Application of Titanium Alloy 3D-Printed Artificial Vertebral Body for Stage III Kümmell's Disease Complicated by Neurological Deficits

Chunke Dong, Hongyu Wei, Yuting Zhu, Jun Zhou, Haoning Ma, Chunke Dong, Hongyu Wei, Yuting Zhu, Jun Zhou, Haoning Ma

Abstract

Purpose: The current study aimed to compare the clinical and radiographic results of the 3D-printed artificial vertebral body (3DP-AVB) and titanium mesh cage (TMC) for the treatment of Kümmell's disease (KD) complicated by neurological deficits.

Patients and methods: From January 2014 to July 2018, 28 consecutive patients diagnosed with KD and nerve injuries in our department were treated by posterior vertebral column resection and internal fixation. The patients were divided into two groups (3DP-AVB group and TMC group) based on the different anterior column reconstruction implants. Clinical and radiographic parameters were used to evaluate the outcomes.

Results: The two groups achieved excellent clinical and radiographic results 1 month after surgery with no significant difference (P>0.05), while 3DP-AVB group showed better outcomes compared with TMC group during the follow-up after 6 months (P<0.05). The risk of subsidence in 3DP-AVB group was lower than that in TMC group (41.6% vs 87.5%, P<0.05), and severe subsidence (≥5 mm) was correlated with the recurrence of back pain and bad daily life function. No significant difference was found in the improvement of neurological function between the two groups (P>0.05). The blood loss and operation time in 3DP-AVB group were significantly less than both in TMC group (P<0.05).

Conclusion: The lower incidence of cage subsidence, with a better long-term efficacy in maintaining the height of the fused segment, relieving back pain, and improving daily life function indicates that the 3DP-AVB may be a superior alternative for KD with neurological deficits.

Keywords: 3D printing; Kümmell’s disease; artificial vertebral body; neurological deficits; spinal reconstruction; vertebral column resection.

Conflict of interest statement

The authors declare that there are no conflicts of interest in this work.

© 2020 Dong et al.

Figures

Figure 1
Figure 1
3D-printed artificial vertebral body: oblique (A), lateral (B), and superior (C) views.
Figure 2
Figure 2
Measuring method of local kyphotic angle (LKA), anterior vertebral height (AVH), and posterior vertebral height (PVH).
Figure 3
Figure 3
Clinical and radiographic outcomes. (AE) *P<0.05 compared with the preoperative data. (AC) †P>0.05 compared with the 1-month postoperative data, ‡P<0.05 compared with the 1-month postoperative data, §P>0.05 compared with the 6-month postoperative data. (D) †P>0.05 compared with the 1-month postoperative data; ‡P>0.05 compared with the 6-month postoperative data. (E) †P<0.05 compared with the 1-month postoperative data.
Figure 4
Figure 4
An 82-year-old female patient experienced Kümmell’s disease complicated by neurological deficits and used a 3D-printed artificial vertebral body (3DP-AVB). (A) T11 collapsed fracture was shown in preoperative X-rays. (B and C) Coronal and sagittal CT showed an intravertebral cleft (IVC) (white triangle). (DF) MRI showed a decreased signal in IVC (white triangle). (G) Intraoperative images. (H and I) Immediate postoperative X-rays showed that a 3DP-AVB was implanted. (J) Postoperative sagittal T2-weighted MRI showed a sufficient spinal cord decompression. (K and L) Coronal and sagittal CT showed that no subsidence occurred at the final follow-up.
Figure 5
Figure 5
The 3D-printed artificial vertebral body (3DP-AVB) was used in a 75-year-old female patient with stage III Kümmell’s disease. (A) Preoperative X-rays showed T12 collapsed fracture and thoracolumbar kyphosis. (B and C) An intravertebral cleft sign (white triangle) was shown in preoperative CT scans. (DG) Postoperative and final follow-up plain radiographs showed no cage subsidence and kyphosis recurrence.
Figure 6
Figure 6
A titanium mesh cage (TMC) for stage III Kümmell’s disease. (A and B) Preoperative radiographs and CT scans revealed collapsed fracture and kyphosis at L1 with an intravertebral cleft (IVC) sign (white triangle). (CE) Preoperative MRI showed a decreased signal of IVC (white triangle). (F) No subsidence in immediate postoperative plain radiographs. (G and H) Final follow-up CT scans showed kyphosis recurrence with TMC subsidence (white triangle).

