Investigating the Efficacy of an 18-Week Postpartum Rehabilitation and Physical Development Intervention on Occupational Physical Performance and Musculoskeletal Health in UK Servicewomen: Protocol for an Independent Group Study Design

Kirsty Jayne Elliott-Sale, Emma Louise Bostock, Thea Jackson, Sophie Louise Wardle, Thomas James O'Leary, Julie Patricia Greeves, Craig Sale, Kirsty Jayne Elliott-Sale, Emma Louise Bostock, Thea Jackson, Sophie Louise Wardle, Thomas James O'Leary, Julie Patricia Greeves, Craig Sale

Abstract

Background: Postpartum women are at an increased risk of pelvic floor dysfunction, musculoskeletal injury, and poor psychological health and have reduced physical fitness compared to before pregnancy. There is no formal, evidence-based rehabilitation and physical development program for returning UK servicewomen to work following childbirth.

Objective: This study aims to examine the efficacy of a rehabilitation and physical development intervention for returning postpartum UK servicewomen to occupational fitness.

Methods: Eligible servicewomen will be assigned to a training or control group in a nonrandomized controlled trial 6 weeks after childbirth. Group allocation will be based on the location of standard pregnancy and postpartum care. The control group will receive standard care, with no prescribed intervention. The training group will start an 18-week core and pelvic health rehabilitation program 6 weeks post partum and a 12-week resistance and high-intensity interval training program 12 weeks post partum. All participants will attend 4 testing sessions at 6, 12, 18, and 24 weeks post partum for the assessment of occupational physical performance, pelvic health, psychological well-being, quality of life, and musculoskeletal health outcomes. Occupational physical performance tests will include vertical jump, mid-thigh pull, seated medicine ball throw, and a timed 2-km run. Pelvic health tests will include the Pelvic Organ Prolapse Quantification system, the PERFECT (power, endurance, repetitions, fast, every contraction timed) scheme for pelvic floor strength, musculoskeletal physiotherapy assessment, the Pelvic Floor Distress Inventory-20 questionnaire, and the International Consultation on Incontinence Questionnaire-Vaginal Symptoms. Psychological well-being and quality of life tests will include the World Health Organization Quality of Life questionnaire and the Edinburgh Postnatal Depression Scale. Musculoskeletal health outcomes will include body composition; whole-body areal bone mineral density; tibial volumetric bone mineral density, geometry, and microarchitecture; patella tendon properties; muscle architecture; muscle protein and collagen turnover; and muscle mass and muscle breakdown. Data will be analyzed using linear mixed-effects models, with participants included as random effects, and group and time as fixed effects to assess within- and between-group differences over time.

Results: This study received ethical approval in April 2019 and recruitment started in July 2019. The study was paused in March 2020 owing to the COVID-19 pandemic. Recruitment restarted in May 2021. The results are expected in September 2022.

Conclusions: This study will inform the best practice for the safe and optimal return of postpartum servicewomen to physically and mentally demanding jobs.

Trial registration: ClinicalTrials.gov NCT04332757; https://ichgcp.net/clinical-trials-registry/NCT04332757.

International registered report identifier (irrid): DERR1-10.2196/32315.

Keywords: exercise; intervention; musculoskeletal; pelvic health; performance; postnatal; servicewomen; well-being.

Conflict of interest statement

Conflicts of Interest: SLW is employed by the UK Ministry of Defence as a defence scientist and is a project officer on this trial. TJOL is employed by the UK Ministry of Defence as a defence scientist. KJES and CS are co-grant holders and co-principal investigators in this trial. JPG is employed by the UK Ministry of Defence as a principal scientist and defence principal investigator on this trial.

©Kirsty Jayne Elliott-Sale, Emma Louise Bostock, Thea Jackson, Sophie Louise Wardle, Thomas James O'Leary, Julie Patricia Greeves, Craig Sale. Originally published in JMIR Research Protocols (https://www.researchprotocols.org), 01.06.2022.

