Prostate external beam radiotherapy combined with high-dose-rate brachytherapy: dose-volume parameters from deformably-registered plans correlate with late gastrointestinal complications

Calyn R Moulton, Michael J House, Victoria Lye, Colin I Tang, Michele Krawiec, David J Joseph, James W Denham, Martin A Ebert, Calyn R Moulton, Michael J House, Victoria Lye, Colin I Tang, Michele Krawiec, David J Joseph, James W Denham, Martin A Ebert

Abstract

Background: Derivation of dose-volume correlated with toxicity for multi-modal treatments can be difficult due to the perceived need for voxel-by-voxel dose accumulation. With data available for a single-institution cohort with long follow-up, an investigation was undertaken into rectal dose-volume effects for gastrointestinal toxicities after deformably-registering each phase of a combined external beam radiotherapy (EBRT)/high-dose-rate (HDR) brachytherapy prostate treatment.

Methods: One hundred and eighteen patients received EBRT in 23 fractions of 2 Gy and HDR (TG43 algorithm) in 3 fractions of 6.5 Gy. Results for the Late Effects of Normal Tissues - Subjective, Objective, Management and Analytic toxicity assessments were available with a median follow-up of 72 months. The HDR CT was deformably-registered to the EBRT CT. Doses were corrected for dose fractionation. Rectum dose-volume histogram (DVH) parameters were calculated in two ways. (1) Distribution-adding: parameters were calculated after the EBRT dose distribution was 3D-summed with the registered HDR dose distribution. (2) Parameter-adding: the EBRT DVH parameters were added to HDR DVH parameters. Logistic regressions and Mann-Whitney U-tests were used to correlate parameters with late peak toxicity (dichotomised at grade 1 or 2).

Results: The 48-80, 40-63 and 49-55 Gy dose regions from distribution-adding were significantly correlated with rectal bleeding, urgency/tenesmus and stool frequency respectively. Additionally, urgency/tenesmus and anorectal pain were associated with the 25-26 Gy and 44-48 Gy dose regions from distribution-adding respectively. Parameter-adding also indicated the low-mid dose region was significantly correlated with stool frequency and proctitis.

Conclusions: This study confirms significant dose-histogram effects for gastrointestinal toxicities after including deformable registration to combine phases of EBRT/HDR prostate cancer treatment. The findings from distribution-adding were in most cases consistent with those from parameter-adding. The mid-high dose range and near maximum doses were important for rectal bleeding. The distribution-adding mid-high dose range was also important for stool frequency and urgency/tenesmus. We encourage additional studies in a variety of institutions using a variety of dose accumulation methods with appropriate inter-fraction motion management.

Trial registration: NCT NCT00193856 . Retrospectively registered 12 September 2005.

Keywords: Deformable registration; Distribution-adding; Gastrointestinal toxicity.

Figures

Fig. 1
Fig. 1
Late peak toxicity grades for various toxicity types over the follow-up period. The toxicity types (abbreviation) are rectal bleeding (bleeding), CTC proctitis (proctitis), stool frequency (frequency), diarrhoea, urgency/tenesmus (urgency), anorectal pain (pain) and completeness of evacuation (evacuation). The toxicity rates are reported as cumulative percentages of the 118 patients. The thresholds for subsequently grouping patients into toxicity/no toxicity groups are indicated by the red dashed lines
Fig. 2
Fig. 2
Registration evaluation using structure overlaps. Illustration of the structure overlap metric used to assess major misalignment of rectum volume (Top). Overlap of the EBRT rectum/registered HDR rectum was expressed as a percentage of the volume of the registered HDR rectum. Structure overlap results for the 118 patients after the rigid plus multi-pass DIR are provided (Bottom)
Fig. 3
Fig. 3
Odds ratios from univariate ordinal regression of distribution-adding VX and peak late toxicity. The toxicities are rectal bleeding (a), stool frequency (b), diarrhoea (c), anorectal pain (d) and urgency/tenesmus (e). The peak late toxicities for rectal bleeding and stool frequency were dichotomised at grade 2 whereas diarrhoea, anorectal pain and urgency/tenesmus were dichotomised at grade 1. A red dot is used to indicate the doses at which odds ratios are significantly different from a value of one (95 % confidence intervals do not include one). Abbreviations: VX, percentage of the rectal volume receiving at least X Gy after applying an α/β = 3 Gy; EQD2 Gy, equivalent dose in 2-Gy fractions using α/β = 3 Gy; 95 % CI, 95 % confidence interval
Fig. 4
Fig. 4
Median distribution-adding VX for the toxicity and no toxicity groups. The toxicity groups are based on peak late toxicity. The peak late toxicities for rectal bleeding (a) and stool frequency (b) were dichotomised at grade 2 whereas diarrhoea (c), anorectal pain (d) and urgency/tenesmus (e) were dichotomised at grade 1. The red curve and p-value axis indicate doses at which median VX values for the toxicity and no toxicity groups are significantly different (p-value < 0.05). Abbreviations: VX, percentage of the rectal volume receiving at least X Gy after applying an α/β = 3 Gy; EQD2 Gy, equivalent dose in 2-Gy fractions using α/β = 3 Gy
Fig. 5
Fig. 5
Median distribution-adding DX% for the toxicity and no toxicity groups. The peak late toxicities for rectal bleeding (a) and stool frequency (b) were dichotomised at grade 2 whereas diarrhoea (c) and urgency/tenesmus (d) were dichotomised at grade 1. The red curve and p-value axis indicate doses at which median DX% values for the toxicity and no toxicity groups are significantly different (p-value < 0.05). Abbreviations: DX%, minimum dose to the most irradiated X percentage of rectal volume after applying an α/β = 3 Gy; EQD2 Gy, equivalent dose in 2-Gy fractions using α/β = 3 Gy

