Phosphorus ingestion improves oral glucose tolerance of healthy male subjects: a crossover experiment

May Khattab, Christelle Abi-Rashed, Hala Ghattas, Sani Hlais, Omar Obeid, May Khattab, Christelle Abi-Rashed, Hala Ghattas, Sani Hlais, Omar Obeid

Abstract

Background: Fasting serum phosphorus (P) was reported to be inversely related to serum glucose and insulin, while the impact of P ingestion is not well documented. The effect of P intake with or before glucose ingestion on postprandial glucose and insulin statuses was investigated.

Method: Two cross over experiments using healthy male subjects were conducted. Experiment 1: Overnight fasted subjects (n = 7) randomly received: 500 mg of P tablets, glucose (75 g) solution with placebo or 500 mg of P tablets. Experiment 2: Overnight fasted subjects (n = 8) underwent similar procedures to those of experiment 1, except that placebo or 500 mg P tablets were given 60 min prior to glucose ingestion.

Results: In both experiments, serum P decreased following glucose ingestion. Co-ingestion of P with glucose improved, at time 60 min, postprandial glucose (P < 0.05), insulin (P < 0.05), and insulin sensitivity index (p < 0.006), while P pre-ingestion failed to exert similar effect.

Conclusion: This study suggests that postprandial glucose and insulin are affected by exogenous P supply, especially when co-ingested with glucose.

Figures

Fig. 1
Fig. 1
Changes in Serum Phosphorus (a), Glucose (b) and Insulin (c) levels of subjects in experiment1. #Experiment 1: After the ingestion of 500 mg phosphorus (-♦-), 75 g glucose (-▲-) or co-ingestion glucose + phosphorus (75 g glucose + 500 mg of phosphorus) (..□..). * p-value < 0.05: Paired t-test in the same treatment in comparison with baseline (time 0) value. ap-value < 0.05: Paired t-Test, phosphorus vs glucose treatments at each time point. bp-value < 0.05: Paired t-Test, phosphorus vs glucose + phosphorus treatments at each time point. cp-value < 0.05: Paired t-Test, glucose vs glucose + phosphorus treatments at each time point
Fig. 2
Fig. 2
Changes in Serum Phosphorus (a), Glucose (b), and Insulin (c) levels of subjects in experiment2. #Experiment 2: After the he ingestion of 75 g glucose 60 min after placebo (-♦-) or 500 mg phosphors (..□..) preload. * p-value < 0.05: Paired t-test in the same treatment in comparison with baseline (time −60 min) value. ap-value < 0.05: Paired t-Test between placebo and phosphorus preload treatments at each time point

