158:22–24. doi: 10.1016/j.thromres.2017.07.032.
    1. Sakr H.I., Alamri H.S., Almoghairi A.M., Alkhudair A.A., AlMasood A.S. Prevalence and risk factors of clopidogrel non-response among Saudi patients undergoing coronary angiography. Saudi Med. J. 2016;37:166–172. doi: 10.15537/smj.2016.2.14263.
    1. Tekkeşin A.İ., Kaya A., Çakıllı Y., Türkkan C., Hayıroğlu M.İ., Borklu E.B., Kalenderoğlu K., Gümüşdağ A., Yıldırımtürk Ö., Bozbeyoğlu E. The first six-month clinical outcomes and risk factors associated with high on-treatment platelet reactivity of clopidogrel in patients undergoing coronary interventions. Anatol. J. Cardiol. 2016;16:967–973. doi: 10.14744/AnatolJCardiol.2016.6855.
    1. Wang T.H., Bhatt D.L., Topol E.J. Aspirin and clopidogrel resistance: An emerging clinical entity. Eur. Heart J. 2006;27:647–654. doi: 10.1093/eurheartj/ehi684.
    1. Lock E., Saveliev A., Kennedy L. Methanol and dimethyl sulfide removal by pulsed corona part I: Experiment. Plasma Chem. Plasma Process. 2006;26:527–542. doi: 10.1007/s11090-006-9011-9.
    1. Bates E.R., Lau W.C., Angiolillo D.J. Clopidogrel–drug interactions. J. Am. Coll. Cardiol. 2011;57:1251–1263. doi: 10.1016/j.jacc.2010.11.024.
    1. Howell L.A., Stouffer G.A., Polasek M., Rossi J.S. Review of clopidogrel dose escalation in the current era of potent P2Y12 inhibitors. Expert Rev. Clin. Pharmacol. 2015;8:411–421. doi: 10.1586/17512433.2015.1057571.
    1. Ding Z., Kim S., Dorsam R.T., Jin J., Kunapuli S.P. Inactivation of the human P2Y12 receptor by thiol reagents requires interaction with both extracellular cysteine residues, Cys17 and Cys270. Blood J. Am. Soc. Hematol. 2003;101:3908–3914. doi: 10.1182/blood-2002-10-3027.
    1. Patrono C., Coller B., Dalen J.E., Gerald G.A.F., Fuster V., Gent M., Hirsh J., Roth G. Platelet-active drugs: The relationships among dose, effectiveness, and side effects. Chest. 2001;119:39S–63S. doi: 10.1378/chest.119.1_suppl.39S.
    1. Jiang X.-L., Samant S., Lesko L.J., Schmidt S. Clinical pharmacokinetics and pharmacodynamics of clopidogrel. Clin. Pharmacokinet. 2015;54:147–166. doi: 10.1007/s40262-014-0230-6.
    1. Cuisset T., Morange P.-E., Alessi M.-C. Recent advances in the pharmacogenetics of clopidogrel. Human genetics. 2012;131:653–664. doi: 10.1007/s00439-011-1130-6.
    1. Tantry U.S., Hennekens C.H., Zehnder J.L., Gurbel P.A. In: Clopidogrel Resistance and Clopidogrel Treatment Failure. Leung L.L.K., Cutlip D., editors. UpToDate Inc.; Waltham, MA, USA: 2018.
    1. Cay S., Cagirci G., Aydogdu S., Balbay Y., Sen N., Maden O., Demir A.D., Erbay A.R. Safety of clopidogrel in older patients. Drugs Aging. 2011;28:119–129. doi: 10.2165/11586380-000000000-00000.
    1. Carlquist J.F., Knight S., Horne B.D., Huntinghouse J.A., Rollo J.S., Muhlestein J.B., May H., Anderson J.L. Cardiovascular risk among patients on clopidogrel anti-platelet therapy after placement of drug-eluting stents is modified by genetic variants in both the CYP2C19 and ABCB1 genes. J. Thromb. Haemost. 2013;109:744–754.
    1. Park J.J., Park K.W., Kang J., Jeon K.-H., Kang S.-H., Ahn H.S., Han J.-K., Koh J.-S., Lee S.E., Yang H.-M. Genetic determinants of clopidogrel responsiveness in Koreans treated with drug-eluting stents. Int. J. Cardiol. 2013;163:79–86. doi: 10.1016/j.ijcard.2012.09.075.
    1. Fontana P., Roffi M., Reny J.-L. Platelet function test use for patients with coronary artery disease in the early 2020s. Med. Clin. Med. 2020;9:194. doi: 10.3390/jcm9010194.
    1. Wright R.S., Anderson J.L., Adams C.D., Bridges C.R., Casey D.E., Ettinger S.M., Fesmire F.M., Ganiats T.G., Jneid H., Lincoff A.M. 2011 ACCF/AHA focused update incorporated into the ACC/AHA 2007 guidelines for the management of patients with unstable angina/non–ST-elevation myocardial infarction: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2011;57:e215–e367.
    1. Levine G.N., Bates E.R., Bittl J.A., Brindis R.G., Fihn S.D., Fleisher L.A., Granger C.B., Lange R.A., Mack M.J., Mauri L. 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines: An update of the 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention, 2011 ACCF/AHA guideline for coronary artery bypass graft surgery, 2012 ACC/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease, 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction, 2014 AHA/ACC guideline for the management of patients with non–ST-elevation acute coronary syndromes, and 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery. Circulation. 2016;134:e123–e155.
