Serious Game Platform as a Possibility for Home-Based Telerehabilitation for Individuals With Cerebral Palsy During COVID-19 Quarantine - A Cross-Sectional Pilot Study

Talita Dias da Silva, Paula Lumy da Silva, Elisa de Jesus Valenzuela, Eduardo Dati Dias, Amanda Orasmo Simcsik, Mariana Giovanelli de Carvalho, Anne Michelli Gomes Gonçalves Fontes, Camila Aparecida de Oliveira Alberissi, Luciano Vieira de Araújo, Murilo Vinícius da Costa Brandão, Helen Dawes, Carlos Bandeira de Mello Monteiro, Talita Dias da Silva, Paula Lumy da Silva, Elisa de Jesus Valenzuela, Eduardo Dati Dias, Amanda Orasmo Simcsik, Mariana Giovanelli de Carvalho, Anne Michelli Gomes Gonçalves Fontes, Camila Aparecida de Oliveira Alberissi, Luciano Vieira de Araújo, Murilo Vinícius da Costa Brandão, Helen Dawes, Carlos Bandeira de Mello Monteiro

Abstract

Introduction: There is a need to maintain rehabilitation activities and motivate movement and physical activity during quarantine in individuals with Cerebral Palsy (CP).

Objective: This paper sets out to evaluate the feasibility and potential benefits of using computer serious game in a non-immersive virtual reality (VR) implemented and evaluated completely remotely in participants with CP for Home-Based Telerehabilitation during the quarantine period for COVID-19.

Methods: Using a cross-sectional design, a total of 44 individuals participated in this study between March and June 2020, 22 of which had CP (14 males and 8 females, mean age = 19 years, ranging between 11 and 28 years) and 22 typically developing individuals, matched by age and sex to the individuals with CP. Participants practiced a coincident timing game1 and we measured movement performance and physical activity intensity using the rating of perceived exertion Borg scale.

Results: All participants were able to engage with the VR therapy remotely, reported enjoying sessions, and improved performance in some practice moments. The most important result in this cross-sectional study was the significant increasing in rating of perceived exertion (through Borg scale) in both groups during practice and with CP presenting a higher rating of perceived exertion.

Conclusion: Children with CP enjoyed participating, were able to perform at the same level as their peers on certain activities and increased both their performance and physical activity intensity when using the game, supporting the use of serious games for this group for home therapy and interactive games.

Clinical trials registration: https://Clinicaltrials.gov, NCT04402034. Registered on May 20, 2020.

Keywords: cerebral palsy; motor rehabilitation; physical functional performance; serious game; telerehabilitation.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Silva, Silva, Valenzuela, Dias, Simcsik, de Carvalho, Fontes, Alberissi, Araújo, Brandão, Dawes and Monteiro.

Figures

FIGURE 1
FIGURE 1
Participant positioning and game design.
FIGURE 2
FIGURE 2
Overview of study design.
FIGURE 3
FIGURE 3
Absolute Error mean and standard error for both CP and TD-groups during familiarization phase (M0) and the three following matches (M1 to M3), in the four positions of the targets (P1 to P4). P1 to P4: positions of the targets of the MoveHero task; M0 to M3: Matches of the task, in which M0 is the familiarization phase and M1 to M3 are the three matches; CP, cerebral palsy group; TD, typical development group. *p < 0.05 between CP and TD groups; ∞p < 0.05 between match 0 and all other matches.
FIGURE 4
FIGURE 4
Variable Error mean and standard error for both CP and TD-groups during familiarization phase (M0) and the three following matches (M1 to M3), in the four positions of the targets (P1 to P4). P1 to P4: positions of the targets of the MoveHero task; M0 to M3: Matches of task, in which M0 is the familiarization phase and M1 to M3 are the three matches; CP, cerebral palsy group; TD, typical development group. *p < 0.05 between CP and TD groups.
FIGURE 5
FIGURE 5
Mean and standard error of the percentage of hits for both CP and TD-groups during familiarization phase (M0) and the three following matches (M1 to M3), in the four positions of the targets (P1 to P4). P1 to P4: positions of the targets of the MoveHero task; M0 to M3: Matches of task, in which M0 is the familiarization phase and M1 to M3 are the three matches; CP, cerebral palsy group; TD, typical development group. *p < 0.05 between CP and TD groups; ∞p < 0.05 between match 0 and all other ma.
FIGURE 6
FIGURE 6
Mean and standard error of percentage of hits, misses, and the continuous score, for both CP and TD-groups during the familiarization phase (M0) and the three following matches (M1 to M3), in the four positions of the targets (P1 to P4). M0 to M3: Matches of task, in which M0 is the familiarization phase and M1 to M3 are the three matches; CP, cerebral palsy group; TD, typical development group. *p < 0.05 between CP and TD groups; ∞p < 0.05 between match 0 and all other matches.
FIGURE 7
FIGURE 7
Mean and standard error of RPE score, for both CP and TD-groups before first match (Mo0), after first (Mo1), second (Mo2), and third matches (Mo3), in the four positions of the targets (P1 to P4). M0 to M3: Moments of task, in which M0 is the familiarization phase and M1 to M3 are the three games; CP, cerebral palsy group; TD, typical development group. *p < 0.05 between CP and TD groups; ∞p < 0.05 between moments.
FIGURE 8
FIGURE 8
Representation of the answers of the individuals from both CP and TD groups regarding their satisfaction with the game. TD, Typical Development; CP,Cerebral Palsy; n = number of participants who chose this option. (A) shows the results of the participants who found the game fun. (B) shows the results of the participants who felt tired after the intervention. (C) shows the results of the participants who would like to continue using the game in the rehabilitation clinic. (D) shows the results of the participants who would like to keep using the game at home.