References

    1. Zaorsky NG, Doyle LA, Yamoah K, Andrel JA, Trabulsi EJ, Hurwitz MD, et al. High dose rate brachytherapy boost for prostate cancer: a systematic review. Cancer Treat Rev. 2014; doi:10.1016/j.ctrv.2013.10.006.
    1. Michalski JM, Gay H, Jackson A, Tucker SL, Deasy JO. Radiation dose-volume effects in radiation-induced rectal injury. Int J Radiat Oncol Biol Phys. 2010; doi:10.1016/j.ijrobp.2009.03.078.
    1. Okamoto M, Ishikawa H, Ebara T, Kato H, Tamaki T, Akimoto T, et al. Rectal bleeding after high-dose-rate brachytherapy combined with hypofractionated external-beam radiotherapy for localized prostate cancer: the relationship between dose-volume histogram parameters and the occurrence rate. Int J Radiat Oncol Biol Phys. 2012; doi:10.1016/j.ijrobp.2011.03.041.
    1. Hoskin PJ, Colombo A, Henry A, Niehoff P, Paulsen Hellebust T, Siebert FA, et al. GEC/ESTRO recommendations on high dose rate afterloading brachytherapy for localised prostate cancer: an update. Radiother Oncol. 2013; doi:10.1016/j.radonc.2013.05.002.
    1. Vásquez Osorio EM, Hoogeman MS, Teguh DN, Al-Mamgani A, Kolkman-Deurloo IK, Bondar L, et al. Three-dimensional dose addition of external beam radiotherapy and brachytherapy for oropharyngeal patients using nonrigid registration. Int J Radiat Oncol Biol Phys. 2011; doi:10.1016/j.ijrobp.2010.10.006.
    1. Wortel RC, Incrocci L, Pos FJ, van der Heide UA, Lebesque JV, Aluwini S, et al. Late side effects after image guided intensity modulated radiation therapy compared to 3D-conformal radiation therapy for prostate cancer: results from 2 prospective cohorts. Int J Radiat Oncol Biol Phys. 2016; doi:10.1016/j.ijrobp.2016.01.031.
    1. Tyagi N, Sebastian E, Liang J, Yan D, Ghilezan M, Martinez A. Deformable registration and dose accumulation for image-guided HDR interstitial brachytherapy (IG-BT) boost and external beam pelvic IMRT (EB-IMRT) for intermediate and high-risk prostate cancer patients. 52nd annual meeting of the American Society for Radiation Oncology. Int J Radiat Oncol Biol Phys. 2010; doi:10.1016/j.ijrobp.2010.07.1695.
    1. Thor M, Apte A, Deasy JO, Karlsdóttir À, Moiseenko V, Liu M, et al. Dose/volume-response relations for rectal morbidity using planned and simulated motion-inclusive dose distributions. Radiother Oncol. 2013; doi:10.1016/j.radonc.2013.10.021.
    1. Teo BK, Bonner Millar LP, Ding X, Lin LL. Assessment of cumulative external beam and intracavitary brachytherapy organ doses in gynecologic cancers using deformable dose summation. Radiother Oncol. 2015; doi:10.1016/j.radonc.2015.04.002.
    1. Vestergaard A, Hafeez S, Muren LP, Nill S, Høyer M, Hansen VN, et al. The potential of MRI-guided online adaptive re-optimisation in radiotherapy of urinary bladder cancer. Radiother Oncol. 2016; doi:10.1016/j.radonc.2015.11.003.
    1. Bentzen SM, Dörr W, Gahbauer R, Howell RW, Joiner MC, Jones B, et al. Bioeffect modeling and equieffective dose concepts in radiation oncology – terminology, quantities and units. Radiother Oncol. 2012; doi:10.1016/j.radonc.2012.10.006.
    1. Kikuchi K, Nakamura R, Tanji S, Yamaguchi S, Kakuhara H, Yabuuchi T, et al. Three-dimensional summation of rectal doses in brachytherapy combined with external beam radiotherapy for prostate cancer. Radiother Oncol. 2013; doi:10.1016/j.radonc.2013.03.003.
    1. Troeller A, Yan D, Marina O, Schulze D, Alber M, Parodi K, et al. Comparison and limitations of DVH-based NTCP models derived from 3D-CRT and IMRT data for prediction of gastrointestinal toxicities in prostate cancer patients by using propensity score matched pair analysis. Int J Radiat Oncol Biol Phys. 2015; doi:10.1016/j.ijrobp.2014.09.046.