    1. Neumann F.-J., Sousa-Uva M., Ahlsson A., Alfonso F., Banning A.P., Benedetto U., Byrne R.A., Collet J.-P., Falk V., Head S.J. 2018 ESC/EACTS Guidelines on myocardial revascularisation. Eur. Heart J. 2019;40:87–165. doi: 10.1093/eurheartj/ehy394.
    1. Wang Y., Zhao X., Lin J., Li H., Johnston S.C., Lin Y., Pan Y., Liu L., Wang D., Wang C. Association between CYP2C19 loss-of-function allele status and efficacy of clopidogrel for risk reduction among patients with minor stroke or transient ischemic attack. Jama. 2016;316:70–78. doi: 10.1001/jama.2016.8662.
    1. Sarno G., Garg S., Onuma Y., Buszman P., Linke A., Ischinger T., Klauss V., Eberli F., Corti R., Wijns W. The impact of body mass index on the one year outcomes of patients treated by percutaneous coronary intervention with Biolimus-and Sirolimus-eluting stents (from the LEADERS Trial) Am. J. Cardiol. 2010;105:475–479. doi: 10.1016/j.amjcard.2009.09.055.
    1. Weisz G., Smilowitz N.R., Kirtane A.J., Rinaldi M.J., Parvataneni R., Xu K., Stuckey T.D., Maehara A., Witzenbichler B., Neumann F.-J. Proton pump inhibitors, platelet reactivity, and cardiovascular outcomes after drug-eluting stents in clopidogrel-treated patients: The ADAPT-DES study. Circ. Cardiovasc. Interv. 2015;8:e001952. doi: 10.1161/CIRCINTERVENTIONS.114.001952.
    1. Mizobe M., Hokimoto S., Akasaka T., Arima Y., Kaikita K., Morita K., Miyazaki H., Oniki K., Nakagawa K., Ogawa H. Impact of CYP2C19 polymorphism on clinical outcome following coronary stenting is more important in non-diabetic than diabetic patients. Thromb. Res. 2014;134:72–77. doi: 10.1016/j.thromres.2014.04.020.
    1. Elkind M.S., Luna J.M., McClure L.A., Zhang Y., Coffey C.S., Roldan A., Del Brutto O.H., Pretell E.J., Pettigrew L.C., Meyer B.C. C-reactive protein as a prognostic marker after lacunar stroke: Levels of inflammatory markers in the treatment of stroke study. Stroke. 2014;45:707–716. doi: 10.1161/STROKEAHA.113.004562.
    1. Ibrahim H., Schutt R.C., Hannawi B., DeLao T., Barker C.M., Kleiman N.S. Association of immature platelets with adverse cardiovascular outcomes. J. Am. Coll. Cardiol. 2014;64:2122–2129. doi: 10.1016/j.jacc.2014.06.1210.
    1. Chirumamilla A.P., Maehara A., Mintz G.S., Mehran R., Kanwal S., Weisz G., Hassanin A., Hakim D., Guo N., Baber U. High platelet reactivity on clopidogrel therapy correlates with increased coronary atherosclerosis and calcification: A volumetric intravascular ultrasound study. JACC: Cardiovasc. Imaging. 2012;5:540–549.
    1. Rinfret S., Rodés-Cabau J., Bagur R., Déry J.-P., Dorais M., Larose É., Barbeau G., Gleeton O., Nguyen C.-M., Noël B. Telephone contact to improve adherence to dual antiplatelet therapy after drug-eluting stent implantation. Heart. 2013;99:562–569. doi: 10.1136/heartjnl-2012-303004.
    1. Zoheir N., Abd Elhamid S., Abulata N., Sobky M.E., Khafagy D., Mostafa A. P2Y12 receptor gene polymorphism and antiplatelet effect of clopidogrel in patients with coronary artery disease after coronary stenting. Blood Coagul. Fibrinolysis. 2013;24:525–531. doi: 10.1097/MBC.0b013e32835e98bf.
    1. Xie C., Ding X., Gao J., Wang H., Hang Y., Zhang H., Zhang J., Jiang B., Miao L. The effects of CES1A2 A (− 816) C and CYP2C19 loss-of-function polymorphisms on clopidogrel response variability among Chinese patients with coronary heart disease. Pharmacogenetics Genom. 2014;24:204–210. doi: 10.1097/FPC.0000000000000035.
    1. Tang X.-F., Wang J., Zhang J.-H., Meng X.-M., Xu B., Qiao S.-B., Wu Y.-J., Chen J., Wu Y., Chen J.-L. Effect of the CYP2C19* 2 and* 3 genotypes, ABCB1 C3435T and PON1 Q192R alleles on the pharmacodynamics and adverse clinical events of clopidogrel in Chinese people after percutaneous coronary intervention. Eur. J. Clin. Pharmacol. 2013;69:1103–1112. doi: 10.1007/s00228-012-1446-8.
    1. Zhuo Z.-L., Xian H.-P., Long Y., Liu C., Sun Y.-Y., Ma Y.-T., Gao H., Zhao J.-Z., Zhao X.-T. Association between CYP2C19 and ABCB1 polymorphisms and clopidogrel resistance in clopidogrel-treated Chinese patients. Anatol. J. Cardiol. 2018;19:123–129. doi: 10.14744/AnatolJCardiol.2017.8097.
