Methemoglobin and nitric oxide therapy in Ugandan children hospitalized for febrile illness: results from a prospective cohort study and randomized double-blind placebo-controlled trial

Andrea L Conroy, Michael Hawkes, Kyla Hayford, Laura Hermann, Chloe R McDonald, Suparna Sharma, Sophie Namasopo, Robert O Opoka, Chandy C John, W Conrad Liles, Christopher Miller, Kevin C Kain, Andrea L Conroy, Michael Hawkes, Kyla Hayford, Laura Hermann, Chloe R McDonald, Suparna Sharma, Sophie Namasopo, Robert O Opoka, Chandy C John, W Conrad Liles, Christopher Miller, Kevin C Kain

Abstract

Background: Exposure of red blood cells to oxidants increases production of methemoglobin (MHb) resulting in impaired oxygen delivery to tissues. There are no reliable estimates of methemoglobinemia in low resource clinical settings. Our objectives were to: i) evaluate risk factors for methemoglobinemia in Ugandan children hospitalized with fever (study 1); and ii) investigate MHb responses in critically ill Ugandan children with severe malaria treated with inhaled nitric oxide (iNO), an oxidant that induces MHb in a dose-dependent manner (study 2).

Methods: Two prospective studies were conducted at Jinja Regional Referral Hospital in Uganda between 2011 and 2013. Study 1, a prospective cohort study of children admitted to hospital with fever (fever cohort, n = 2089 children 2 months to 5 years). Study 2, a randomized double-blind placebo-controlled parallel arm trial of room air placebo vs. 80 ppm iNO as an adjunctive therapy for children with severe malaria (RCT, n = 180 children 1-10 years receiving intravenous artesunate and 72 h of study gas). The primary outcomes were: i) masimo pulse co-oximetry elevated MHb levels at admission (>2 %, fever cohort); ii) four hourly MHb levels in the RCT.

Results: In the fever cohort, 34 % of children admitted with fever had elevated MHb at admission. Children with a history of vomiting, delayed capillary refill, elevated lactate, severe anemia, malaria, or hemoglobinopathies had increased odds of methemoglobinemia (p < 0.05 in a multivariate model). MHb levels at admission were higher in children who died (n = 89) compared to those who survived (n = 1964), p = 0.008. Among children enrolled in the iNO RCT, MHb levels typically plateaued within 12-24 h of starting study gas. MHb levels were higher in children receiving iNO compared to placebo, and MHb > 10 % occurred in 5.7 % of children receiving iNO. There were no differences in rates of study gas discontinuation between trial arms.

Conclusions: Hospitalized children with evidence of impaired oxygen delivery, metabolic acidosis, anemia, or malaria were at risk of methemoglobinemia. However, we demonstrated high-dose iNO could be safely administered to critically ill children with severe malaria with appropriate MHb monitoring.

Trial registration: ClinicalTrials.gov Identifier: NCT01255215 (Date registered: December 5, 2010).

Keywords: Anemia; Fever; Inhaled nitric oxide; Malaria; Metabolic acidosis; Methemoglobin; Oxygen delivery; Pediatrics; Uganda.

Figures

Fig. 1
Fig. 1
MHb levels in children with severe malaria randomized to room air or nitric oxide as an adjunctive therapy to intravenous artesunate. a Box and whisker plots showing the median (IQR) and 95 % CI for the trial arms at scheduled four hourly MHb checks. b Representative MHb plots for a random subset (10 %) of study participants (n = 7 placebo arm, n = 10 nitric oxide arm)
Fig. 2
Fig. 2
Representative graphs of methemoglobin kinetics and nitric oxide concentrations administered to children with severe malaria over hospitalization. a, b, c Representative plots from children receiving study gas with no interruptions to study gas. d, e, f Graphs showing MHb kinetics in children with a temporary interruption to study gas administration. g, h, i Graphs from children who had study gas permanently discontinued because they met criteria for acute kidney injury. j, k, l, Graphs from non-survivors
Fig. 3
Fig. 3
Flow chart of study enrolment for the randomized controlled trial