    1. Denham JW, Joseph D, Lamb DS, Spry NA, Duchesne G, Matthews J, et al. Short-term androgen suppression and radiotherapy versus intermediate-term androgen suppression and radiotherapy, with or without zoledronic acid, in men with locally advanced prostate cancer (TROG 03.04 RADAR): an open-label, randomised, phase 3 factorial trial. Lancet Oncol. 2014; doi:10.1016/S1470-2045(14)70328-6.
    1. Denham JW, Steigler A, Joseph D, Lamb DS, Spry NA, Duchesne G, et al. Radiation dose escalation or longer androgen suppression for locally advanced prostate cancer? Data from the TROG 03.04 RADAR trial. Radiother Oncol. 2015; doi:10.1016/j.radonc.2015.05.016.
    1. Tiong A, Bydder S, Ebert M, Caswell N, Waterhouse D, Spry N, et al. A small tolerance for catheter displacement in high-dose rate prostate brachytherapy is necessary and feasible. Int J Radiat Oncol Biol Phys. 2010; doi:10.1016/j.ijrobp.2009.03.052.
    1. Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Huq MS, Ibbott GS, et al. Update of AAPM task group no. 43 report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys. 2004; doi:10.1118/1.1646040.
    1. RTOG/EORTC Late Effects Working Group. Late effects on normal tissue consensus conference: lent soma scales for all anatomic sites. Int J Radiat Oncol Biol Phys. 1995; doi:10.1016/0360-3016(95)90159-0.
    1. Trotti A, Byhardt R, Stetz J, Gwede C, Corn B, Fu K, et al. Common toxicity criteria: version 2.0. An improved reference for grading the acute effects of cancer treatment: impact on radiotherapy. Int J Radiat Oncol Biol Phys. 2000; doi:10.1016/S0360-3016(99)00559-3.
    1. Kadoya N, Fujita Y, Katsuta Y, Dobashi S, Takeda K, Kishi K, et al. Evaluation of various deformable image registration algorithms for thoracic images. J Radiat Res. 2014; doi:10.1093/jrr/rrt093.
    1. Moulton CR, House MJ, Lye V, Tang CI, Krawiec M, Joseph DJ, et al. Registering prostate external beam radiotherapy with a boost from high-dose-rate brachytherapy: a comparative evaluation of deformable registration algorithms. Radiat Oncol. 2015; doi:10.1186/s13014-015-0563-9.
    1. Zou KH, Warfield SK, Bharatha A, Tempany CM, Kaus MR, Haker SJ, et al. Statistical validation of image segmentation quality based on a spatial overlap index. Acad Radiol. 2004; doi:10.1016/S1076-6332(03)00671-8.
    1. Acosta O, Dréan G, Ospina JD, Simon A, Haigron P, Lafond C, et al. Voxel-based population analysis for correlating local dose and rectal toxicity in prostate cancer radiotherapy. Phys Med Biol. 2013; doi:10.1088/0031-9155/58/8/2581.
    1. Deasy JO, Blanco AI, Clark VH. CERR: a computational environment for radiotherapy research. Med Phys. 2003; doi:10.1118/1.1568978.
    1. Brenner DJ. Fractionation and late rectal toxicity. Int J Radiat Oncol Biol Phys. 2004; doi:10.1016/j.ijrobp.2004.04.014.
    1. Gulliford SL, Foo K, Morgan RC, Aird EG, Bidmead AM, Critchley H, et al. Dose-volume constraints to reduce rectal side effects from prostate radiotherapy: evidence from MRC RT01 trial ISRCTN 47772397. Int J Radiat Oncol Biol Phys. 2010; doi:10.1016/j.ijrobp.2009.02.025.
    1. Denham JW, Wilcox C, Lamb DS, Spry NA, Duchesne G, Atkinson C, et al. Rectal and urinary dysfunction in the TROG 03.04 RADAR trial for locally advanced prostate cancer. Radiother Oncol. 2012; doi:10.1016/j.radonc.2012.09.018.