    1. Lau W.C., Gurbel P.A., Watkins P.B., Neer C.J., Hopp A.S., Carville D.G., Guyer K.E., Tait A.R., Bates E.R. Contribution of hepatic cytochrome P450 3A4 metabolic activity to the phenomenon of clopidogrel resistance. Circulation. 2004;109:166–171. doi: 10.1161/01.CIR.0000112378.09325.F9.
    1. Mirzaev K., Samsonova K., Potapov P., Andreev D., Grishina E., Ryzhikova K., Sychev D. Genotyping and phenotyping CYP3A4\CYP3A5: No association with antiplatelet effect of clopidogrel. Mjol. Biol. Resp. 2019;46:4195–4199. doi: 10.1007/s11033-019-04871-y.
    1. Brandt J.T., Close S., Iturria S., Payne C., Farid N., Ernest C., Lachno D., Salazar D., Winters K. Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. J. Thromb. Haemost. 2007;5:2429–2436. doi: 10.1111/j.1538-7836.2007.02775.x.
    1. Kazui M., Nishiya Y., Ishizuka T., Hagihara K., Farid N.A., Okazaki O., Ikeda T., Kurihara A. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab. Dispos. 2010;38:92–99. doi: 10.1124/dmd.109.029132.
    1. Kuliczkowski W., Witkowski A., Polonski L., Watala C., Filipiak K., Budaj A., Golanski J., Sitkiewicz D., Pregowski J., Gorski J. Interindividual variability in the response to oral antiplatelet drugs: A position paper of the Working Group on antiplatelet drugs resistance appointed by the Section of Cardiovascular Interventions of the Polish Cardiac Society, endorsed by the Working Group on Thrombosis of the European Society of Cardiology. Eur. Heart J. 2009;30:426–435.
    1. Simon T., Verstuyft C., Mary-Krause M., Quteineh L., Drouet E., Méneveau N., Steg P.G., Ferrières J., Danchin N., Becquemont L. Genetic determinants of response to clopidogrel and cardiovascular events. N. Engl. J. Med. 2009;360:363–375. doi: 10.1056/NEJMoa0808227.
    1. Chan M.Y. Clopidogrel pharmacogenetics of east, south and other Asian populations. Eur. Heart J. Suppl. 2012;14:A41–A42. doi: 10.1093/eurheartj/sur035.
    1. Brown S.-A., Pereira N. Pharmacogenomic impact of CYP2C19 variation on clopidogrel therapy in precision cardiovascular medicine. J. Pers. Med. 2018;8:8. doi: 10.3390/jpm8010008.
    1. Li Z., Dong W., Yang D., Sun L., He X., Hu H., Zhang J., Wang C., Li Y., Zhao M. Body weight, CYP2C19, and P2Y12 receptor polymorphisms relate to clopidogrel resistance in a cohort of Chinese ischemic stroke patients with aspirin intolerance. Eur. J. Clin. Pharmacol. 2020;76:1517–1527. doi: 10.1007/s00228-020-02946-5.
    1. Al-Azzam S.I., Alzoubi K.H., Khabour O.F., Nusair M.B., Al-Hadidi H., Awidi A., Saleh A. Factors that contribute to clopidogrel resistance in cardiovascular disease patients: Environmental and genetic approach. Int. J. Clin. Pharmacol. Ther. 2013;51:179–186. doi: 10.5414/CP201784.
    1. Lee J.M., Park S., Shin D.-J., Choi D., Shim C.Y., Ko Y.-G., Kim J.-S., Shin E.-S., Chang C.W., Lee J.-E. Relation of genetic polymorphisms in the cytochrome P450 gene with clopidogrel resistance after drug-eluting stent implantation in Koreans. Am. J. Cardiol. 2009;104:46–51. doi: 10.1016/j.amjcard.2009.02.045.
    1. Alhazzani A.A., Munisamy M., Karunakaran G. Pharmacogenetics of CYP2C19 genetic polymorphism on clopidogrel response in patients with ischemic stroke from Saudi Arabia. Neurosciences. 2017;22:31–37. doi: 10.17712/nsj.2017.1.20160303.
    1. Zhang S., Lai X., Li W., Jing Z., Xiong Z., Xu A., Ruan Y. VASP phosphorylation and genetic polymorphism for clopidogrel resistance in Chinese patients with non-cardioembolic ischemic stroke. Thromb. Res. 2014;134:1272–1277. doi: 10.1016/j.thromres.2014.10.001.
    1. Al-Husein B.A., Al-Azzam S.I., Alzoubi K.H., Khabour O.F., Nusair M.B., Alzayadeen S. Investigating the effect of demographics, clinical characteristics, and polymorphism of MDR-1, CYP1A2, CYP3A4, and CYP3A5 on clopidogrel resistance. J. Cardiovasc. Pharmacol. 2018;72:296–302. doi: 10.1097/FJC.0000000000000627.
    1. Zhang S., Wang J., Zhang A., Zhang X., You T., Xie D., Yang W., Chen Y., Zhang X., Di C. A SNP involved in alternative splicing of ABCB1 is associated with clopidogrel resistance in coronary heart disease in Chinese population. Aging (Albany NY) 2020;12:25684–25699.