References

    1. Alvarez M. P., Silva T. D., Favero F. M., Valenti V. E., Raimundo R. D., Vanderlei L. C., et al. (2017). Autonomic modulation in Duchenne muscular dystrophy during a computer task: a prospective control trial. PLoS One 12:e0169633. 10.1371/journal.pone.0169633
    1. Andrews M., Bolt D. M., Braun M., Benedict R. E. (2013). Measuring exertion during caregiving of children and young adults with cerebral palsy who require assistance for mobility and self-care. Phys. Occup. Ther. Pediatr. 33 300–312. 10.3109/01942638.2012.754395
    1. Arnoni J. L. B., Pavão S. L., Silva F. P. S., Rocha N. A. C. F. (2019). Effects of virtual reality in body oscillation and motor performance of children with cerebral palsy: a preliminary randomized controlled clinical trial. Complem. Ther. Clin. Pract. 35 189–194. 10.1016/j.ctcp.2019.02.014
    1. Bax M., Goldstein M., Rosenbaum P., Leviton A., Paneth N., Dan B., et al. (2005). Proposed definition and classification of cerebral palsy, April 2005. Dev. Med. Child Neurol. 47 571–576. 10.1017/s001216220500112x
    1. Bezerra I. M. P., Crocetta T., Massetti T., da Silva T. D., Guarnieri R., Meira C. M. M. J., et al. (2018). Functional performance comparison between real and virtual tasks in older adults: a cross-sectional study. Medicine 97:e9612. 10.1097/MD.0000000000009612
    1. Booth A. T., Buizer A. I., Harlaar J., Steenbrink F., van der Krogt M. M. (2019). Immediate effects of immersive biofeedback on gait in children with cerebral palsy. Arch. Phys. Med. Rehabil. 100 598–605. 10.1016/j.apmr.2018.10.013
    1. Brooks S. K., Webster R. K., Smith L. E., Woodland L., Wessely S., Greenberg N., et al. (2020). The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet 395 912–920. 10.1016/S0140-6736(20)30460-8
    1. Bryanton C., Bossé J., Brien M., McLean J., McCormick A., Sveistrup H. (2006). Feasibility, motivation, and selective motor control: virtual reality compared to conventional home exercise in children with cerebral palsy. Cyberpsychol. Behav. 9 123–128. 10.1089/cpb.2006.9.123
    1. Carlon S. L., Taylor N. F., Dodd K. J., Shields N. (2013). Differences in habitual physical activity levels of young people with cerebral palsy and their typically developing peers: a systematic review. Disabil. Rehabil. 35 647–655. 10.3109/09638288.2012.715721
    1. Chan A. W., Tetzlaff J. M., Altman D. G., Laupacis A., Gøtzsche P. C., Krleža-Jeriæ K., et al. (2013). SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 158 200–207. 10.7326/0003-4819-158-3-201302050-00583
    1. Cho C., Hwang W., Hwang S., Chung Y. (2016). Treadmill training with virtual reality improves gait, balance, and muscle strength in children with cerebral palsy. Tohoku J. Exp. Med. 8 213–218. 10.1620/tjem.238.213
    1. Colver A., Fairhurst C., Pharoah P. O. (2014). Cerebral palsy. Lancet 383 1240–1249. 10.1016/S0140-6736(13)61835-8
    1. Cramer S. C., Dodakian L., Le V., See J., Augsburger R., McKenzie A., et al. (2019). Efficacy of home-based telerehabilitation vs in-clinic therapy for adults after stroke: a randomized clinical trial. JAMA Neurol. 76 1079–1087. 10.1001/jamaneurol.2019.1604
    1. Crocetta T. B., Oliveira S. R., Liz C. M., Andrade A. (2015). Virtual and augmented reality technologies in human performance: a review. Fisio Mov. 28 823–835. 10.1590/0103-5150.028.004.AR01
    1. da Silva T. D., Fontes A. M. G. G., de Oliveira-Furlan B. S., Roque T. T., Lima A. I. I., de Souza B. M. M., et al. (2020a). Effect of combined therapy of virtual reality and transcranial direct current stimulation in children and adolescents with cerebral palsy: a study protocol for a triple-blinded randomized controlled crossover trial. Front. Neurol. 11:953. 10.3389/fneur.2020.00953