References

    1. Murray CJ, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, Fullman N, Naghavi M, Lozano R, Lopez AD. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet. 2012;379(9814):413–431. doi: 10.1016/S0140-6736(12)60034-8.
    1. John CC, Kutamba E, Mugarura K, Opoka RO. Adjunctive therapy for cerebral malaria and other severe forms of Plasmodium falciparum malaria. Expert Rev Anti-Infect Ther. 2010;8(9):997–1008. doi: 10.1586/eri.10.90.
    1. Higgins SJ, Kain KC, Liles WC. Immunopathogenesis of falciparum malaria: implications for adjunctive therapy in the management of severe and cerebral malaria. Expert Rev Anti Infect Ther. 2011;9(9):803–819. doi: 10.1586/eri.11.96.
    1. Page AV, Liles WC. Biomarkers of endothelial activation/dysfunction in infectious diseases. Virulence. 2013;4(6):507–516. doi: 10.4161/viru.24530.
    1. Griffiths MJ, Evans TW. Inhaled nitric oxide therapy in adults. N Engl J Med. 2005;353(25):2683–2695. doi: 10.1056/NEJMra051884.
    1. Hobbs MR, Udhayakumar V, Levesque MC, Booth J, Roberts JM, Tkachuk AN, Pole A, Coon H, Kariuki S, Nahlen BL, et al. A new NOS2 promoter polymorphism associated with increased nitric oxide production and protection from severe malaria in Tanzanian and Kenyan children. Lancet. 2002;360(9344):1468–1475. doi: 10.1016/S0140-6736(02)11474-7.
    1. Cramer JP, Nussler AK, Ehrhardt S, Burkhardt J, Otchwemah RN, Zanger P, Dietz E, Gellert S, Bienzle U, Mockenhaupt FP. Age-dependent effect of plasma nitric oxide on parasite density in Ghanaian children with severe malaria. Trop Med Int Health. 2005;10(7):672–680. doi: 10.1111/j.1365-3156.2005.01438.x.
    1. Anstey NM, Weinberg JB, Hassanali MY, Mwaikambo ED, Manyenga D, Misukonis MA, Arnelle DR, Hollis D, McDonald MI, Granger DL. Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. J Exp Med. 1996;184(2):557–567. doi: 10.1084/jem.184.2.557.
    1. Gramaglia I, Sobolewski P, Meays D, Contreras R, Nolan JP, Frangos JA, Intaglietta M, van der Heyde HC. Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria. Nat Med. 2006;12(12):1417–1422. doi: 10.1038/nm1499.
    1. Serghides L, Kim H, Lu Z, Kain DC, Miller C, Francis RC, Liles WC, Zapol WM, Kain KC. Inhaled nitric oxide reduces endothelial activation and parasite accumulation in the brain, and enhances survival in experimental cerebral malaria. PLoS ONE. 2011;6(11):e27714. doi: 10.1371/journal.pone.0027714.
    1. Finer NN, Barrington KJ. Nitric oxide for respiratory failure in infants born at or near term. Cochrane Database Syst Rev. 2006;4:CD000399.
    1. Barrington KJ, Finer NN. Inhaled nitric oxide for respiratory failure in preterm infants. Cochrane Database Syst Rev. 2006;1:CD000509.
    1. Hawkes M, Opoka RO, Namasopo S, Miller C, Thorpe KE, Lavery JV, Conroy AL, Liles WC, John CC, Kain KC. Inhaled nitric oxide for the adjunctive therapy of severe malaria: protocol for a randomized controlled trial. Trials. 2011;12:176. doi: 10.1186/1745-6215-12-176.
    1. Hawkes M, Opoka RO, Namasopo S, Miller C, Conroy AL, Serghides L, Kim H, Thampi N, Liles WC, John CC, et al. Nitric oxide for the adjunctive treatment of severe malaria: hypothesis and rationale. Med Hypotheses. 2011;77(3):437–444. doi: 10.1016/j.mehy.2011.06.003.
    1. Weinberger B, Laskin DL, Heck DE, Laskin JD. The toxicology of inhaled nitric oxide. Toxicol Sci. 2001;59(1):5–16. doi: 10.1093/toxsci/59.1.5.
    1. Ashurst J, Wasson M. Methemoglobinemia: a systematic review of the pathophysiology, detection, and treatment. Del Med J. 2011;83(7):203–208.
    1. Jaffe ER, Hultquist DE. The Metabolic and Molecular Basis of Inherited Diseases. New York: McGraw-Hill; 1995. Cytochrome b5 reductase deficiency and enzymopenic hereditary methemoglobinemia; pp. 2267–2280.
    1. Wright RO, Lewander WJ, Woolf AD. Methemoglobinemia: etiology, pharmacology, and clinical management. Ann Emerg Med. 1999;34(5):646–656. doi: 10.1016/S0196-0644(99)70167-8.