Figures

Figure 1
Figure 1
Study schematic.
Figure 2
Figure 2
Testing procedures. EPDS: Edinburgh Postnatal Depression Scale; ICIQ-VS: International Consultation on Incontinence Questionnaire–Vaginal Symptoms; PFDI-20: Pelvic Floor Distress Inventory–20; WHOQOL-BREF: World Health Organization Quality of Life.
Figure 3
Figure 3
Physical development training mesocycles and training blocks. RM: repetition maximum.
Figure 4
Figure 4
Procedures for muscle protein and collagen turnover using deuterium oxide (D2O).
Figure 5
Figure 5
Procedures for muscle mass analyses using D3-creatine (D3Cr).
Figure 6
Figure 6
Procedures for muscle protein breakdown using D3-3-methyl-histidine (D3-3MH).

References

    1. Uustal Fornell E, Wingren G, Kjølhede P. Factors associated with pelvic floor dysfunction with emphasis on urinary and fecal incontinence and genital prolapse: an epidemiological study. Acta Obstet Gynecol Scand. 2004 Apr;83(4):383–9. doi: 10.1111/j.0001-6349.2004.00367.x. doi: 10.1111/j.0001-6349.2004.00367.x.367
    1. Sung VW, Hampton BS. Epidemiology of pelvic floor dysfunction. Obstet Gynecol Clin North Am. 2009 Sep;36(3):421–43. doi: 10.1016/j.ogc.2009.08.002.S0889-8545(09)00067-9
    1. Sultan AH, Monga AK, Kumar D, Stanton SL. Primary repair of obstetric anal sphincter rupture using the overlap technique. Br J Obstet Gynaecol. 1999 Apr;106(4):318–23. doi: 10.1111/j.1471-0528.1999.tb08268.x.
    1. Viktrup L, Rortveit G, Lose G. Risk of stress urinary incontinence twelve years after the first pregnancy and delivery. Obstet Gynecol. 2006 Aug;108(2):248–54. doi: 10.1097/01.AOG.0000226860.01127.0e.108/2/248
    1. Rortveit G, Daltveit AK, Hannestad YS, Hunskaar S, Norwegian EPINCONT Study Urinary incontinence after vaginal delivery or cesarean section. N Engl J Med. 2003 Mar 06;348(10):900–7. doi: 10.1056/NEJMoa021788.348/10/900
    1. Pollack J, Nordenstam J, Brismar S, Lopez A, Altman D, Zetterstrom J. Anal incontinence after vaginal delivery: a five-year prospective cohort study. Obstet Gynecol. 2004 Dec;104(6):1397–402. doi: 10.1097/01.AOG.0000147597.45349.e8.104/6/1397
    1. MacLennan AH, Taylor AW, Wilson DH, Wilson D. The prevalence of pelvic floor disorders and their relationship to gender, age, parity and mode of delivery. BJOG. 2000 Dec;107(12):1460–70. doi: 10.1111/j.1471-0528.2000.tb11669.x.
    1. MacArthur C, Glazener CM, Wilson PD, Herbison GP, Gee H, Lang GD, Lancashire R. Obstetric practice and faecal incontinence three months after delivery. BJOG. 2001 Jul;108(7):678–83. doi: 10.1111/j.1471-0528.2001.00183.x.
    1. Foldspang A, Mommsen S, Djurhuus JC. Prevalent urinary incontinence as a correlate of pregnancy, vaginal childbirth, and obstetric techniques. Am J Public Health. 1999 Mar;89(2):209–12. doi: 10.2105/ajph.89.2.209.
    1. Eason E, Labrecque M, Marcoux S, Mondor M. Anal incontinence after childbirth. CMAJ. 2002 Mar 05;166(3):326–30.
    1. Borg-Stein J, Dugan SA. Musculoskeletal disorders of pregnancy, delivery and postpartum. Phys Med Rehabil Clin N Am. 2007 Aug;18(3):459–76, ix. doi: 10.1016/j.pmr.2007.05.005.S1047-9651(07)00049-6