References

    1. Grundy SM. Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol. 2008;28:629–36. doi: 10.1161/ATVBAHA.107.151092.
    1. Obeid O. Low phosphorus status might contribute to the onset of obesity. Obes Rev. 2013;14:659–64. doi: 10.1111/obr.12039.
    1. Haap M, Heller E, Thamer C, Tschritter O, Stefan N, Frittsche A. Association of serum phosphate levels with glucose tolerance, insulin sensitivity and insulin secretion in non-diabetic subjects. Eur J Clin Nutr. 2006;60:734–9. doi: 10.1038/sj.ejcn.1602375.
    1. DeFronzo RA, Lang R. Hypophosphatemia and glucose intolerance: evidence for tissue insensitivity to insulin. N Engl J Med. 1980;303:1259–63. doi: 10.1056/NEJM198011273032203.
    1. Park W, Kim BS, Lee JE, Huh JK, Kim BJ, Sung KC, et al. Serum phosphate levels and the risk of cardiovascular disease and metabolic syndrome: a double-edged sword. Diabetes Res Clin Pract. 2009;83:119–25. doi: 10.1016/j.diabres.2008.08.018.
    1. Nowicki M, Fliser D, Fode P, Ritz E. Changes in plasma phosphate levels influence insulin sensitivity under euglycemic conditions. J Clin Endocrinol Metab. 1996;81:156–9.
    1. Venkataraman P, Blick K, Rao R, Fry H, Parker M. Decline in serum calcium, magnesium and phosphorus values with oral glucose in normal neonates: studies of serum parathyroid homone and calcitonin. J Pediatr. 1986;108:607–10. doi: 10.1016/S0022-3476(86)80848-4.
    1. Oberhaensli RD, Galloway GJ, Taylor DJ, Bore PJ, Radda GK. Assessment of human liver metabolism by phosphorus-31-magnetic resonance spectroscopy. Br J Radiol. 1986;59:695–9. doi: 10.1259/0007-1285-59-703-695.
    1. Veldhorst M, Smeets A, Soenen S, Hochstenbach-Waelen A, Hursel R, Diepvens K, et al. Protein-induced satiety: effects and mechanisms of different proteins. Physiol Behav. 2008;94:300–7. doi: 10.1016/j.physbeh.2008.01.003.
    1. Yanovski JA, Parikh SJ, Yanoff LB, Denkinger BI, Calis KA, Reynolds JC, et al. Effects of calcium supplementation on body weight and adiposity in overweight and obese adults: a randomized trial. Ann Intern Med. 2009;150:821–9. doi: 10.7326/0003-4819-150-12-200906160-00005.
    1. Wagner G, Kindrick S, Hertzler S, DiSilvestro RA. Effects of various forms of calcium on body weight and bone turnover markers in women participating in a weight loss program. J Am Coll Nutr. 2007;26:456–61. doi: 10.1080/07315724.2007.10719636.
    1. O’Connor LM, Lentjes MA, Luben RN, Khaw KT, Wareham NJ, Forouhi NG. Dietary dairy product intake and incident type 2 diabetes: a prospective study using dietary data from a 7-day food diary. Diabetologia. 2014 May;57(5):909-17.
    1. Tong X, Dong JY, Wu ZW, Li W, Qin LQ. Dairy consumption and risk of type 2 diabetes mellitus: a meta-analysis of cohort studies. Eur J Clin Nutr. 2011;65:1027–31. doi: 10.1038/ejcn.2011.62.
    1. Elwood PC, Pickering JE, Givens DI, Gallacher JE. The consumption of milk and dairy foods and the incidence of vascular disease and diabetes: an overview of the evidence. Lipids. 2010;45:925–39. doi: 10.1007/s11745-010-3412-5.
    1. Aune D, Norat T, Romundstad P, Vatten LJ. Dairy products and the risk of type 2 diabetes: a systematic reviewand dose–response meta-analysis of cohort studies. Am J Clin Nutr. 2013;98:1066–83. doi: 10.3945/ajcn.113.059030.
    1. Blaak EE, Antoine JM, Benton D, Björck I, Bozzetto L, Brouns F, et al. Impact of postprandial glycaemia on health and prevention of disease. Obes Rev. 2012;13:923–84. doi: 10.1111/j.1467-789X.2012.01011.x.
    1. Gerich JE. Clinical significance, pathogenesis, and management of postprandial hyperglycemia. Arch Intern Med. 2003;163:1306–16. doi: 10.1001/archinte.163.11.1306.
    1. De Ceuninck F, Kargar C, Ilic C, Caliez A, Rolin JO, Umbdenstock T, et al. Small molecule glucokinase activators disturb lipid homeostasis and induce fatty liver in rodents: a warning for therapeutic applications in humans. Br J Pharmacol. 2013;168:339–53. doi: 10.1111/j.1476-5381.2012.02184.x.
