Effect of weight loss, with or without exercise, on body composition and sex hormones in postmenopausal women: the SHAPE-2 trial

Willemijn A M van Gemert, Albertine J Schuit, Job van der Palen, Anne M May, Jolein A Iestra, Harriet Wittink, Petra H Peeters, Evelyn M Monninkhof, Willemijn A M van Gemert, Albertine J Schuit, Job van der Palen, Anne M May, Jolein A Iestra, Harriet Wittink, Petra H Peeters, Evelyn M Monninkhof

Abstract

Introduction: Physical inactivity and overweight are risk factors for postmenopausal breast cancer. The effect of physical activity may be partially mediated by concordant weight loss. We studied the effect on serum sex hormones, which are known to be associated with postmenopausal breast cancer risk, that is attributable to exercise by comparing randomly obtained equivalent weight loss by following a hypocaloric diet only or mainly by exercise.

Methods: Overweight, insufficiently active women were randomised to a diet (N = 97), mainly exercise (N = 98) or control group (N = 48). The goal of both interventions was to achieve 5-6 kg of weight loss by following a calorie-restricted diet or an intensive exercise programme combined with only a small caloric restriction. Primary outcomes after 16 weeks were serum sex hormones and sex hormone-binding globulin (SHBG). Body fat and lean mass were measured by dual-energy X-ray absorptiometry.

Results: Both the diet (-4.9 kg) and mainly exercise (-5.5 kg) groups achieved the target weight loss. Loss of body fat was significantly greater with exercise versus diet (difference -1.4 kg, P < 0.001). In the mainly exercise arm, the reduction in free testosterone was statistically significantly greater than that of the diet arm (treatment effect ratio [TER] 0.92, P = 0.043), and the results were suggestive of a difference for androstenedione (TER 0.90, P = 0.064) and SHBG (TER 1.05, P = 0.070). Compared with the control arm, beneficial effects were seen with both interventions, diet and mainly exercise, respectively, on oestradiol (TER 0.86, P = 0.025; TER 0.83, P = 0.007), free oestradiol (TER 0.80, P = 0.002; TER 0.77, P < 0.001), SHBG (TER 1.14; TER 1.21, both P < 0.001) and free testosterone (TER 0.91, P = 0.069; TER = 0.84, P = 0.001). After adjustment for changes in body fat, intervention effects attenuated or disappeared.

Conclusions: Weight loss with both interventions resulted in favourable effects on serum sex hormones, which have been shown to be associated with a decrease in postmenopausal breast cancer risk. Weight loss induced mainly by exercise additionally resulted in maintenance of lean mass, greater fitness, greater fat loss and a larger effect on (some) sex hormones. The greater fat loss likely explains the observed larger effects on sex hormones.

Trial registration: ClinicalTrials.gov identifier: NCT01511276 . Registered on 12 January 2012.

Figures

Fig. 1
Fig. 1
Flowchart of the inclusion, random assignment and follow-up of the Sex Hormones and Physical Exercise (SHAPE)-2 study participants. ‘Dropouts’ refers to women who withdrew from the study before the end of the study and who did not participate in follow-up measurements. ‘Not received intervention as assigned’ refers to women who also withdrew from the study prematurely, but who attended follow-up measurements. DEXA dual-energy X-ray absorptiometry