    1. Marnach ML, Ramin KD, Ramsey PS, Song SW, Stensland JJ, An KN. Characterization of the relationship between joint laxity and maternal hormones in pregnancy. Obstet Gynecol. 2003 Mar;101(2):331–5. doi: 10.1016/s0029-7844(02)02447-x.S002978440202447X
    1. Schauberger CW, Rooney BL, Goldsmith L, Shenton D, Silva PD, Schaper A. Peripheral joint laxity increases in pregnancy but does not correlate with serum relaxin levels. Am J Obstet Gynecol. 1996 Mar;174(2):667–71. doi: 10.1016/s0002-9378(96)70447-7.S0002-9378(96)70447-7
    1. Møller UK, Við Streym S, Mosekilde L, Rejnmark L. Changes in bone mineral density and body composition during pregnancy and postpartum. A controlled cohort study. Osteoporos Int. 2012 Apr;23(4):1213–23. doi: 10.1007/s00198-011-1654-6.
    1. Laskey MA, Prentice A. Bone mineral changes during and after lactation. Obstet Gynecol. 1999 Oct;94(4):608–15. doi: 10.1016/s0029-7844(99)00369-5.S0029-7844(99)00369-5
    1. Kolthoff N, Eiken P, Kristensen B, Nielsen SP. Bone mineral changes during pregnancy and lactation: a longitudinal cohort study. Clin Sci (Lond) 1998 Apr;94(4):405–12. doi: 10.1042/cs0940405.
    1. More C, Bettembuk P, Bhattoa HP, Balogh A. The effects of pregnancy and lactation on bone mineral density. Osteoporos Int. 2001;12(9):732–7. doi: 10.1007/s001980170048.
    1. Honda A, Kurabayashi T, Yahata T, Tomita M, Takakuwa K, Tanaka K. Lumbar bone mineral density changes during pregnancy and lactation. Int J Gynaecol Obstet. 1998 Dec;63(3):253–8. doi: 10.1016/s0020-7292(98)00155-6.S0020729298001556
    1. Webb DA, Bloch JR, Coyne JC, Chung EK, Bennett IM, Culhane JF. Postpartum physical symptoms in new mothers: their relationship to functional limitations and emotional well-being. Birth. 2008 Sep;35(3):179–87. doi: 10.1111/j.1523-536X.2008.00238.x. BIR238
    1. Shorey S, Chee CY, Ng ED, Chan YH, Tam WW, Chong YS. Prevalence and incidence of postpartum depression among healthy mothers: a systematic review and meta-analysis. J Psychiatr Res. 2018 Sep;104:235–48. doi: 10.1016/j.jpsychires.2018.08.001.S0022-3956(18)30492-8
    1. Sit DK, Wisner KL. Identification of postpartum depression. Clin Obstet Gynecol. 2009 Sep;52(3):456–68. doi: 10.1097/GRF.0b013e3181b5a57c. 00003081-200909000-00018
    1. Appolonio KK, Fingerhut R. Postpartum depression in a military sample. Mil Med. 2008 Nov;173(11):1085–91. doi: 10.7205/milmed.173.11.1085.
    1. Dipietro L, Evenson KR, Bloodgood B, Sprow K, Troiano RP, Piercy KL, Vaux-Bjerke A, Powell KE, 2018 PHYSICAL ACTIVITY GUIDELINES ADVISORY COMMITTEE* Benefits of physical activity during pregnancy and postpartum: an umbrella review. Med Sci Sports Exerc. 2019 Jun;51(6):1292–302. doi: 10.1249/MSS.0000000000001941. 00005768-201906000-00024
    1. Bø K, Hilde G, Stær-Jensen J, Siafarikas F, Tennfjord MK, Engh ME. Postpartum pelvic floor muscle training and pelvic organ prolapse--a randomized trial of primiparous women. Am J Obstet Gynecol. 2015 Jan;212(1):38.e1–7. doi: 10.1016/j.ajog.2014.06.049.S0002-9378(14)00629-2
