Predictors of successful separation from high-flow nasal oxygen therapy in patients with acute respiratory failure: a retrospective monocenter study

Maeva Rodriguez, Arnaud W Thille, Florence Boissier, Anne Veinstein, Delphine Chatellier, René Robert, Sylvain Le Pape, Jean-Pierre Frat, Remi Coudroy, Maeva Rodriguez, Arnaud W Thille, Florence Boissier, Anne Veinstein, Delphine Chatellier, René Robert, Sylvain Le Pape, Jean-Pierre Frat, Remi Coudroy

Abstract

Background: High-flow nasal oxygen therapy (HFOT) is a promising first-line therapy for acute respiratory failure. However, its weaning has never been investigated and could lead to unnecessary prolonged intensive-care unit (ICU) stay. The aim of this study is to assess predictors of successful separation from HFOT in critically ill patients. We performed a retrospective monocenter observational study over a 2-year period including all patients treated with HFOT for acute respiratory failure in the ICU. Those who died or were intubated without prior HFOT separation attempt, who were treated with non-invasive ventilation at the time of HFOT separation, or who received HFOT as a preventive treatment during the post-extubation period were excluded.

Results: From the 190 patients analyzed, 168 (88%) were successfully separated from HFOT at the first attempt. Patients who failed separation from HFOT at the first attempt had longer ICU length of stay than those who succeeded: 10 days (7-12) vs. 5 (4-8), p < 0.0001. Fraction of inspired oxygen (FiO2) ≤ 40% and a respiratory rate-oxygenation (ROX) index (calculated as the ratio of SpO2/FiO2 to the respiratory rate) ≥ 9.2 predicted successful separation from HFOT with sensitivity of 85% and 84%, respectively.

Conclusions: FiO2 ≤ 40% and ROX index ≥ 9.2 were two predictors of successful separation from HFOT at the bedside. Prospective multicenter studies are needed to confirm these results.

Keywords: High-flow nasal oxygen therapy; Intensive-care units; Length of stay; Observational study; Oximetry; Ventilator weaning.

Conflict of interest statement

AWT reports travel expenses to attend scientific meetings by Fisher and Paykel, Covidien, General Electrics, and Maquet-Getinge. J-PF reports consulting fees from Fisher and Paykel. RC reports travel expenses to attend scientific meetings by MSD and Fisher and Paykel. MR, FB, AV, SLP, and RR report no competing interests.

Figures

Fig. 1
Fig. 1
Flow chart of patients included over the study period
Fig. 2
Fig. 2
Last physiological parameters recorded at the bedside under high-flow nasal oxygen therapy before the first separation attempt. a Box-plot of FiO2 according to the success or failure of the first separation attempt (p = 0.02). b Box-plot of the ROX index according to the success or failure of the first separation attempt (p = 0.002)

References

    1. Rochwerg B, Brochard L, Elliott MW, et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J. 2017;50:1602426. doi: 10.1183/13993003.02426-2016.
    1. Mauri T, Turrini C, Eronia N, et al. Physiologic effects of high-flow nasal cannula in acute hypoxemic respiratory failure. Am J Respir Crit Care Med. 2017;195:1207–1215. doi: 10.1164/rccm.201605-0916OC.
    1. Longhini F, Pisani L, Lungu R, et al. High-flow oxygen therapy after noninvasive ventilation interruption in patients recovering from hypercapnic acute respiratory failure: a physiological crossover trial. Crit Care Med. 2019;47:e506–e511. doi: 10.1097/CCM.0000000000003740.
    1. Frat J-P, Thille AW, Mercat A, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372:2185–2196. doi: 10.1056/NEJMoa1503326.
    1. Hernández G, Vaquero C, González P, et al. Effect of postextubation high-flow nasal cannula vs. conventional oxygen therapy on reintubation in low-risk patients: a randomized clinical trial. JAMA. 2016;315:1354. doi: 10.1001/jama.2016.2711.
    1. Hernandez G, Vaquero C, Colinas L, et al. Effect of postextubation high-flow nasal cannula vs noninvasive ventilation on reintubation and postextubation respiratory failure in high-risk patients: a randomized clinical trial. JAMA. 2016;316:1565–1574. doi: 10.1001/jama.2016.14194.
    1. Stephan F, Barrucand B, Petit P, et al. High-flow nasal oxygen vs noninvasive positive airway pressure in hypoxemic patients after cardiothoracic surgery: a randomized clinical trial. JAMA. 2015;313:2331–2339. doi: 10.1001/jama.2015.5213.
    1. Thille AW, Harrois A, Schortgen F, et al. Outcomes of extubation failure in medical intensive care unit patients. Crit Care Med. 2011;39:2612–2618. doi: 10.1097/CCM.0b013e3182282a5a.
    1. Rubin LG, Levin MJ, Ljungman P, et al. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis. 2014;58:e44–e100. doi: 10.1093/cid/cit684.
    1. Roca O, Caralt B, Messika J, et al. An index combining respiratory rate and oxygenation to predict outcome of nasal high flow therapy. Am J Respir Crit Care Med. 2019;199:1368–1376. doi: 10.1164/rccm.201803-0589OC.
    1. Wettstein RB, Shelledy DC, Peters JI. Delivered oxygen concentrations using low-flow and high-flow nasal cannulas. Respir Care. 2005;50:604–609.
    1. Mauri T, Alban L, Turrini C, et al. Optimum support by high-flow nasal cannula in acute hypoxemic respiratory failure: effects of increasing flow rates. Intensive Care Med. 2017;43:1453–1463. doi: 10.1007/s00134-017-4890-1.
    1. Eronia N, Mauri T, Maffezzini E, et al. Bedside selection of positive end-expiratory pressure by electrical impedance tomography in hypoxemic patients: a feasibility study. Ann Intensive Care. 2017;7:76. doi: 10.1186/s13613-017-0299-9.
    1. Thille AW, Cortés-Puch I, Esteban A. Weaning from the ventilator and extubation in ICU. Curr Opin Crit Care. 2013;19:57–64. doi: 10.1097/MCC.0b013e32835c5095.

Source: PubMed

3
Abonner