References

    1. World Cancer Research Fund, American Institute for Cancer Research (AICR). Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington DC: AICR; 2007. . Accessed 25 August 2015.
    1. Parkin DM. 9. Cancers attributable to inadequate physical exercise in the UK in 2010. Br J Cancer. 2011;105:S38–41.
    1. Parkin DM, Boyd L. 8. Cancers attributable to overweight and obesity in the UK in 2010. Br J Cancer. 2011;105:S34–7.
    1. van Gemert WAM. Exercise, weight loss and biomarkers for breast cancer risk. PhD thesis, University Medical Centre Utrecht, Julius Centre for Health Sciences and Primary Care, Department of Epidemiology; 2014.
    1. Neilson HK, Conroy SM, Friedenreich CM. The influence of energetic factors on biomarkers of postmenopausal breast cancer risk. Curr Nutr Rep. 2013;3:22–34. doi: 10.1007/s13668-013-0069-8.
    1. Kaaks R, Rinaldi S, Key TJ, Berrino F, Peeters PH, Biessy C, et al. Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition. Endocr Relat Cancer. 2005;12:1071–1082. doi: 10.1677/erc.1.01038.
    1. The Endogenous Hormones and Breast Cancer Collaborative Group Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst. 2002;94:606–616. doi: 10.1093/jnci/94.8.606.
    1. McTiernan A, Tworoger SS, Rajan KB, Yasui Y, Sorenson B, Ulrich CM, et al. Effect of exercise on serum androgens in postmenopausal women: a 12-month randomized clinical trial. Cancer Epidemiol Biomarkers Prev. 2004;13:1099–1105.
    1. Monninkhof EM, Velthuis MJ, Peeters PH, Twisk JW, Schuit AJ. Effect of exercise on postmenopausal sex hormone levels and role of body fat: a randomized controlled trial. J Clin Oncol. 2009;27:4492–4499. doi: 10.1200/JCO.2008.19.7459.
    1. Friedenreich CM, Woolcott CG, McTiernan A, Ballard-Barbash R, Brant RF, Stanczyk FZ, et al. Alberta Physical Activity and Breast Cancer Prevention Trial: sex hormone changes in a year-long exercise intervention among postmenopausal women. J Clin Oncol. 2010;28:1458–1466. doi: 10.1200/JCO.2009.24.9557.
    1. van Gemert WA, Iestra JI, Schuit AJ, May AM, Takken T, Veldhuis WB, et al. Design of the SHAPE-2 study: the effect of physical activity, in addition to weight loss, on biomarkers of postmenopausal breast cancer risk. BMC Cancer. 2013;13:395. doi: 10.1186/1471-2407-13-395.
    1. Health Council of the Netherlands. Guidelines for a healthy diet 2006. The Hague, The Netherlands: Author; 18 December 2006. . Accessed 25 August 2015.
    1. Armstrong MJ, Mottershead TA, Ronksley PE, Sigal RJ, Campbell TS, Hemmelgarn BR. Motivational interviewing to improve weight loss in overweight and/or obese patients: a systematic review and meta-analysis of randomized controlled trials. Obes Rev. 2011;12:709–723.
    1. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR Jr, Tudor-Locke C, et al. The compendium of physical activities tracking guide. Phoenix, AZ: Healthy Lifestyle Research Center, College of Nursing and Health Innovation, Arizona State University. . Accessed 25 August 2015.
    1. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR, Jr, Tudor-Locke C, et al. 2011 Compendium of Physical Activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43:1575–1581. doi: 10.1249/MSS.0b013e31821ece12.
    1. Stiegler P, Cunliffe A. The role of diet and exercise for the maintenance of fat-free mass and resting metabolic rate during weight loss. Sports Med. 2006;36:239–262. doi: 10.2165/00007256-200636030-00005.
    1. Drenowatz C, Hand GA, Sagner M, Shook RP, Burgess S, Blair SN. The prospective association between different types of exercise and body composition. Med Sci Sports Exerc In press. doi:10.1249/MSS.0000000000000701. 2015 May 12. [Epub ahead of print].
    1. Asikainen TM, Miilunpalo S, Kukkonen-Harjula K, Nenonen A, Pasanen M, Rinne M, et al. Walking trials in postmenopausal women: effect of low doses of exercise and exercise fractionization on coronary risk factors. Scand J Med Sci Sports. 2003;13:284–292. doi: 10.1034/j.1600-0838.2003.00331.x.
    1. Garrow JS, Summerbell CD. Meta-analysis: effect of exercise, with or without dieting, on the body composition of overweight subjects. Eur J Clin Nutr. 1995;49:1–10.