    1. Chen F., Zhang J., Bian C.-X., Zhang J., Xin X.-B., Pan Y.-Y., Zhang X. A Study on the Correlation Between MDR1 Polymorphism and Clopidogrel Resistance in Hui Patients Treated with Percutaneous Coronary Intervention. Int. J. Gen. Med. 2021;14:665–671. doi: 10.2147/IJGM.S293947.
    1. Notarangelo F.M., Maglietta G., Bevilacqua P., Cereda M., Merlini P.A., Villani G.Q., Moruzzi P., Patrizi G., Malagoli Tagliazucchi G., Crocamo A. Pharmacogenomic approach to selecting antiplatelet therapy in patients with acute coronary syndromes: The PHARMCLO trial. J. Am. Coll. Cardiol. 2018;71:1869–1877. doi: 10.1016/j.jacc.2018.02.029.
    1. Jiang M., You J.H. CYP2C19 LOF and GOF-guided antiplatelet therapy in patients with acute coronary syndrome: A cost-effectiveness analysis. Cardiovasc. Drug Ther. 2017;31:39–49. doi: 10.1007/s10557-016-6705-y.
    1. Máchal J., Hlinomaz O. Efficacy of P2Y12 receptor blockers after myocardial infarction and genetic variability of their metabolic pathways. Curr. Vasc. Pharmacol. 2019;17:35–40. doi: 10.2174/1570161116666180206110657.
    1. Martin J., Williams A.K., Klein M.D., Sriramoju V.B., Madan S., Rossi J.S., Clarke M., Cicci J.D., Cavallari L.H., Weck K.E. Frequency and clinical outcomes of CYP2C19 genotype-guided escalation and de-escalation of antiplatelet therapy in a real-world clinical setting. Genet. Med. 2020;22:160–169. doi: 10.1038/s41436-019-0611-1.
    1. Chen D.-Y., Wang C.-Y., Wen M.-S., Lee T.-H., Chu Y., Hsieh M.-J., Chang S.-H., Lee C.-H., Wang J.-L., Chen C.-C. Paraoxonase-1 is not a major determinant of stent thrombosis in a Taiwanese population. PLoS ONE. 2012;7:e39178. doi: 10.1371/journal.pone.0039178.
    1. Scott S., Sangkuhl K., Stein C., Hulot J.S., Mega J., Roden D., Klein T., Sabatine M., Johnson J., Shuldiner A. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin. Pharmacol. Ther. 2013;94:317–323. doi: 10.1038/clpt.2013.105.
    1. Desta Z., Zhao X., Shin J.-G., Flockhart D.A. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin. Pharmacokinet. 2002;41:913–958. doi: 10.2165/00003088-200241120-00002.
    1. Hwang S.-J., Jeong Y.-H., Kim I.-S., Koh J.-S., Kang M.-K., Park Y., Kwak C.H., Hwang J.-Y. The cytochrome 2C19* 2 and* 3 alleles attenuate response to clopidogrel similarly in East Asian patients undergoing elective percutaneous coronary intervention. Thromb. Res. 2011;127:23–28. doi: 10.1016/j.thromres.2010.10.021.
    1. Sim S.C., Risinger C., Dahl M.L., Aklillu E., Christensen M., Bertilsson L., Ingelman-Sundberg M. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin. Pharmacol. Ther. 2006;79:103–113. doi: 10.1016/j.clpt.2005.10.002.
    1. Sugimoto K., Uno T., Yamazaki H., Tateishi T. Limited frequency of the CYP2C19* 17 allele and its minor role in a Japanese population. Br. J. Clin. Pharmacol. 2008;65:437–439. doi: 10.1111/j.1365-2125.2007.03057.x.
    1. Zhong Z., Hou J., Li B., Zhang Q., Liu S., Li C., Liu Z., Yang M., Zhong W., Zhao P. Analysis of CYP2C19 genetic polymorphism in a large ethnic Hakka population in southern China. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2017;23:6186–6192. doi: 10.12659/MSM.905337.
    1. Wang T., Zhao T., Bao S., Jia L., Feng J., Yu A., Sun L., Guo X., Li H., Yu L. CYP2C19, PON1, and ABCB1 gene polymorphisms in Han and Uygur populations with coronary artery disease in Northwestern Xinjiang, China, From 2014 Through 2019. Medicine. 2020;99:e20582. doi: 10.1097/MD.0000000000020582.
    1. Anichavezhi D., Chakradhara Rao U., Shewade D., Krishnamoorthy R., Adithan C. Distribution of CYP2C19* 17 allele and genotypes in an Indian population. J. Clin. Pharmacol. Ther. 2012;37:313–318. doi: 10.1111/j.1365-2710.2011.01294.x.
    1. Dehbozorgi M., Kamalidehghan B., Hosseini I., Dehghanfard Z., Sangtarash M.H., Firoozi M., Ahmadipour F., Meng G.Y., Houshmand M. Prevalence of the CYP2C19* 2 (681 G> A),* 3 (636 G> A) and* 17 (-806 C> T) alleles among an Iranian population of different ethnicities. Mjol. Med. Rep. 2018;17:4195–4202. doi: 10.3892/mmr.2018.8377.
    1. Sahib H.A., Mohammed B.I., Abdul-Majid B.A. Genetic Polymorphism of CYP2C19 in A sample of Iraqi Population. Int. J. Pharm. Biol. Sci. 2015;5:54–60.