    1. Fiorino C, Valdagni R, Rancati T, Sanguineti G. Dose-volume effects for normal tissues in external radiotherapy: pelvis. Radiother Oncol. 2009; doi:10.1016/j.radonc.2009.08.004.
    1. Boersma LJ, van den Brink M, Bruce AM, Shouman T, Gras L, te Velde A, et al. Estimation of the incidence of late bladder and rectum complications after high-dose (70-78 Gy) conformal radiotherapy for prostate cancer, using dose-volume histograms. Int J Radiat Oncol Biol Phys. 1998; doi:10.1016/S0360-3016(98)00037-6.
    1. Ebert MA, Foo K, Haworth A, Gulliford SL, Kennedy A, Joseph DJ, et al. Gastrointestinal dose-histogram effects in the context of dose-volume-constrained prostate radiation therapy: analysis of data from the RADAR prostate radiation therapy trial. Int J Radiat Oncol Biol Phys. 2015; doi:10.1016/j.ijrobp.2014.11.015.
    1. Lalla RV, Bowen J, Barasch A, Elting L, Epstein J, Keefe DM, et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer. 2014; doi:10.1002/cncr.28592.
    1. Peeters ST, Lebesque JV, Heemsbergen WD, van Putten WL, Slot A, Dielwart MF, et al. Localized volume effects for late rectal and anal toxicity after radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2006; doi:10.1016/j.ijrobp.2005.10.002.
    1. Vargas C, Martinez A, Kestin LL, Yan D, Grills I, Brabbins DS, et al. Dose-volume analysis of predictors for chronic rectal toxicity after treatment of prostate cancer with adaptive image-guided radiotherapy. Int J Radiat Oncol Biol Phys. 2005; doi:10.1016/j.ijrobp.2004.12.052.
    1. Konishi K, Yoshioka Y, Isohashi F, Sumida I, Kawaguchi Y, Kotsuma T, et al. Correlation between dosimetric parameters and late rectal and urinary toxicities in patients treated with high-dose-rate brachytherapy used as monotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2009; doi:10.1016/j.ijrobp.2008.12.051.
    1. Kim DW, Cho LC, Straka C, Christie A, Lotan Y, Pistenmaa D, et al. Predictors of rectal tolerance observed in a dose-escalated phase 1-2 trial of stereotactic body radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2014; doi:10.1016/j.ijrobp.2014.03.012.
    1. Pederson AW, Fricano J, Correa D, Pelizzari CA, Liauw SL. Late toxicity after intensity-modulated radiation therapy for localized prostate cancer: an exploration of dose-volume histogram parameters to limit genitourinary and gastrointestinal toxicity. Int J Radiat Oncol Biol Phys. 2012; doi:10.1016/j.ijrobp.2010.09.058.
    1. Stenmark MH, Conlon AS, Johnson S, Daignault S, Litzenberg D, Marsh R, et al. Dose to the inferior rectum is strongly associated with patient reported bowel quality of life after radiation therapy for prostate cancer. Radiother Oncol. 2014; doi:10.1016/j.radonc.2014.01.007.
    1. Yoshioka Y, Nose T, Yoshida K, Oh RJ, Yamada Y, Tanaka E, et al. High-dose-rate brachytherapy as monotherapy for localized prostate cancer: a retrospective analysis with special focus on tolerance and chronic toxicity. Int J Radiat Oncol Biol Phys. 2003; doi:10.1016/S0360-3016(03)00081-6.
    1. Fellin G, Rancati T, Fiorino C, Vavassori V, Antognoni P, Baccolini M, et al. Long term rectal function after high-dose prostatecancer radiotherapy: results from a prospective cohort study. Radiother Oncol. 2014; doi:10.1016/j.radonc.2013.09.028.
    1. Fonteyne V, Ost P, Vanpachtenbeke F, Colman R, Sadeghi S, Villeirs G, et al. Rectal toxicity after intensity modulated radiotherapy for prostate cancer: which rectal dose volume constraints should we use? Radiother Oncol. 2014; doi:10.1016/j.radonc.2014.10.014.