    1. da Silva T. D., Ribeiro-Papa D. C., Coe S., Malheiros S. R. P., Massetti T., Meira Junior C. M., et al. (2020b). Evaluation of speed-accuracy trade-off in a computer task to identify motor difficulties in individuals with Duchenne muscular dystrophy - a cross-sectional study. Res. Dev. Disabil. 96 103541–103550. 10.1016/j.ridd.2019.103541
    1. de Mello Monteiro C. B., da Silva T. D., de Abreu L. C., Fregni F., de Araujo L. V., Ferreira F. H. I. B., et al. (2017). Short-term motor learning through non-immersive virtual reality task in individuals with down syndrome. BMC Neurol. 17:71. 10.1186/s12883-017-0852-z
    1. de Mello Monteiro C. B., Massetti T., da Silva T. D., van der Kamp J., de Abreu L. C., Leone C., et al. (2014). Transfer of motor learning from virtual to natural environments in individuals with cerebral palsy. Res. Dev. Disabil. 35 2430–2437. 10.1016/j.ridd.2014.06.006
    1. de Moraes ÍA. P., Monteiro C. B. M., Silva T. D. D., Massetti T., Crocetta T. B., de Menezes L. D. C., et al. (2020). Motor learning and transfer between real and virtual environments in young people with autism spectrum disorder: a prospective randomized cross over controlled trial. Autism Res. 13 307–319. 10.1002/aur.2208
    1. Fernani D. C. G. L., Prado M. T. A., da Silva T. D., Massetti T., de Abreu L. C., Magalhães F. H., et al. (2017). Evaluation of speed-accuracy trade-off in a computer task in individuals with cerebral palsy: a cross-sectional study. BMC Neurol. 17:143. 10.1186/s12883-017-0920-4
    1. Fortier M., Wiseman E., Sweet S. N., O’Sullivan T., Blanchard C. M., Sigal R. J., et al. (2011). A moderated mediation of motivation on physical activity in the context of the physical activity counseling randomized control trial. Phsy. Sport Exerc. 12 71–78. 10.1016/j.psychsport.2010.08.001
    1. French B., Thomas L. H., Coupe J., McMahon N. E., Connell L., Harrison J., et al. (2016). Repetitive task training for improving functional ability after stroke. Cochrane Database Syst. Rev. 11:CD006073. 10.1002/14651858.CD006073.pub3
    1. Gabitov E., Manor D., Karni A. (2014). Done that: short-term repetition related modulations of motor cortex activity as a stable signature for overnight motor memory consolidation. J. Cogn. Neurosci. 26 2716–2734. 10.1162/jocn_a_00675
    1. Gama A. D., Chaves T., Figueiredo L. S., Teichrieb V. (2012). “Guidance and movement correction based on therapeutics movements for motor rehabilitation support systems,” in Proceedings of the 2012 14th symposium on virtual and augmented reality, Rio de Janeiro, 1191–1200.
    1. Gibbs V., Toth-Cohen S. (2011). Family-centered occupational therapy and telerehabilitation for children with autism spectrum disorders. Occup. Ther. Health Care 25 298–314. 10.3109/07380577.2011.606460
    1. Gomes T. T., Schujmann D. S., Fu C. (2019). Rehabilitation through virtual reality: physical activity of patients admitted to the intensive care unit. Rev. Bra. Ter. Intensiva. 31 456–465. 10.5935/0103-507x.20190078
    1. González-Alonso M. Y., Matía Cubillo A. C. (2018). Características de los usuarios de la Asociación de Parálisis Cerebral [Characteristics of patients of the Cerebral Palsy Association]. Semergen 44 557–561. 10.1016/j.semerg.2018.07.003
    1. Heller G. Z., Manuguerra M., Chow R. (2016). How to analyze the visual analogue scale: myths, truths and clinical relevance. Scand. J. Pain 13 67–75. 10.1016/j.sjpain.2016.06.012