    1. Sviri S., Shpizen S., Leitersdorf E., Levy M., Caraco Y. Phenotypic-genotypic analysis of CYP2C19 in the Jewish Israeli population. Clin. Pharmacol. Ther. 1999;65:275–282. doi: 10.1016/S0009-9236(99)70106-2.
    1. Rjoub M., Saleh A., Hakooz N., Imraish A., Jarrar Y., Zihlif M. Allelic frequency of PON1 Q192R, CYP2C19* 2 and CYP2C19* 17 among Jordanian patients taking clopidogrel. Trop. J. Pharm. Res. 2018;17:2275–2280. doi: 10.4314/tjpr.v17i11.24.
    1. Kim K.A., Song W.K., Kim K.R., Park J.Y. Assessment of CYP2C19 genetic polymorphisms in a Korean population using a simultaneous multiplex pyrosequencing method to simultaneously detect the CYP2C19* 2, CYP2C19* 3, and CYP2C19* 17 alleles. J. Clin. Pharm. Ther. 2010;35:697–703. doi: 10.1111/j.1365-2710.2009.01069.x.
    1. Amin Mostafa A.M., Chin L.S., Mohamed Noor D.A., Amin Mostafa H.M., Ali SK Abdul Kader M., Hay Y.K., Ibrahim B. TCT-841 Integrative Pharmacometabonomics-Pharmacogenetics approach to predict clopidogrel response in Coronary Artery Disease (CAD) patients undergoing Interventional Angiographic Procedure (IAP) J. Am. Coll. Cardiol. 2017;70:B340. doi: 10.1016/j.jacc.2017.09.1049.
    1. Riaz S., Din S.M., Tareen M.U., Tariq F., Latif Y., Siddiqi S., Sultan A., Mansoor A. Genetic Polymorphism of CYP2C19 in Pakistani Population. Iran. J. Pharm. Res. IJPR. 2019;18:1097–1102.
    1. Ayesh B.M., Al-Astal I.R., Yassin M.M. The clinical effects of CYP2C19* 2 allele frequency on Palestinian patients receiving clopidogrel after percutaneous coronary intervention. Int. J. Clin. Pharm. 2019;41:96–103. doi: 10.1007/s11096-018-00782-3.
    1. Elewa H., Ali Z.O., Bader L. CYP2C19 Genetic Polymorphism Prevalence in Qataris; Proceedings of the Qatar Foundation Annual Research Conference Proceedings; Doha, Qatar. 19–20 March 2018; Issue 2; HBPD660.
    1. Mirzaev K.B., Zelenskaya E.M., Barbarash O.L., Ganyukov V.I., Apartsin K.A., Saraeva N.O., Nikolaev K.Y., Ryzhikova K.A., Lifshits G.I., Sychev D.A. CYP2C19 polymorphism frequency in Russian patients in Central Russia and Siberia with acute coronary syndrome. Pharm. Pers. Med. 2017;10:107–114. doi: 10.2147/PGPM.S126305.
    1. Al-Jenoobi F.I., Alkharfy K.M., Alghamdi A.M., Bagulb K.M., Al-Mohizea A.M., Al-Muhsen S., Halwani R., Parvez M.K., Al-Dosari M.S. CYP2C19 genetic polymorphism in Saudi Arabians. Basic Clin. Pharmacol. Toxicol. 2013;112:50–54. doi: 10.1111/j.1742-7843.2012.00919.x.
    1. Sukasem C., Tunthong R., Chamnanphon M., Santon S., Jantararoungtong T., Koomdee N., Prommas S., Puangpetch A., Vathesatogkit P. CYP2C19 polymorphisms in the Thai population and the clinical response to clopidogrel in patients with atherothrombotic-risk factors. Pharmacogenomics Pers. Med. 2013;6:85–91. doi: 10.2147/PGPM.S42332.
    1. Arici M., Özhan G. CYP2C9, CYPC19 and CYP2D6 gene profiles and gene susceptibility to drug response and toxicity in Turkish population. Saudi Pharm. J. 2017;25:376–380. doi: 10.1016/j.jsps.2016.09.003.
    1. Vu N.P., Nguyen H.T.T., Tran N.T.B., Nguyen T.D., Huynh H.T.T., Nguyen X.T., Nguyen D.T., Nong H.V., Nguyen H.H. CYP2C19 genetic polymorphism in the Vietnamese population. Ann. Hum. Biol. 2019;46:491–497. doi: 10.1080/03014460.2019.1687750.
    1. Wang Z.-Y., Chen M., Zhu L.-L., Yu L.-S., Zeng S., Xiang M.-X., Zhou Q. Pharmacokinetic drug interactions with clopidogrel: Updated review and risk management in combination therapy. Ther. Clin. Risk Manag. 2015;11:449–467.
    1. El Rouby N., Lima J.J., Johnson J.A. Proton pump inhibitors: From CYP2C19 pharmacogenetics to precision medicine. Expert Opin. Drug Metab. Toxicol. 2018;14:447–460. doi: 10.1080/17425255.2018.1461835.
    1. Grundy S.M., Stone N.J., Bailey A.L., Beam C., Birtcher K.K., Blumenthal R.S., Braun L.T., De Ferranti S., Faiella-Tommasino J., Forman D.E. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2019;73:3168–3209. doi: 10.1016/j.jacc.2018.11.002.