    1. Someya M, Hori M, Tateoka K, Nakata K, Takagi M, Saito M, et al. Results and DVH analysis of late rectal bleeding in patients treated with 3D-CRT or IMRT for localized prostate cancer. J Radiat Res. 2015; doi:10.1093/jrr/rru080.
    1. Price JG, Stone NN, Stock RG. Predictive factors and management of rectal bleeding side effects following prostate cancer brachytherapy. Int J Radiat Oncol Biol Phys. 2013; doi:10.1016/j.ijrobp.2013.04.033.
    1. Sutani S, Ohashi T, Sakayori M, Kaneda T, Yamashita S, Momma T, et al. Comparison of genitourinary and gastrointestinal toxicity among four radiotherapy modalities for prostate cancer: conventional radiotherapy, intensity-modulated radiotherapy, and permanent iodine-125 implantation with or without external beam radiotherapy. Radiother Oncol. 2015; doi:10.1016/j.radonc.2015.08.019.
    1. Akimoto T, Muramatsu H, Takahashi M, Saito J, Kitamoto Y, Harashima K, et al. Rectal bleeding after hypofractionated radiotherapy for prostate cancer: correlation between clinical and dosimetric parameters and the incidence of grade 2 or worse rectal bleeding. Int J Radiat Oncol Biol Phys. 2004; doi:10.1016/j.ijrobp.2004.07.695.
    1. Akimoto T, Katoh H, Kitamoto Y, Tamaki T, Harada K, Shirai K, et al. Rectal bleeding after high-dose-rate brachytherapy combined with hypofractionated external-beam radiotherapy for localized prostate cancer: impact of rectal dose in high-dose-rate brachytherapy on occurrence of grade 2 or worse rectal bleeding. Int J Radiat Oncol Biol Phys. 2006; doi:10.1016/j.ijrobp.2005.12.017.
    1. Landoni V, Fiorino C, Cozzarini C, Sanguineti G, Valdagni R, Rancati T. Predicting toxicity in radiotherapy for prostate cancer. Phys Med. 2016; doi:10.1016/j.ejmp.2016.03.003.
    1. van Nieuwenhuysen J, Waterhouse D, Bydder S, Joseph D, Ebert M, Caswell N. Survey of high-dose-rate prostate brachytherapy practice in Australia and New Zealand, 2010-2011. J Med Imaging Radiat Oncol. 2014; doi:10.1111/1754-9485.12101.
    1. Kirisits C, Goldner G, Berger D, Georg D, Pötter R. Critical discussion of different dose-volume parameters for rectum and urethra in prostate brachytherapy. Brachytherapy. 2009; doi:10.1016/j.brachy.2009.01.003.
    1. Peters M, Hoekstra CJ, van der Voort van Zyp JR, Westendorp H, van de Pol SM, Moerland MA, et al. Rectal dose constraints for salvage iodine-125 prostate brachytherapy. Brachytherapy. 2016; doi:10.1016/j.brachy.2015.10.004.
    1. Munbodh R, Jackson A. Quantifying cell migration distance as a contributing factor to the development of rectal toxicity after prostate radiotherapy. Med Phys. 2014; doi:10.1118/1.4852955.
    1. Kirisits C, Rivard MJ, Baltas D, Ballester F, De Brabandere M, van der Laarse R, et al. Review of clinical brachytherapy uncertainties: analysis guidelines of GEC-ESTRO and the AAPM. Radiother Oncol. 2014; doi:10.1016/j.radonc.2013.11.002.
    1. Akino Y, Yoshioka Y, Fukuda S, Maruoka S, Takahashi Y, Yagi M, et al. Estimation of rectal dose using daily megavoltage cone-beam computed tomography and deformable image registration. Int J Radiat Oncol Biol Phys. 2013; doi:10.1016/j.ijrobp.2013.06.2054.
    1. Thörnqvist S, Hysing LB, Tuomikoski L, Vestergaard A, Tanderup K, Muren LP, et al. Adaptive radiotherapy strategies for pelvic tumors - a systematic review of clinical implementations. Acta Oncol. 2016; doi:10.3109/0284186X.2016.1156738.
    1. Simnor T, Li S, Lowe G, Ostler P, Bryant L, Chapman C, et al. Justification for inter-fraction correction of catheter movement in fractionated high dose-rate brachytherapy treatment of prostate cancer. Radiother Oncol. 2009; doi:10.1016/j.radonc.2009.09.015.