    1. King NA, Caudwell P, Hopkins M, Byrne NM, Colley R, Hills AP, et al. Metabolic and behavioral compensatory responses to exercise interventions: barriers to weight loss. Obesity (Silver Spring). 2007;15:1373–1383. doi: 10.1038/oby.2007.164.
    1. Schwartz MW, Woods SC, Porte D, Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000;404:661–671.
    1. Wendel-Vos GC, Schuit AJ, Saris WH, Kromhout D. Reproducibility and relative validity of the short questionnaire to assess health-enhancing physical activity. J Clin Epidemiol. 2003;56:1163–1169. doi: 10.1016/S0895-4356(03)00220-8.
    1. Kelly LA, McMillan DG, Anderson A, Fippinger M, Fillerup G, Rider J. Validity of ActiGraph’s uniaxial and triaxial accelerometers for assessment of physical activity in adults in laboratory conditions. BMC Med Phys. 2013;13:5. doi: 10.1186/1756-6649-13-5.
    1. Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30:777–781. doi: 10.1097/00005768-199805000-00021.
    1. Handelsman DJ, Wartofsky L. Requirement for mass spectrometry sex steroid assays in the Journal of Clinical Endocrinology and Metabolism. J Clin Endocrinol Metab. 2013;98:3971–3973. doi: 10.1210/jc.2013-3375.
    1. Rinaldi S, Geay A, Déchaud H, Biessy C, Zeleniuch-Jacquotte A, Akhmedkhanov A, et al. Validity of free testosterone and free estradiol determinations in serum samples from postmenopausal women by theoretical calculations. Cancer Epidemiol Biomarkers Prev. 2002;11:1065–1071.
    1. Thienpont LM, Van Uytfanghe K, Blincko S, Ramsay CS, Xie H, Doss RC, et al. State-of-the-art of serum testosterone measurement by isotope dilution-liquid chromatography-tandem mass spectrometry. Clin Chem. 2008;54:1290–1297. doi: 10.1373/clinchem.2008.105841.
    1. Owen LJ, Wu FC, Keevil BG. A rapid direct assay for the routine measurement of oestradiol and oestrone by liquid chromatography tandem mass spectrometry. Ann Clin Biochem. 2014;51:360–367. doi: 10.1177/0004563213501478.
    1. Groenwold RH, Donders AR, Roes KC, Harrell FE, Jr, Moons KG. Dealing with missing outcome data in randomized trials and observational studies. Am J Epidemiol. 2012;175:210–217. doi: 10.1093/aje/kwr302.
    1. Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Obesity Society. J Am Coll Cardiol. 2014;63:2985–3023. A published erratum appears in. J Am Coll Cardiol. 2014;63:3029–3030. doi: 10.1016/j.jacc.2013.11.004.
    1. Eliassen AH, Colditz GA, Rosner B, Willett WC, Hankinson SE. Adult weight change and risk of postmenopausal breast cancer. JAMA. 2006;296:193–201. doi: 10.1001/jama.296.2.193.
    1. Harvie M, Howell A, Vierkant RA, Kumar N, Cerhan JR, Kelemen LE, et al. Association of gain and loss of weight before and after menopause with risk of postmenopausal breast cancer in the Iowa Women’s Health Study. Cancer Epidemiol Biomarkers Prev. 2005;14:656–661. doi: 10.1158/1055-9965.EPI-04-0001.
    1. McTiernan A, Tworoger SS, Ulrich CM, Yasui Y, Irwin ML, Rajan KB, et al. Effect of exercise on serum estrogens in postmenopausal women: a 12-month randomized clinical trial. Cancer Res. 2004;64:2923–2928. doi: 10.1158/0008-5472.CAN-03-3393.
    1. Siiteri PK. Adipose tissue as a source of hormones. Am J Clin Nutr. 1987;45:277–282.
    1. Hardy OT, Czech MP, Corvera S. What causes the insulin resistance underlying obesity? Curr Opin Endocrinol Diabetes Obes. 2012;19:81–87. doi: 10.1097/MED.0b013e3283514e13.
    1. Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4:579–591. doi: 10.1038/nrc1408.
    1. Berrino F, Bellati C, Secreto G, Camerini E, Pala V, Panico S, et al. Reducing bioavailable sex hormones through a comprehensive change in diet: the diet and androgens (DIANA) randomized trial. Cancer Epidemiol Biomarkers Prev. 2001;10:25–33.
    1. Bhargava A. Fiber intakes and anthropometric measures are predictors of circulating hormone, triglyceride, and cholesterol concentrations in the Women’s Health Trial. J Nutr. 2006;136:2249–2254.
    1. Campbell KL, Foster-Schubert KE, Alfano CM, Wang CC, Wang CY, Duggan CR, et al. Reduced-calorie dietary weight loss, exercise, and sex hormones in postmenopausal women: randomized controlled trial. J Clin Oncol. 2012;30:2314–2326. doi: 10.1200/JCO.2011.37.9792.