    1. Heyn P. C., Tagawa A., Pan Z., Thomas S., Carollo J. J. (2019). Prevalence of metabolic syndrome and cardiovascular disease risk factors in adults with cerebral palsy. Dev. Med. Child Neurol. 61 477–483. 10.1111/dmcn.14148
    1. Hjalmarsson E., Fernandez-Gonzalo R., Lidbeck C., Palmcrantz A., Jia A., Kvist O., et al. (2020). RaceRunning training improves stamina and promotes skeletal muscle hypertrophy in young individuals with cerebral palsy. BMC Musculoskelet. Disord. 21:193. 10.1186/s12891-020-03202-8
    1. Hosseiniravandi M., Kahlaee A. H., Karim H., Ghamkhar L., Safdari R. (2020). Home-based telerehabilitation software systems for remote supervising: a systematic review. Int. J. Technol. Assess. Health Care 36 113–125. 10.1017/S0266462320000021
    1. Jakovljevic M., Bjedov S., Jaksic N., Jakovljevic I. (2020). COVID-19 pandemia and public and global mental health from the perspective of global health securit. Psychiatr. Danub. 32 6–14. 10.24869/psyd.2020.6
    1. Katz-Leurer M., Amichai T. (2019). Heart rate variability in children with cerebral palsy. Dev. Med. Child Neurol. 61 730–731. 10.1111/dmcn.14095
    1. Kawahira K., Shimodozono M., Ogata A., Tanaka N. (2004). Addition of intensive repetition of facilitation exercise to multidisciplinary rehabilitation promotes motor functional recovery of the hemiplegic lower limb. J. Rehabil. Med. 36 159–164. 10.1080/16501970410029753
    1. Kerr C., Parkes J., Stevenson M., Cosgrove A. P., McDowell B. C. (2008). Energy efficiency in gait, activity, participation, and health status in children with cerebral palsy. Dev. Med. Child Neurol. 50 204–210. 10.1111/j.1469-8749.2008.02030.x
    1. Ko E. J., Sung I. Y., Moon H. J., Yuk J. S., Kim H. S., Lee N. H. (2020). Effect of group-task-oriented training on gross and fine motor function, and activities of daily living in children with spastic cerebral palsy. Phys. Occup. Ther. Pediatr. 40 18–30. 10.1080/01942638.2019.1642287
    1. Krajenbrink H., van Abswoude F., Vermeulen S., van Cappellen S., Steenbergen B. (2018). Motor learning and movement automatization in typically developing children: the role of instructions with an external or internal focus of attention. Hum. Mov. Sci. 60 183–190. 10.1016/j.humov.2018.06.010
    1. Lakens D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. 4:863. 10.3389/fpsyg.2013.00863
    1. Leal A. F., da Silva T. D., Lopes P. B., Bahadori S., de Araújo L. V., da Costa M. V. B., et al. (2020). The use of a task through virtual reality in cerebral palsy using two different interaction devices (concrete and abstract) - a cross-sectional randomized study. J. Neuroeng. Rehabil. 17 59–69. 10.1186/s12984-020-00689-z
    1. Levac D., Espy D., Fox E., Pradhan S., Deutsch J. E. (2015). “Kinect-ing” with clinicians: a knowledge translation resource to support decision making about video game use in rehabilitation. Phys. Ther. 95 426–440. 10.2522/ptj.20130618
    1. Lippi G., Henry B. M., Sanchis-Gomar F. (2020). Physical inactivity and cardiovascular disease at the time of coronavirus disease 2019 (COVID-19). Eur. J. Prev. Cardiol. 27 906–908. 10.1177/2047487320916823
    1. Lloréns R., Noé E., Colomer C., Alcañiz M. (2015). Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial. Arch. Phys. Med. Rehabil. 96 418–425. 10.1016/j.apmr.2014.10.019
    1. Lopez M. C., Gaétane D., Axel C. (2016). Ecological assessment of divided attention: what about the current tools and the relevancy of virtual reality. Rev. Neurol. 172 270–280. 10.1016/j.neurol.2016.01.399