    1. Hilde G, Stær-Jensen J, Siafarikas F, Ellström Engh M, Bø K. Postpartum pelvic floor muscle training and urinary incontinence: a randomized controlled trial. Obstet Gynecol. 2013 Dec;122(6):1231–8. doi: 10.1097/AOG.0000000000000012.
    1. Kolberg Tennfjord M, Hilde G, Staer-Jensen J, Siafarikas F, Engh ME, Bø K. Effect of postpartum pelvic floor muscle training on vaginal symptoms and sexual dysfunction-secondary analysis of a randomised trial. BJOG. 2016 Mar;123(4):634–42. doi: 10.1111/1471-0528.13823.
    1. Gluppe SL, Hilde G, Tennfjord MK, Engh ME, Bø K. Effect of a postpartum training program on the prevalence of diastasis recti abdominis in postpartum primiparous women: a randomized controlled trial. Phys Ther. 2018 Apr 01;98(4):260–8. doi: 10.1093/ptj/pzy008. 4813620
    1. LeCheminant JD, Hinman T, Pratt KB, Earl N, Bailey BW, Thackeray R, Tucker LA. Effect of resistance training on body composition, self-efficacy, depression, and activity in postpartum women. Scand J Med Sci Sports. 2014 Apr;24(2):414–21. doi: 10.1111/j.1600-0838.2012.01490.x.
    1. Zourladani A, Zafrakas M, Chatzigiannis B, Papasozomenou P, Vavilis D, Matziari C. The effect of physical exercise on postpartum fitness, hormone and lipid levels: a randomized controlled trial in primiparous, lactating women. Arch Gynecol Obstet. 2015 Mar;291(3):525–30. doi: 10.1007/s00404-014-3418-y.
    1. Lovelady CA, Bopp MJ, Colleran HL, Mackie HK, Wideman L. Effect of exercise training on loss of bone mineral density during lactation. Med Sci Sports Exerc. 2009 Oct;41(10):1902–7. doi: 10.1249/MSS.0b013e3181a5a68b.
    1. Cordell RF, Wickes CK, Casey A, Greeves JP. Female UK Army Service personnel are at greater risk of work-related morbidity on return to duty postpartum. BMJ Mil Health (forthcoming) 2020 Mar 02; doi: 10.1136/jramc-2019-001282.jramc-2019-001282
    1. Armitage NH, Smart DA. Changes in Air Force fitness measurements pre- and post-childbirth. Mil Med. 2012 Dec;177(12):1519–23. doi: 10.7205/milmed-d-12-00248.
    1. Weina SU. Effects of pregnancy on the Army Physical Fitness Test. Mil Med. 2006 Jun;171(6):534–7. doi: 10.7205/milmed.171.6.534.
    1. Miller MJ, Kutcher J, Adams KL. Effect of pregnancy on performance of a standardized physical fitness test. Mil Med. 2017 Nov;182(11):e1859–63. doi: 10.7205/MILMED-D-17-00093.
    1. Rychnovsky JD. Postpartum fatigue in the active-duty military woman. J Obstet Gynecol Neonatal Nurs. 2007;36(1):38–46. doi: 10.1111/j.1552-6909.2006.00112.x.S0884-2175(15)33649-2
    1. Interim report on the health risks to women in Ground Close Combat roles: WGCC/Interim-Report/10/2016. Minist Defence, United Kingdom. 2016. [2020-11-30]. .
    1. SPARTA (Soldier Performance And Readiness As Tactical Athletes) Study. University of Pittsburgh. [2019-10-30]. .
    1. Greg H, Travis TN. Essentials of Strength Training and Conditioning. 4th edition. Champaign, IL, USA: Human Kinetics; 2016. pp. 439–469.
    1. Bump RC, Mattiasson A, Bø K, Brubaker LP, DeLancey JO, Klarskov P, Shull BL, Smith AR. The standardization of terminology of female pelvic organ prolapse and pelvic floor dysfunction. Am J Obstet Gynecol. 1996 Jul;175(1):10–7. doi: 10.1016/s0002-9378(96)70243-0.S0002-9378(96)70243-0