    1. Tantry U.S., Jeong Y.-H., Gurbel P.A. The Clopidogrel-Statin Interaction–Reopening Pandora’s Box–. Circulation. 2014;78:592–594. doi: 10.1253/circj.CJ-14-0068.
    1. Mansour V., Murdico A.T., Fudin J. Do Statins Interfere With Clopidogrel During Platelet Therapy? Pharm. Times. 2019;85
    1. Lau W.C., Carville D., Bates E.R. Clinical significance of the atorvastatin-clopidogrel drug-drug interaction. Circulation. 2004;110:e66. doi: 10.1161/01.CIR.0000137956.92971.4A.
    1. Brophy J.M., Babapulle M.N., Costa V., Rinfret S. A pharmacoepidemiology study of the interaction between atorvastatin and clopidogrel after percutaneous coronary intervention. Am. Heart J. 2006;152:263–269. doi: 10.1016/j.ahj.2005.08.023.
    1. Gulec S., Ozdol C., Rahimov U., Atmaca Y., Kumbasar D., Erol C. Myonecrosis after elective percutaneous coronary intervention: Effect of clopidogrel-statin interaction. J. Of Invasive Cardiol. 2005;17:589–593.
    1. Albadr Y., Bohassan A.K., Ming L.C., Khan T.M. An exploratory study investigating the potential drug–drug interactions in internal medicine department, Alahsa, Saudi Arabia. J. Pharm. Health Serv. Res. 2014;5:237–241. doi: 10.1111/jphs.12073.
    1. Wenaweser P., Eshtehardi P., Abrecht L., Zwahlen M., Schmidlin K., Windecker S., Meier B., Haeberli A., Hess O.M. A randomised determination of the Effect of Fluvastatin and Atorvastatin on top of dual antiplatelet treatment on platelet aggregation after implantation of coronary drug-eluting stents. J. Thromb. Haemost. 2010;104:554–562.
    1. Pelliccia F., Rosano G., Marazzi G., Vitale C., Spoletini I., Franzoni F., Speziale G., Polacco M., Greco C., Gaudio C. Pharmacodynamic effects of atorvastatin versus rosuvastatin in coronary artery disease patients with normal platelet reactivity while on dual antiplatelet therapy—The PEARL randomised cross-over study. Eur. J. Pharmacol. 2014;725:18–22. doi: 10.1016/j.ejphar.2014.01.006.
    1. An K., Huang R., Tian S., Guo D., Wang J., Lin H., Wang S. Statins significantly reduce mortality in patients receiving clopidogrel without affecting platelet activation and aggregation: A systematic review and meta-analysis. Lipids Health Dis. 2019;18:121. doi: 10.1186/s12944-019-1053-0.
    1. Nafasi L., Rahmani R., Shafiee A., Salari A., Abdollahi A., Meysamie A. Can a high reloading dose of atorvastatin prior to percutaneous coronary intervention reduce periprocedural myocardial infarction? Curr. Res. Med. Opin. 2014;30:381–386. doi: 10.1185/03007995.2013.834249.
    1. Karaźniewicz-Łada M., Rzeźniczak J., Główka F., Gumienna A., Dolatowski F., Słomczyński M., Burchardt P. Influence of statin treatment on pharmacokinetics and pharmacodynamics of clopidogrel and its metabolites in patients after coronary angiography/angioplasty. Biomed. Pharmacother. 2019;116:108991. doi: 10.1016/j.biopha.2019.108991.
    1. Katoh M., Nakajima M., Shimada N., Yamazaki H., Yokoi T. Inhibition of human cytochrome P450 enzymes by 1, 4-dihydropyridine calcium antagonists: Prediction of in vivo drug–drug interactions. Eur. J. Clin. Pharmacol. 2000;55:843–852. doi: 10.1007/s002280050706.
    1. Siller-Matula J.M., Lang I., Christ G., Jilma B. Calcium-channel blockers reduce the antiplatelet effect of clopidogrel. J. Am. Coll. Cardiol. 2008;52:1557–1563. doi: 10.1016/j.jacc.2008.07.055.
    1. Seo K.-D., Kim Y.D., Yoon Y.-W., Kim J.-Y., Lee K.-Y. Antiplatelet effect of clopidogrel can be reduced by calcium-channel blockers. Yonsei Med. J. 2014;55:683–688. doi: 10.3349/ymj.2014.55.3.683.
    1. Aggarwal S., Loomba R.S., Arora R.R. Effects of concurrent calcium channel blocker on antiplatelet efficacy of clopidogrel therapy: A systematic review. Am. J. Ther. 2016;23:e29–e36. doi: 10.1097/MJT.0000000000000225.
    1. Lee C.H., Franchi F., Angiolillo D.J. Clopidogrel drug interactions: A review of the evidence and clinical implications. Expert Opin. Drug Metab. Toxicol. 2020;16:1079–1096. doi: 10.1080/17425255.2020.1814254.
    1. Robinson M., Horn J. Clinical pharmacology of proton pump inhibitors. Drugs. 2003;63:2739–2754. doi: 10.2165/00003495-200363240-00004.
    1. Bundhun P.K., Teeluck A.R., Bhurtu A., Huang W.-Q. Is the concomitant use of clopidogrel and Proton Pump Inhibitors still associated with increased adverse cardiovascular outcomes following coronary angioplasty?: A systematic review and meta-analysis of recently published studies (2012–2016) BMC Cardiovasc. Disord. 2017;17:3. doi: 10.1186/s12872-016-0453-6.