    1. Kim TN, Choi KM. Sarcopenia: definition, epidemiology, and pathophysiology. J Bone Metab. 2013;20:1–10. doi: 10.11005/jbm.2013.20.1.1.
    1. Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK, American College of Sports Medicine American College of Sports Medicine Position Stand: Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41:459–471. doi: 10.1249/MSS.0b013e3181949333.
    1. Jensen MD, Ryan DH, Donato KA, Apovian CM, Ard JD, Comuzzie AG, et al. Expert Panel Members. Executive summary: guidelines (2013) for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Obesity Society published by the Obesity Society and American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Based on a systematic review from the Obesity Society Expert Panel, 2013. Obesity (Silver Spring) 2014;22:S5–S39. doi: 10.1002/oby.20778.
    1. Tsigos C, Hainer V, Basdevant A, Finer N, Fried M, Mathus-Vliegen E, et al. Management of obesity in adults: European clinical practice guidelines. Obes Facts. 2008;1:106–116. doi: 10.1159/000126822.
    1. Monninkhof EM, Elias SG, Vlems FA, van der Tweel I, Schuit AJ, Voskuil DW, et al. Physical activity and breast cancer: a systematic review. Epidemiology. 2007;18:137–157. doi: 10.1097/01.ede.0000251167.75581.98.
    1. Wu Y, Zhang D, Kang S. Physical activity and risk of breast cancer: a meta-analysis of prospective studies. Breast Cancer Res Treat. 2013;137:869–882. doi: 10.1007/s10549-012-2396-7.
    1. Rinaldi S, Kaaks R, Friedenreich CM, Key TJ, Travis R, Biessy C, et al. Physical activity, sex steroid, and growth factor concentrations in pre- and post-menopausal women: a cross-sectional study within the EPIC cohort. Cancer Causes Control. 2014;25:111–124. doi: 10.1007/s10552-013-0314-x.
    1. Chan MF, Dowsett M, Folkerd E, Bingham S, Wareham N, Luben R, et al. Usual physical activity and endogenous sex hormones in postmenopausal women: the European Prospective Investigation into Cancer–Norfolk Population Study. Cancer Epidemiol Biomarkers Prev. 2007;16:900–905. doi: 10.1158/1055-9965.EPI-06-0745.
    1. Geisler J, Helle H, Ekse D, Duong NK, Evans DB, Nordbø Y, et al. Letrozole is superior to anastrozole in suppressing breast cancer tissue and plasma estrogen levels. Clin Cancer Res. 2008;14:6330–6335. doi: 10.1158/1078-0432.CCR-07-5221.
    1. Lønning PE, Geisler J, Krag LE, Erikstein B, Bremnes Y, Hagen AI, et al. Effects of exemestane administered for 2 years versus placebo on bone mineral density, bone biomarkers, and plasma lipids in patients with surgically resected early breast cancer. J Clin Oncol. 2005;23:5126–5137. doi: 10.1200/JCO.2005.07.097.
    1. Dixon JM, Renshaw L, Young O, Murray J, Macaskill EJ, McHugh M, et al. Letrozole suppresses plasma estradiol and estrone sulphate more completely than anastrozole in postmenopausal women with breast cancer. J Clin Oncol. 2008;26:1671–1676. doi: 10.1200/JCO.2007.13.9279.
    1. Cuzick J, Sestak I, Forbes JF, Dowsett M, Knox J, Cawthorn S, et al. Anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-II): an international, double-blind, randomised placebo-controlled trial. Lancet. 2014;383:1041–8. A published erratum appears in. Lancet. 2014;383:1040. doi: 10.1016/S0140-6736(14)60125-2.
    1. Goss PE, Ingle JN, Alés-Martínez JE, Cheung AM, Chlebowski RT, Wactawski-Wende J, et al. Exemestane for breast-cancer prevention in postmenopausal women. N Engl J Med. 2011;364:2381–2391. doi: 10.1056/NEJMoa1103507.
    1. van Sluijs EM, van Poppel MN, Twisk JW, van Mechelen W. Physical activity measurements affected participants’ behavior in a randomized controlled trial. J Clin Epidemiol. 2006;59:404–411. doi: 10.1016/j.jclinepi.2005.08.016.
    1. Blair IA. Analysis of estrogens in serum and plasma from postmenopausal women: past present, and future. Steroids. 2010;75:297–306. doi: 10.1016/j.steroids.2010.01.012.
    1. Nelson RE, Grebe SK, O’Kane DJ, Singh RJ. Liquid chromatography–tandem mass spectrometry assay for simultaneous measurement of estradiol and estrone in human plasma. Clin Chem. 2004;50:373–384. doi: 10.1373/clinchem.2003.025478.

Source: PubMed

3
Abonner