    1. Stark D, Dall P, Abdel-Fattah M, Hagen S. Feasibility, inter- and intra-rater reliability of physiotherapists measuring prolapse using the pelvic organ prolapse quantification system. Int Urogynecol J. 2010 Jun;21(6):651–6. doi: 10.1007/s00192-009-1089-1.
    1. Laycock J, Jerwood D. Pelvic floor muscle assessment: the PERFECT scheme. Physiother. 2001 Dec;87(12):631–42. doi: 10.1016/s0031-9406(05)61108-x.
    1. Goom T, Donnelly G, Brockwell E. Returning to running postnatal – guidelines for medical, health and fitness professionals managing this population. Absolute Physio. 2019. Mar, [2019-07-30]. .
    1. Barber MD, Kuchibhatla MN, Pieper CF, Bump RC. Psychometric evaluation of 2 comprehensive condition-specific quality of life instruments for women with pelvic floor disorders. Am J Obstet Gynecol. 2001 Dec;185(6):1388–95. doi: 10.1067/mob.2001.118659.S0002-9378(01)42594-4
    1. Price N, Jackson SR, Avery K, Brookes ST, Abrams P. Development and psychometric evaluation of the ICIQ Vaginal Symptoms Questionnaire: the ICIQ-VS. BJOG. 2006 Jun;113(6):700–12. doi: 10.1111/j.1471-0528.2006.00938.x.BJO938
    1. Webster J, Nicholas C, Velacott C, Cridland N, Fawcett L. Validation of the WHOQOL-BREF among women following childbirth. Aust N Z J Obstet Gynaecol. 2010 Apr;50(2):132–7. doi: 10.1111/j.1479-828X.2009.01131.x.AJO1131
    1. Cox JL, Holden JM, Sagovsky R. Detection of postnatal depression. Development of the 10-item Edinburgh Postnatal Depression Scale. Br J Psychiatry. 1987 Jun;150:782–6. doi: 10.1192/bjp.150.6.782.S0007125000214712
    1. Rodriguez-Sanchez N, Galloway SD. Errors in dual energy x-ray absorptiometry estimation of body composition induced by hypohydration. Int J Sport Nutr Exerc Metab. 2015 Mar;25(1):60–8. doi: 10.1123/ijsnem.2014-0067.2014-0067
    1. Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab. 2005 Dec;90(12):6508–15. doi: 10.1210/jc.2005-1258.jc.2005-1258
    1. Hughes JM, Gaffney-Stomberg E, Guerriere KI, Taylor KM, Popp KL, Xu C, Unnikrishnan G, Staab JS, Matheny Jr RW, McClung JP, Reifman J, Bouxsein ML. Changes in tibial bone microarchitecture in female recruits in response to 8 weeks of U.S. Army Basic Combat Training. Bone. 2018 Aug;113:9–16. doi: 10.1016/j.bone.2018.04.021.S8756-3282(18)30175-3
    1. Burghardt AJ, Buie HR, Laib A, Majumdar S, Boyd SK. Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone. 2010 Sep;47(3):519–28. doi: 10.1016/j.bone.2010.05.034. S8756-3282(10)01285-8
    1. Vilayphiou N, Boutroy S, Szulc P, van Rietbergen B, Munoz F, Delmas PD, Chapurlat R. Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in men. J Bone Miner Res. 2011 May;26(5):965–73. doi: 10.1002/jbmr.297. doi: 10.1002/jbmr.297.
    1. O'Leary TJ, Wardle SL, Gifford RM, Double RL, Reynolds RM, Woods DR, Greeves JP. Tibial macrostructure and microarchitecture adaptations in women during 44 weeks of arduous military training. J Bone Miner Res. 2021 Jul;36(7):1300–15. doi: 10.1002/jbmr.4290.
    1. Reeves ND, Maganaris CN, Narici MV. Effect of strength training on human patella tendon mechanical properties of older individuals. J Physiol. 2003 May 01;548(Pt 3):971–81. doi: 10.1113/jphysiol.2002.035576. doi: 10.1113/jphysiol.2002.035576.2002.035576