    1. Patrono C., Bachmann F., Baigent C., Bode C., De Caterina R., Charbonnier B., Fitzgerald D., Hirsh J., Husted S., Kvasnicka J. Expert consensus document on the use of antiplatelet agents: The Task Force on the Use of Antiplatelet Agents in Patients With Atherosclerotic Cardiovascular Disease of the European Society of Cardiology. Eur. Heart J. 2004;25:166–181. doi: 10.1016/j.ehj.2003.10.013.
    1. L’Allier P.L., Ducrocq G., Pranno N., Noble S., Ibrahim R., Grégoire J.C., Azzari F., Nozza A., Berry C., Doucet S. Clopidogrel 600-mg double loading dose achieves stronger platelet inhibition than conventional regimens: Results from the PREPAIR randomized study. J. Am. Coll. Cardiol. 2008;51:1066–1072. doi: 10.1016/j.jacc.2007.12.013.
    1. De Miguel A., Ibanez B., Badimón J.J. Clinical implications of clopidogrel resistance. J. Thromb. Haemost. 2008;100:196–203. doi: 10.1160/TH08-01-0049.
    1. Angiolillo D.J., Jakubowski J.A., Ferreiro J.L., Tello-Montoliu A., Rollini F., Franchi F., Ueno M., Darlington A., Desai B., Moser B.A. Impaired responsiveness to the platelet P2Y12 receptor antagonist clopidogrel in patients with type 2 diabetes and coronary artery disease. J. Am. Coll. Cardiol. 2014;64:1005–1014. doi: 10.1016/j.jacc.2014.06.1170.
    1. Capodanno D., Angiolillo D.J. Antithrombotic Therapy for Atherosclerotic Cardiovascular Disease Risk Mitigation in Patients With Coronary Artery Disease and Diabetes Mellitus. Circulation. 2020;142:2172–2188. doi: 10.1161/CIRCULATIONAHA.120.045465.
    1. Gori A., Cesari F., Marcucci R., Giusti B., Paniccia R., Antonucci E., Gensini G., Abbate R. The balance between pro-and anti-inflammatory cytokines is associated with platelet aggregability in acute coronary syndrome patients. Atherosclerosis. 2009;202:255–262. doi: 10.1016/j.atherosclerosis.2008.04.001.
    1. Ge H., Zhou Y., Liu X., Nie X., Wang Z., Guo Y., Chen W., Yang Q. Relationship between plasma inflammatory markers and platelet aggregation in patients with clopidogrel resistance after angioplasty. Angiology. 2012;63:62–66. doi: 10.1177/0003319711406432.
    1. Cirillo P., Taglialatela V., Pellegrino G., Morello A., Conte S., Di Serafino L., Cimmino G. Effects of colchicine on platelet aggregation in patients on dual antiplatelet therapy with aspirin and clopidogrel. J. Thromb. Thrombolysis. 2020;50:468–472. doi: 10.1007/s11239-020-02121-8.
    1. Choi H., Ryu J., Seo H., Kang M., Kim E. Is a high maintenance dose of clopidogrel suitable for overcoming clopidogrel resistance in patients? Int. J. Clin. Pharm. 2015;37:758–761. doi: 10.1007/s11096-015-0118-z.
    1. Montalescot G., Sideris G., Meuleman C., Bal-dit-Sollier C., Lellouche N., Steg P.G., Slama M., Milleron O., Collet J.-P., Henry P. A randomised comparison of high clopidogrel loading doses in patients with non–ST-segment elevation acute coronary syndromes: The ALBION (Assessment of the Best Loading Dose of Clopidogrel to Blunt Platelet Activation, Inflammation and Ongoing Necrosis) trial. J. Am. Coll. Cardiol. 2006;48:931–938.
    1. Snoep J.D., Hovens M.M., Eikenboom J.C., van der Bom J.G., Jukema J.W., Huisman M.V. Clopidogrel non-responsiveness in patients undergoing percutaneous coronary intervention with stenting: A systematic review and meta-analysis. Am. Heart J. 2007;154:221–231. doi: 10.1016/j.ahj.2007.04.014.
    1. Powers W.J., Clarke W.R., Grubb R.L., Videen T.O., Adams H.P., Derdeyn C.P., COSS Investigators F.T. Extracranial-intracranial bypass surgery for stroke prevention in hemodynamic cerebral ischemia: The Carotid Occlusion Surgery Study randomised trial. Jama. 2011;306:1983–1992. doi: 10.1001/jama.2011.1610.
    1. Liang J., Wang Z., Shi D., Liu Y., Zhao Y., Han H., Li Y., Liu W., Zhang L., Yang L. High clopidogrel dose in patients with chronic kidney disease having clopidogrel resistance after percutaneous coronary intervention. Angiology. 2015;66:319–325. doi: 10.1177/0003319714538804.
    1. Stellbaum C., Ayral Y., Morguet A., Schultheiss H.-P., Rauch U. Doubling the clopidogrel dose in patients with reduced responsiveness to the standard dose is associated with a limited effectiveness as evaluated by impedance aggregometry. Cardiovasc. Revascularization Med. 2012;13:159–166. doi: 10.1016/j.carrev.2012.02.009.