    1. Nissim I, Horyn O, Nissim I, Daikhin Y, Wehrli SL, Yudkoff M, et al. Effects of a glucokinase activator on hepatic intermediary metabolism: study with 13C-isotopomer-based metabolomics. Biochem J. 2012;444:537–51. doi: 10.1042/BJ20120163.
    1. Meininger GE, Scott R, Alba M, Shentu Y, Luo E, Amin H, et al. Effects of MK-0941, a novel glucokinase activator, on glycemic control in insulin-treated patients with type 2 diabetes. Diabetes Care. 2011;34:2560–6. doi: 10.2337/dc11-1200.
    1. Harrop GA, Benedict EM. The participation of inorganic substances in carbohydrate metabolism. J Biol Chem. 1924;59:683–97.
    1. Gropper SS, Smith JL. In: Advanced nutrition and human metabolism. 6. William P, editor. Balmont: CA. Press; 2012. pp. 20–6.
    1. Harter H, Santiago J, Rutherford W, Slatopolsky E, Klahr S. The relative roles of calcium, phosphorus, and parathyroid hormone in glucose and tobultamide-mediated insulin release. J Clin Invest. 1976;58:359–67. doi: 10.1172/JCI108480.
    1. de Boer IH, Rue TC, Kestenbaum B. Serum phosphorus concentrations in the third National Health and Nutrition Examination Survey [NHANES III] Am J Kidney Dis. 2009;53:399–407. doi: 10.1053/j.ajkd.2008.07.036.
    1. Nishida Y, Taketani Y, Yamanaka-Okumura H, Imamura F, Taniguchi A, Sato T, et al. Acute effect of oral phosphate loading on serum fibroblast growth factor 23 levels in healthy men. Kidney Int. 2006;70:2141–7. doi: 10.1038/sj.ki.5002000.
    1. Obeid OA, Hachem DH, Ayoub JJ. Refeeding and metabolic syndromes: two sides of the same coin. Nutr Diabetes. 2014;4:e120. doi: 10.1038/nutd.2014.21.
    1. Su-Que L, Meng Y-N, Li X-P, Zhang Y-L, Song G-Y, Ma H-J. Effect of consumption of micronutrient enriched wheat steamed bread on postprandial plasma glucose in healthy and type 2 diabetic subjects. Nutr J. 2013;12:64–7. doi: 10.1186/1475-2891-12-64.
    1. Wittmann I, Nagy N. Effectiveness of phosphate supplementation in glucose intolerant, hypophosphatemic patients. Miner Electrolyte Metab. 1997;23:62.
    1. Caumo A, Bergman RN, Cobelli C. Insulin sensitivity from meal tolerance tests in normal subjects: a minimal model index. J Clin Endocrinol Metab. 2000;85:4396–402. doi: 10.1210/jcem.85.11.6982.
    1. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462–70. doi: 10.2337/diacare.22.9.1462.
    1. Calvo MS, Heath H. Acute effects of oral phosphate-salt ingestion on serum phosphorus, serum ionized calcium, and parathyroid hormone in young adults. Am J Clin Nutr. 1988;47:1025–9.
    1. Campillo JE, Aguayo J, Castillo M, Osorio C. Inorganic phosphate-insulin relationships in normal subjects and in patients with moderate glucose intolerance. Diabetes Metab. 1982;8:289–93.
    1. Pollack H, Millet RF, Essex HE, Mann FC, Bollman JL. Serum phosphate changes induced by injections of glucose into dogs under various conditions. Am J Physiol. 1934;110:117–22.
    1. Paula F, Plens E, Foss MC. Effects of hypophosphatemia on glucose tolerance and insulin secretion. Horm Metab Res. 1998;30:281–4. doi: 10.1055/s-2007-978884.
    1. Trautvetter U, Kiehntopf M, Jahreis G. Postprandial effects of calcium phosphate supplementation on plasma concentration-double-blind, placebo-controlled cross-over human study. Nutr J. 2013;12:30–6. doi: 10.1186/1475-2891-12-30.
    1. Berthelay S, Saint-Hiller Y, Nguyen N, Henreit M, Dumoulin G, Wolf J, et al. Relations between oral glucose load and urinary elimination of calcium and phosphorus in healthy men with normal body weight. Nephrologie. 1984;5:205–7.
    1. Briggs A, Koechig I, Doisy E, Weber C. Some changes in the composition of blood due to the injection of insulin. J Biol Chem. 1924;58:721–30.
    1. Markowitz J. The relationship of phosphate and carbohydrate metabolism: the effect of glucose on the excretion of phosphate in depancreatised dogs. Am J Physiol. 1926;76:525–31.