    1. Maanum G., Jahnsen R., Frøslie K. F., Larsen K. L., Keller A. (2010). Walking ability and predictors of performance on the 6-minute walk test in adults with spastic cerebral palsy. Dev. Med. Child Neurol 52 e126–e132. 10.1111/j.1469-8749.2010.03614.x
    1. Magallón S., Narbona J., Crespo-Eguílaz N. (2016). Acquisition of motor and cognitive skills through repetition in typically developing children. PLoS One 11:e0158684. 10.1371/journal.pone.0158684
    1. Maltais D., Wilk B., Unnithan V., Bar-Or O. (2004). Responses of children with cerebral palsy to treadmill walking exercise in the heat. Med. Sci. Sports Exerc. 36 1674–1681. 10.1249/01.mss.0000142312.43629.d8
    1. Martins F. P. A., Massetti T., Crocetta T. B., Lopes P. B., da Silva A. A., Figueiredo E. F., et al. (2019). Analysis of motor performance in individuals with cerebral palsy using a non-immersive virtual reality task - a pilot study. Neuropsychiatr. Dis. Treat. 15 417–428. 10.2147/NDT.S184510
    1. Massetti T., Fávero F. M., Menezes L. D. C., Alvarez M. P. B., Crocetta T. B., Guarnieri R., et al. (2018). Achievement of virtual and real objects using a short-term motor learning protocol in people with duchenne muscular dystrophy: a crossover randomized controlled trial. Games Health J. 7 107–115. 10.1089/g4h.2016.0088
    1. Mitchell L., Ziviani J., Oftedal S., Boyd R. (2012). The effect of virtual reality interventions on physical activity in children and adolescents with early brain injuries including cerebral palsy. Dev. Med. Child Neurol. 54 667–671. 10.1111/j.1469-8749.2011.04199.x
    1. Novak I., Morgan C., Fahey M., Finch-Edmondson M., Galea C., Hines A., et al. (2020). State of the evidence traffic lights 2019: systematic review of interventions for preventing and treating children with cerebral palsy. Curr. Neurol. Neurosci. Rep. 20:3. 10.1007/s11910-020-1022-z
    1. Panteliadis C. P., Hagel C., Karch D., Heinemann K. (2015). Cerebral palsy: a lifelong challenge asks for early intervention. Open Neurol. J. 9 45–52. 10.2174/1874205X01509010045
    1. Pereira M. E., Rueda M. F., Diego A. I. M., Cano de la Cuerda R., Mauro A., Page M. J. C. (2014). Empleo de sistemas de realidad virtual como método de propiocepción en parálisis cerebral: guía de práctica clínica. Neurología 29 550–559. 10.1016/j.nrl.2011.12.004
    1. Pourazar M., Mirakhori F., Hemayattalab R., Bagherzadeh F. (2018). Use of virtual reality intervention to improve reaction time in children with cerebral palsy: a randomized controlled trial. Dev. Neurorehabil. 21 515–520. 10.1080/17518423.2017.1368730
    1. Powell K. E., Paluch A. E., Blair S. N. (2011). Physical activity for health: what kind? How much? How intense? On top of what? Annu. Rev. Public Health 32 349–365. 10.1146/annurev-publhealth-031210-101151
    1. Prado M. T. A., Fernani D. C. G. L., Silva T. D. D., Smorenburg A. R. P., Abreu L. C., de Mello Monteiro C. B. (2017). Motor learning paradigm and contextual interference in manual computer tasks in individuals with cerebral palsy. Res. Dev. Disabil. 64 56–63. 10.1016/j.ridd.2017.03.006
    1. Reedman S. E., Boyd R. N., Elliott C., Sakzewski L. (2017). ParticiPAte CP: a protocol of a randomised waitlist controlled trial of a motivational and behaviour change therapy intervention to increase physical activity through meaningful participation in children with cerebral palsy. BMJ Open 7 e015918. 10.1136/bmjopen-2017-015918
    1. Reid L. B., Rose S. E., Boyd R. N. (2015). Rehabilitation and neuroplasticity in children with unilateral cerebral palsy. Nat. Rev. Neurol. 11 390–400. 10.1038/nrneurol.2015.97