    1. Aĭnetdinova D., Udovichenko A., Sulimov V. Resistance to antiplatelet drugs in patients with non ST elevation acute coronary syndrome. Kardiologiia. 2008;48:35–39.
    1. Fong A.Y.Y., Ling H.S. Dual Antiplatelet and Glycoprotein Inhibitors in Emergency PCI. In: Watson T., Ong P., Tcheng J., editors. Primary Angioplasty: A Practical Guide. Springer; Gateway East, Singapore: 2018. pp. 99–108. Chapter 8.
    1. Schneider D.J. Anti-platelet therapy: Glycoprotein IIb-IIIa antagonists. Br. J. Clin. Pharmacol. 2011;72:672–682. doi: 10.1111/j.1365-2125.2010.03879.x.
    1. Jernberg T., Payne C.D., Winters K.J., Darstein C., Brandt J.T., Jakubowski J.A., Naganuma H., Siegbahn A., Wallentin L. Prasugrel achieves greater inhibition of platelet aggregation and a lower rate of non-responders compared with clopidogrel in aspirin-treated patients with stable coronary artery disease. Eur. Heart J. 2006;27:1166–1173. doi: 10.1093/eurheartj/ehi877.
    1. Shimamatsu J., Sasaki K.-I., Katsuki Y., Kawasaki T., Murasato Y., Ajisaka H., Yokoi H., Tashiro H., Harada A., Hirakawa Y. Prasugrel effectively reduces the platelet reactivity units in patients with genetically metabolic dysfunction of cytochrome P450 2C19 who are treated with long-term dual antiplatelet therapy after undergoing drug-eluting stent implantation. Heart Vessels. 2020;35:312–322. doi: 10.1007/s00380-019-01499-7.
    1. Huber K., Hamad B., Kirkpatrick P. Ticagrelor. Nar. Rev. Drug Discov. 2011;10:255–256. doi: 10.1038/nrd3418.
    1. Park S.-D., Lee M.-J., Baek Y.-S., Kwon S.-W., Shin S.-H., Woo S.-I., Kim D.-H., Kwan J., Park K.-S. Randomised trial to compare a protective effect of Clopidogrel Versus TIcagrelor on coronary Microvascular injury in ST-segment Elevation myocardial infarction (CV-TIME trial) EuroIntervention J. Eur. Colab. Work. Group Interv. Cadriol. Eur. Soc. Cadriol. 2016;12:e964–e971. doi: 10.4244/EIJV12I8A159.
    1. Sibbing D., Aradi D., Jacobshagen C. TROPICAL-ACS Investigators. A randomised trial on platelet function-guided de-escalation of antiplatelet treatment in ACS patients undergoing PCI. Rationale and design of the Testing Responsiveness to Platelet Inhibition on Chronic Antiplatelet Treatment for Acute Coronary Syndromes (TROPICAL-ACS) Trial. J. Thromb. Haemost. 2017;117:188–195.
    1. Sibbing D., Aradi D., Jacobshagen C., Gross L., Trenk D., Geisler T., Orban M., Hadamitzky M., Merkely B., Kiss R.G. Guided de-escalation of antiplatelet treatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention (TROPICAL-ACS): A randomised, open-label, multicentre trial. Lancet. 2017;390:1747–1757. doi: 10.1016/S0140-6736(17)32155-4.
    1. Boersma E., Pieper K.S., Steyerberg E.W., Wilcox R.G., Chang W.-C., Lee K.L., Akkerhuis K.M., Harrington R.A., Deckers J.W., Armstrong P.W. Predictors of outcome in patients with acute coronary syndromes without persistent ST-segment elevation: Results from an international trial of 9461 patients. Circulation. 2000;101:2557–2567. doi: 10.1161/01.CIR.101.22.2557.
    1. Eagle K.A., Lim M.J., Dabbous O.H., Pieper K.S., Goldberg R.J., Van de Werf F., Goodman S.G., Granger C.B., Steg P.G., Gore J.M. A validated prediction model for all forms of acute coronary syndrome: Estimating the risk of 6-month postdischarge death in an international registry. Jama. 2004;291:2727–2733. doi: 10.1001/jama.291.22.2727.
    1. Larmore C., Effron M.B., Molife C., DeKoven M., Zhu Y., Lu J., Karkare S., Lieu H.D., Lee W.C., Vetrovec G.W. “Real-world” comparison of prasugrel with ticagrelor in patients with acute coronary syndrome treated with percutaneous coronary intervention in the United States. Catherter. Cardiovasc. Interv. 2016;88:535–544. doi: 10.1002/ccd.26279.
    1. Wiviott S.D., Braunwald E., McCabe C.H., Montalescot G., Ruzyllo W., Gottlieb S., Neumann F.-J., Ardissino D., De Servi S., Murphy S.A. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Clin. Med. 2007;357:2001–2015. doi: 10.1056/NEJMoa0706482.
    1. Sibbing D., Gross L., Trenk D., Jacobshagen C., Geisler T., Hadamitzky M., Merkely B., Kiss R.G., Komócsi A., Parma R. Age and outcomes following guided de-escalation of antiplatelet treatment in acute coronary syndrome patients undergoing percutaneous coronary intervention: Results from the randomised TROPICAL-ACS trial. Eur. Heart J. 2018;39:2749–2758. doi: 10.1093/eurheartj/ehy332.

Source: PubMed

3
Abonner