    1. Xie W, Tran T, Finegood D, Van De W. Dietary P[i] deprivation in rats affects liver cAMP, glycogen, key steps of gluconeogenesis and glucose production. Biochem J. 2000;352:227–32. doi: 10.1042/bj3520227.
    1. Tanaka S, Yamamoto H, Nakahashi O, Kagawa T, Ishiguro M, Masuda M, et al. Dietary phosphate restriction induces hepatic lipid accumulation through dysregulation of cholesterol metabolism in mice. Nutr Rev. 2013;33:586–93.
    1. Huang S, Czech MP. The GLUT4 glucose transporter. Cell Metab. 2007;5:237–52. doi: 10.1016/j.cmet.2007.03.006.
    1. Becker TC, Noel RJ, Johnson JH, Lynch RM, Hirose H, Tokuyama Y, et al. Differential effects of overexpressed glucokianse and hexokianse I in isolated islets. J Biol Chem. 1996;271:390–4. doi: 10.1074/jbc.271.1.390.
    1. Sabbagh Y, Giral H, Caldas Y, Levi M, Schiavi SC. Intestinal phosphate transport. Adv Chronic Kidney Dis. 2011;18:85–90. doi: 10.1053/j.ackd.2010.11.004.
    1. Elliott R, Morgan L, Tredger J, Deacon S, Wright J, Marks V. Glucagon-like peptide-1 [7–36] amide and glucose-dependent insulintropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J Endocrinol. 1993;138:159–66. doi: 10.1677/joe.0.1380159.
    1. Soltani N, Kumar M, Glinka Y, Prud’homme G, Wang Q. In vivo expression of GLP-1/IgG-Fc fusion protein enhances beta-cell mass and protects against streptozotocin-induced diabetes. Gene Ther. 2007;14:981–8. doi: 10.1038/sj.gt.3302944.
    1. Ye EQ, Chacko SA, Chou EL, Kugizaki M, Liu S. Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J Nutr. 2012;142:1304–13. doi: 10.3945/jn.111.155325.
    1. Jenkins DJ, Kendall CW, Augustin LS, Martini MC, Axelsen M, Faulkner D, et al. Effect of wheat bran on glycemic control and risk factors for cardiovascular disease in type 2 diabetes. Diabetes Care. 2002;25:1522–8. doi: 10.2337/diacare.25.9.1522.
    1. Kestenbaum B, Sampson JN, Rudser KD, Patterson DJ, Seliger SL, Young B, et al. Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol. 2005;16:520–8. doi: 10.1681/ASN.2004070602.
    1. Tonelli M, Sacks F, Pfeffer M, Gao Z, Curhan G, Cholesterol And Recurrent Events Trial Investigators Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation. 2005;112:2627–33. doi: 10.1161/CIRCULATIONAHA.105.553198.
    1. Giachelli CM, Jono S, Shioi A, Nishizawa Y, Mori K, Morii H. Vascular calcification and inorganic phosphate. Am J Kidney Dis. 2001;38:S34–7. doi: 10.1053/ajkd.2001.27394.
    1. Mathew S, Tustison KS, Sugatani T, Chaudhary LR, Rifas L, Hruska KA. The mechanism of phosphorus as a cardiovascular risk factor in CKD. J Am Soc Nephrol. 2008;19(6):1092–105. doi: 10.1681/ASN.2007070760.
    1. Di Marco GS, Hausberg M, Hillebrand U, Rustemeyer P, Wittkowski W, Lang D, et al. Increased inorganic phosphate induces human endothelial cell apoptosis in vitro. Am J Physiol Ren Physiol. 2008;294:F1381–7. doi: 10.1152/ajprenal.00003.2008.
    1. Lau WL, Pai A, Moe SM, Giachelli CM. Direct effects of phosphate on vascular cell function. Adv Chronic Kidney Dis. 2011;18:105–12. doi: 10.1053/j.ackd.2010.12.002.
    1. Shuto E, Taketani Y, Tanaka R, Harada N, Isshiki M, Sato M, et al. Dietary phosphorus acutely impairs endothelial function. J Am Soc Nephrol. 2009;20:1504–12. doi: 10.1681/ASN.2008101106.
    1. Chang AR, Lazo M, Appel LJ, Gutiérrez OM, Grams ME. High dietary phosphorus intake is associated with all-cause mortality: results from NHANES III. Am J Clin Nutr. 2014;99:320–7. doi: 10.3945/ajcn.113.073148.
    1. Gutiérrez OM. The connection between dietary phosphorus, cardiovascular disease, and mortality: where we stand and what we need to know. Adv Nutr. 2013;6(4):723–9. doi: 10.3945/an.113.004812.
    1. Kanauchi M. A new index of insulin sensitivity obtained from the oral glucose tolerance test applicable to advanced type 2 diabetes. Diabetes Care. 2002;25(10):1891–2. doi: 10.2337/diacare.25.10.1891.

Source: PubMed

3
Abonner