    1. Lippold OC. The relation between integrated action potentials in a human muscle and its isometric tension. J Physiol. 1952 Aug;117(4):492–9. doi: 10.1113/jphysiol.1952.sp004763.
    1. Visser JJ, Hoogkamer JE, Bobbert MF, Huijing PA. Length and moment arm of human leg muscles as a function of knee and hip-joint angles. Eur J Appl Physiol Occup Physiol. 1990;61(5-6):453–60. doi: 10.1007/BF00236067.
    1. Reeves ND, Maganaris CN, Longo S, Narici MV. Differential adaptations to eccentric versus conventional resistance training in older humans. Exp Physiol. 2009 Jul;94(7):825–33. doi: 10.1113/expphysiol.2009.046599. doi: 10.1113/expphysiol.2009.046599.expphysiol.2009.046599
    1. Ando R, Taniguchi K, Saito A, Fujimiya M, Katayose M, Akima H. Validity of fascicle length estimation in the vastus lateralis and vastus intermedius using ultrasonography. J Electromyogr Kinesiol. 2014 Apr;24(2):214–20. doi: 10.1016/j.jelekin.2014.01.003.S1050-6411(14)00024-8
    1. Reeves ND, Narici MV, Maganaris CN. Effect of resistance training on skeletal muscle-specific force in elderly humans. J Appl Physiol (1985) 2004 Mar;96(3):885–92. doi: 10.1152/japplphysiol.00688.2003. 00688.2003
    1. Wilkinson DJ, Franchi MV, Brook MS, Narici MV, Williams JP, Mitchell WK, Szewczyk NJ, Greenhaff PL, Atherton PJ, Smith K. A validation of the application of D(2)O stable isotope tracer techniques for monitoring day-to-day changes in muscle protein subfraction synthesis in humans. Am J Physiol Endocrinol Metab. 2014 Mar 01;306(5):E571–9. doi: 10.1152/ajpendo.00650.2013. ajpendo.00650.2013
    1. Brook MS, Wilkinson DJ, Mitchell WK, Lund JN, Szewczyk NJ, Greenhaff PL, Smith K, Atherton PJ. Skeletal muscle hypertrophy adaptations predominate in the early stages of resistance exercise training, matching deuterium oxide-derived measures of muscle protein synthesis and mechanistic target of rapamycin complex 1 signaling. FASEB J. 2015 Nov;29(11):4485–96. doi: 10.1096/fj.15-273755.fj.15-273755
    1. Clark RV, Walker AC, O'Connor-Semmes RL, Leonard MS, Miller RR, Stimpson SA, Turner SM, Ravussin E, Cefalu WT, Hellerstein MK, Evans WJ. Total body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in humans. J Appl Physiol (1985) 2014 Jun 15;116(12):1605–13. doi: 10.1152/japplphysiol.00045.2014. japplphysiol.00045.2014
    1. Kraemer WJ, Mazzetti SA, Nindl BC, Gotshalk LA, Volek JS, Bush JA, Marx JO, Dohi K, Gómez AL, Miles M, Fleck SJ, Newton RU, Häkkinen K. Effect of resistance training on women's strength/power and occupational performances. Med Sci Sports Exerc. 2001 Jun;33(6):1011–25. doi: 10.1097/00005768-200106000-00022.
    1. Hendrickson NR, Sharp MA, Alemany JA, Walker LA, Harman EA, Spiering BA, Hatfield DL, Yamamoto LM, Maresh CM, Kraemer WJ, Nindl BC. Combined resistance and endurance training improves physical capacity and performance on tactical occupational tasks. Eur J Appl Physiol. 2010 Aug;109(6):1197–208. doi: 10.1007/s00421-010-1462-2.

Source: PubMed

3
Abonner