    1. Okello PE, Van Bortel W, Byaruhanga AM, Correwyn A, Roelants P, Talisuna A, D’alessandro U, Coosemans M. Variation in malaria transmission intensity in seven sites throughout Uganda. AmJTrop Med Hyg. 2006;75(2):219–225.
    1. Idro R, Aloyo J, Mayende L, Bitarakwate E, John CC, Kivumbi GW. Severe malaria in children in areas with low, moderate and high transmission intensity in Uganda. Trop Med Int Health. 2006;11(1):115–124. doi: 10.1111/j.1365-3156.2005.01518.x.
    1. Hawkes M, Conroy AL, Opoka RO, Namasopo S, Liles WC, John CC, Kain KC. Use of a three-band HRP2/pLDH combination rapid diagnostic test increases diagnostic specificity for falciparum malaria in Ugandan children. Malar J. 2014;13:43. doi: 10.1186/1475-2875-13-43.
    1. Dondorp AM, Fanello CI, Hendriksen IC, Gomes E, Seni A, Chhaganlal KD, Bojang K, Olaosebikan R, Anunobi N, Maitland K, et al. Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet. 2010;376(9753):1647–57. doi: 10.1016/S0140-6736(10)61924-1.
    1. Clark RH, Kueser TJ, Walker MW, Southgate WM, Huckaby JL, Perez JA, Roy BJ, Keszler M, Kinsella JP. Low-dose nitric oxide therapy for persistent pulmonary hypertension of the newborn. Clinical Inhaled Nitric Oxide Research Group. N Engl J Med. 2000;342(7):469–474. doi: 10.1056/NEJM200002173420704.
    1. Hawkes MT, Conroy AL, Opoka RO, Hermann L, Thorpe KE, McDonald C, Kim H, Higgins S, Namasopo S, John C, Miller C, Liles WC, Kain KC. Inhaled nitric oxide as adjunctive therapy for severe malaria: a randomized controlled trial. Malaria J. 2015;14:421. doi: 10.1186/s12936-015-0946-2.
    1. Hjelt K, Lund JT, Scherling B, Bendixen S, Lundstrom K, Stovring S, Voldsgaard P, Linnet K. Methaemoglobinaemia among neonates in a neonatal intensive care unit. Acta Paediatr. 1995;84(4):365–370. doi: 10.1111/j.1651-2227.1995.tb13650.x.
    1. Panin G, Pernechele M, Giurioli R, Secchieri S, Milanesi O, Pellegrino PA, Chiandetti L. Cytochrome b5 reductase activity in erythrocytes and leukocytes as related to sex and age. Clin Chem. 1984;30(5):701–703.
    1. Gupta SK, Gupta RC, Seth AK, Gupta AB, Bassin JK, Gupta A. Adaptation of cytochrome-b5 reductase activity and methaemoglobinaemia in areas with a high nitrate concentration in drinking-water. Bull World Health Organ. 1999;77(9):749–753.
    1. Haruna R, Ejobi F, Kabagambe EK. The quality of water from protected springs in Katwe and Kisenyi parishes, Kampala city, Uganda. Afr Health Sci. 2005;5(1):14–20.
    1. van Gemert F, Chavannes N, Nabadda N, Luzige S, Kirenga B, Eggermont C, de Jong C, van der Molen T. Impact of chronic respiratory symptoms in a rural area of sub-Saharan Africa: an in-depth qualitative study in the Masindi district of Uganda. Prim Care Respir J. 2013;22(3):300–305. doi: 10.4104/pcrj.2013.00064.
    1. Male-Mukasa JB. Uganda National Household Survey. Uganda Bureau of Statistics; 2010. ().
    1. Pollack ES, Pollack CV., Jr Incidence of subclinical methemoglobinemia in infants with diarrhea. Ann Emerg Med. 1994;24(4):652–656. doi: 10.1016/S0196-0644(94)70275-6.
    1. Yano SS, Danish EH, Hsia YE. Transient methemoglobinemia with acidosis in infants. J Pediatr. 1982;100(3):415–418. doi: 10.1016/S0022-3476(82)80446-0.
    1. Taylor TE, Borgstein A, Molyneux ME. Acid-base status in paediatric Plasmodium falciparum malaria. Q J Med. 1993;86(2):99–109.
    1. Krishna S, Waller DW, ter Kuile F, Kwiatkowski D, Crawley J, Craddock CF, Nosten F, Chapman D, Brewster D, Holloway PA, et al. Lactic acidosis and hypoglycaemia in children with severe malaria: pathophysiological and prognostic significance. Trans R Soc Trop Med Hyg. 1994;88(1):67–73. doi: 10.1016/0035-9203(94)90504-5.
    1. Marsh K, English M, Crawley J, Peshu N. The pathogenesis of severe malaria in African children. Ann Trop Med Parasitol. 1996;90(4):395–402.