    1. McPartlin AJ, Li XA, Kershaw LE, Heide U, Kerkmeijer L, Lawton C, et al. MRI-guided prostate adaptive radiotherapy - a systematic review. Radiother Oncol. 2016; doi:10.1016/j.radonc.2016.04.014.
    1. Stasi M, Munoz F, Fiorino C, Pasquino M, Baiotto B, Marini P, et al. Emptying the rectum before treatment delivery limits the variations of rectal dose-volume parameters during 3DCRT of prostate cancer. Radiother Oncol. 2006; doi:10.1016/j.radonc.2006.08.007.
    1. Ariyaratne H, Chesham H, Pettingell J, Alonzi R. Image-guided radiotherapy for prostate cancer with cone beam CT: dosimetric effects of imaging frequency and PTV margin. Radiother Oncol. 2016; doi:10.1016/j.radonc.2016.07.018.
    1. Sripadam R, Stratford J, Henry AM, Jackson A, Moore CJ, Price P. Rectal motion can reduce CTV coverage and increase rectal dose during prostate radiotherapy: a daily cone-beam CT study. Radiother Oncol. 2009; doi:10.1016/j.radonc.2008.07.031.
    1. Hatton JA, Greer PB, Tang C, Wright P, Capp A, Gupta S, et al. Does the planning dose-volume histogram represent treatment doses in image-guided prostate radiation therapy? Assessment with cone-beam computerised tomography scans. Radiother Oncol. 2011; doi:10.1016/j.radonc.2011.01.006.
    1. Scaife JE, Thomas SJ, Harrison K, Romanchikova M, Sutcliffe MP, Forman JR, et al. Accumulated dose to the rectum, measured using dose-volume histograms and dose-surface maps, is different from planned dose in all patients treated with radiotherapy for prostate cancer. Br J Radiol. 2015; doi:10.1259/bjr.20150243.
    1. Nassef M, Simon A, Cazoulat G, Duménil A, Blay C, Lafond C, et al. Quantification of dose uncertainties in cumulated dose estimation compared to planned dose in prostate IMRT. Radiother Oncol. 2016; doi:10.1016/j.radonc.2016.03.007.
    1. Merrick GS, Butler WM, Dorsey AT, Dorsey JT. The effect of constipation on rectal dosimetry following prostate brachytherapy. Med Dosim. 2000; doi:10.1016/S0958-3947(00)00047-9.
    1. Foster W, Cunha JA, Hsu IC, Weinberg V, Krishnamurthy D, Pouliot J. Dosimetric impact of interfraction catheter movement in high-dose rate prostate brachytherapy. Int J Radiat Oncol Biol Phys. 2011; doi:10.1016/j.ijrobp.2010.01.016.
    1. Kovalchuk N, Furutani KM, MacDonald OK, Pisansky TM. Dosimetric effect of interfractional needle displacement in prostate high-dose-rate brachytherapy. Brachytherapy. 2012; doi:10.1016/j.brachy.2011.05.006.
    1. Dinkla AM, Pieters BR, Koedooder K, Meijnen P, van Wieringen N, van der Laarse R, et al. Deviations from the planned dose during 48 hours of stepping source prostate brachytherapy caused by anatomical variations. Radiother Oncol. 2013; doi:10.1016/j.radonc.2012.12.011.
    1. Yahya N, Ebert MA, Bulsara M, House MJ, Kennedy A, Joseph DJ, et al. Urinary symptoms following external beam radiotherapy of the prostate: dose-symptom correlates with multiple-event and event-count models. Radiother Oncol. 2015; doi:10.1016/j.radonc.2015.10.003.
    1. Gulliford SL, Partridge M, Sydes MR, Andreyev J, Dearnaley DP. A comparison of dose-volume constraints derived using peak and longitudinal definitions of late rectal toxicity. Radiother Oncol. 2010; doi:10.1016/j.radonc.2009.12.019.
    1. Wortel RC, Witte MG, van der Heide UA, Pos FJ, Lebesque JV, van Herk M, et al. Dose-surface maps identifying local dose-effects for acute gastrointestinal toxicity after radiotherapy for prostate cancer. Radiother Oncol. 2015; doi:10.1016/j.radonc.2015.10.020.

Source: PubMed

3
Abonner