    1. Runciman P., Tucker R., Ferreira S., Albertus-Kajee Y., Derman W. (2016). Paralympic athletes with cerebral palsy display altered pacing strategies in distance-deceived shuttle running trials. Scand. J. Med. Sci. Sports 26 1239–1248. 10.1111/sms.12575
    1. Schröder J., van Criekinge T., Embrechts E., Celis X., Van Schuppen J., Truijen S., et al. (2019). Combining the benefits of tele-rehabilitation and virtual reality-based balance training: a systematic review on feasibility and effectiveness. Disabil. Rehabil. Assist. Technol. 14 2–11. 10.1080/17483107.2018.1503738
    1. Shafer R. L., Solomon E. M., Newell K. M., Lewis M. H., Bodfish J. W. (2019). Visual feedback during motor performance is associated with increased complexity and adaptability of motor and neural output. Behav. Brain Res. 376 112214–112225. 10.1016/j.bbr.2019.112214
    1. Sheehy L., Taillon-Hobson A., Sveistrup H., Bilodeau M., Fergusson D., Levac D., et al. (2016). Does the addition of virtual reality training to a standard program of inpatient rehabilitation improve sitting balance ability and function after stroke? Protocol for a single-blind randomized controlled trial. BMC Neurol. 16:42. 10.1186/s12883-016-0563-x
    1. Soares L. M. D. S., Rozane J. M. S. G., Carvalho R. P. (2019). Motor performance of children with cerebral palsy in anterior reach. Clin. Biomech. 68 158–162. 10.1016/j.clinbiomech.2019.06.007
    1. Steenbergen B., Jongbloed-Pereboom M., Spruijt S., Gordon A. M. (2013). Impaired motor planning and motor imagery in children with unilateral spastic cerebral palsy: challenges for the future of pediatric rehabilitation. Dev. Med. Child Neurol. 4 43–46. 10.1111/dmcn.12306
    1. Sung Y. T., Wu J. S. (2018). The visual analogue scale for rating, ranking and paired-comparison (VAS-RRP): a new technique for psychological measurement. Behav. Res. Methods 50 1694–1715. 10.3758/s13428-018-1041-8
    1. Szturm T., Imran Z., Pooyania S., Kanitkar A., Mahana B. (2020). Evaluation of a game based tele rehabilitation platform for in-home therapy of hand-arm function post stroke: feasibility study. PM R 10.1002/pmrj.12354 [Epub ahead of print].
    1. Villiger M., Estévez N., Hepp-Reymond M. C., Kiper D., Kollias S. S., Eng K., et al. (2013). Enhanced activation of motor execution networks using action observation combined with imagination of lower limb movements. PLoS One 8:e72403. 10.1371/journal.pone.0072403
    1. Wadden K. P., Hodges N. J., De Asis K. L., Neva J. L., Boyd L. A. (2019). Individualized challenge point practice as a method to aid motor sequence learning. J. Mot. Behav. 51 467–485. 10.1080/00222895.2018.1518310
    1. White R. (2017). Helping Children to Improve Their Gross Motor Skills: The Stepping Stones Curriculum. London: Jessica Kingsley Publishers.
    1. World Health Organization (2004). Atlas: Country Resources for Neurological Disorders 2004: Results of a Collaborative Study of the World Health Organization and the World Federation of Neurology. Geneva: World Health Organization.
    1. Wulf G., Lewthwaite R. (2016). Optimizing performance through intrinsic motivation and attention for learning: the OPTIMAL theory of motor learning. Psychon. Bull. Rev. 23 1382–1414. 10.3758/s13423-015-0999-9
    1. Zangirolami-Raimundo J., Raimundo R. D., da Silva T. D., de Andrade P. E., Benetti F. A., da Silva Paiva L., et al. (2019). Contrasting performance between physically active and sedentary older people playing exergames. Medicine 98:e14213. 10.1097/MD.0000000000014213

Source: PubMed

3
Abonner