    1. Shugalei IV, L’Vov SN, Baev VI, Tselinskii IV. Protective effect of sodium bicarbonate in nitrite ion poisoning. Ukr Biokhim Zh. 1994;66(1):109–112.
    1. Klurfeld G, Smith RP. Effects of chloride and bicarbonate on methemoglobin reduction in mouse erythrocytes. Biochem Pharmacol. 1968;17(6):1067–1077. doi: 10.1016/0006-2952(68)90364-X.
    1. Bernstein SC, Bowman JE, Noche LK. Interaction of sickle cell trait and glucose-6-phosphate dehydrogenase deficiency in Cameroon. Hum Hered. 1980;30(1):7–11. doi: 10.1159/000153080.
    1. Bwayo D, Kaddumukasa M, Ddungu H, Kironde F. Prevalence of glucose-6-phosphate dehydrogenase deficiency and its association with Plasmodium falciparum infection among children in Iganga distric in Uganda. BMC Res Notes. 2014;7(1):372. doi: 10.1186/1756-0500-7-372.
    1. Guindo A, Fairhurst RM, Doumbo OK, Wellems TE, Diallo DA. X-linked G6PD deficiency protects hemizygous males but not heterozygous females against severe malaria. PLoS Med. 2007;4(3):e66. doi: 10.1371/journal.pmed.0040066.
    1. Bouanga JC, Mouele R, Prehu C, Wajcman H, Feingold J, Galacteros F. Glucose-6-phosphate dehydrogenase deficiency and homozygous sickle cell disease in Congo. Hum Hered. 1998;48(4):192–197. doi: 10.1159/000022801.
    1. Mombo LE, Ntoumi F, Bisseye C, Ossari S, Lu CY, Nagel RL, Krishnamoorthy R. Human genetic polymorphisms and asymptomatic Plasmodium falciparum malaria in Gabonese schoolchildren. Am J Trop Med Hyg. 2003;68(2):186–190.
    1. Yeo TW, Lampah DA, Kenangalem E, Tjitra E, Price RN, Anstey NM. Increased carboxyhemoglobin in adult falciparum malaria is associated with disease severity and mortality. J Infect Dis. 2013;208(5):813–817. doi: 10.1093/infdis/jit253.
    1. Hanscheid T, Gresnigt T, Lohr S, Flamen A, Zoller T, Melo-Cristino J, Grobusch MP. Methaemoglobin and COHb in patients with malaria. Malar J. 2014;13:285. doi: 10.1186/1475-2875-13-285.
    1. Uko EK, Udoh AE, Etukudoh MH. Methaemoglobin profile in malaria infected children in Calabar. Niger J Med. 2003;12(2):94–97.
    1. Anstey NM, Hassanali MY, Mlalasi J, Manyenga D, Mwaikambo ED. Elevated levels of methaemoglobin in Tanzanian children with severe and uncomplicated malaria. Trans R Soc Trop Med Hyg. 1996;90(2):147–151. doi: 10.1016/S0035-9203(96)90118-2.
    1. Nantakomol D, Dondorp AM, Krudsood S, Udomsangpetch R, Pattanapanyasat K, Combes V, Grau GE, White NJ, Viriyavejakul P, Day NPJ, et al. Circulating red cell–derived microparticles in human malaria. J Infect Dis. 2011;203(5):700–706. doi: 10.1093/infdis/jiq104.
    1. Charunwatthana P, Abul Faiz M, Ruangveerayut R, Maude RJ, Rahman MR, Roberts LJ, 2nd, Moore K, Bin Yunus E, Hoque MG, Hasan MU, et al. N-acetylcysteine as adjunctive treatment in severe malaria: a randomized, double-blinded placebo-controlled clinical trial. Crit Care Med. 2009;37(2):516–522. doi: 10.1097/CCM.0b013e3181958dfd.
    1. Neonatal Inhaled Nitric Oxide Study G Inhaled nitric oxide in full-term and nearly full-term infants with hypoxic respiratory failure. N Engl J Med. 1997;336(9):597–604. doi: 10.1056/NEJM199702273360901.
    1. Caboot JB, Jawad AF, McDonough JM, Bowdre CY, Arens R, Marcus CL, Mason TB, Smith-Whitley K, Ohene-Frempong K, Allen JL. Non-invasive measurements of carboxyhemoglobin and methemoglobin in children with sickle cell disease. Pediatr Pulmonol. 2012;47(8):808–815. doi: 10.1002/ppul.22504.
    1. Adhikari NK, Burns KE, Friedrich JO, Granton JT, Cook DJ, Meade MO. Effect of nitric oxide on oxygenation and mortality in acute lung injury: systematic review and meta-analysis. BMJ. 2007;334(7597):779. doi: 10.1136/bmj.39139.716794.55.
    1. Hawkes M, Conroy AL, Opoka RO, Namasopo S, Liles WC, John CC, Kain KC. Performance of point-of-care diagnostics for glucose, lactate, and hemoglobin in the management of severe malaria in a resource-constrained hospital in Uganda. Am J Trop Med Hyg. 2014;90(4):605–8. doi: 10.4269/ajtmh.13-0689.

Source: PubMed

3
Abonner