References

    1. Steel HH. Kümmell’s disease. Am J Surg. 1951;81(2):161–167. doi:10.1016/0002-9610(51)90206-1
    1. Swartz K, Fee D. Kümmell’s disease: a case report and literature review. Spine (Phila Pa 1976). 2008;33(5):152–155. doi:10.1097/BRS.0b013e3181657f31
    1. He D, Yu W, Chen Z, Li L, Zhu K, Fan S. Pathogenesis of the intravertebral vacuum of Kümmell’s disease. Exp Ther Med. 2016;12(2):879–882. doi:10.3892/etm.2016.3369
    1. Ma R, Chow R, Shen FH. Kummell’s disease: delayed post-traumatic osteonecrosis of the vertebral body. Eur Spine J. 2010;19(7):1065–1070. doi:10.1007/s00586-009-1205-4
    1. Lim J, Choi SW, Youm JY, Kwon HJ, Kim SH, Koh HS. Posttraumatic delayed vertebral collapse: Kummell’s disease. J Korean Neurosurg Soc. 2018;61(1):1–9. doi:10.3340/jkns.2017.0505.010
    1. Formica M, Basso M, Cavagnaro L, Formica C, Zanirato A, Felli L. Kümmell disease: illustrative case for definition criteria. Spine J. 2016;16(10):e707–e708. doi:10.1016/j.spinee.2016.03.035
    1. Maldague BE, Noel HM, Malghem JJ. The intravertebral vacuum cleft: a sign of ischemic vertebral collapse. Radiology. 1978;129(1):23–29. doi:10.1148/129.1.23
    1. Zhang X, Hu W, Yu J, Wang Z, Wang Y. An effective treatment option for Kümmell disease with neurological deficits. Spine (Phila Pa 1976). 2016;41(15):E923–E930. doi:10.1097/BRS.0000000000001467
    1. Chang J-Z, Bei M-J, Shu D-P, Sun C-J, Chen J-B, Xiao Y-P. Comparison of the clinical outcomes of percutaneous vertebroplasty vs. kyphoplasty for the treatment of osteoporotic Kümmell’s disease: a prospective cohort study. BMC Musculoskelet Disord. 2020;21(1):238. doi:10.1186/s12891-020-03271-9
    1. Jiang J, Gu F, Li Z, Zhou Y. The clinical efficacy and experience of bipedicular percutaneous vertebroplasty combined with postural reduction in the treatment of Kümmell’s disease. BMC Musculoskelet Disord. 2020;21(1):82. doi:10.1186/s12891-020-3113-z
    1. Wei H, Dong C, Zhu Y. Posterior fixation combined with vertebroplasty or vertebral column resection for the treatment of osteoporotic vertebral compression fractures with intravertebral cleft complicated by neurological deficits. Biomed Res Int. 2019;2019. doi:10.1155/2019/4126818
    1. Li KC, Li AFY, Hsieh CH, Liao TH, Chen CH. Another option to treat Kümmell’s disease with cord compression. Eur Spine J. 2007;16(9):1479–1487. doi:10.1007/s00586-006-0094-z
    1. Lee SH, Kim ES, Eoh W. Cement augmented anterior reconstruction with short posterior instrumentation: a less invasive surgical option for Kummell’s disease with cord compression. J Clin Neurosci. 2011;18(4):509–514. doi:10.1016/j.jocn.2010.07.139
    1. Zhang GQ, Gao YZ, Zheng J, et al. Posterior decompression and short segmental pedicle screw fixation combined with vertebroplasty for Kümmell’s disease with neurological deficits. Exp Ther Med. 2013;5(2):517–522. doi:10.3892/etm.2012.833
    1. Chen L, Dong R, Gu Y, Feng Y. Comparison between balloon kyphoplasty and short segmental fixation combined with vertebroplasty in the treatment of Kümmell’s disease. Pain Physician. 2015;18(4):373–381. doi:10.1097/BRS.0b013e318238f29a
    1. Kim HS, Heo DH. Percutaneous pedicle screw fixation with polymethylmethacrylate augmentation for the treatment of thoracolumbar intravertebral pseudoarthrosis associated with Kummell’s osteonecrosis. Biomed Res Int. 2016;2016. doi:10.1155/2016/3878063
    1. Cho Y. Posterior vertebrectomy and circumferential fusion for the treatment of advanced thoracolumbar Kümmell disease with neurologic deficit. Asian Spine J. 2017;11(4):634–640. doi:10.4184/asj.2017.11.4.634
    1. Liu F, Chen Z, Lou C, et al. Anterior reconstruction versus posterior osteotomy in treating Kümmell’s disease with neurological deficits: a systematic review. Acta Orthop Traumatol Turc. 2018;52(4):283–288. doi:10.1016/j.aott.2018.05.002
    1. Zhang Y, Quan Z, Zhao Z, et al. Evaluation of anterior cervical reconstruction with titanium mesh cages versus nano-hydroxyapatite/polyamide66 cages after 1- or 2-level corpectomy for multilevel cervical spondylotic myelopathy: a retrospective study of 117 patients. PLoS One. 2014;9(5):e96265. doi:10.1371/journal.pone.0096265
    1. Ganau M, Cebula H, Fricia M, et al. Surgical preference regarding different materials for custom-made allograft cranioplasty in patients with calvarial defects: results from an internal audit covering the last 20 years. J Clin Neurosci. 2020;74:98–103. doi:10.1016/j.jocn.2020.01.087
    1. Tong Y, Kaplan DJ, Spivak JM, Bendo JA. Three-dimensional printing in spine surgery: a review of current applications. Spine J. 2020;20(6):833–846. doi:10.1016/j.spinee.2019.11.004
    1. Burnard JL, Parr WCH, Choy WJ, Walsh WR, Mobbs RJ. 3D-printed spine surgery implants: a systematic review of the efficacy and clinical safety profile of patient-specific and off-the-shelf devices. Eur Spine J. 2020;29(6):1248–1260. doi:10.1007/s00586-019-06236-2
    1. Huang YS, Hao DJ, Wang XD, et al. Long-segment or bone cement–augmented short-segment fixation for Kummell disease with neurologic deficits? A comparative cohort study. World Neurosurg. 2018;116:e1079–e1086. doi:10.1016/j.wneu.2018.05.171
    1. Li K-C, Wong T, Kung F, Li A, Hsieh C. Staging of Kümmell’s disease. J Musculoskelet Res. 2004;08(01):43–55. doi:10.1142/S0218957704001181
    1. Wang H, Ding W. Posterior vertebral column resection through unilateral osteotomy approach for old lumbar fracture combined with Kummell disease. World Neurosurg. 2018;109:147–151. doi:10.1016/j.wneu.2017.09.148
    1. Okano I, Jones C, Salzmann SN, et al. Endplate volumetric bone mineral density measured by quantitative computed tomography as a novel predictive measure of severe cage subsidence after standalone lateral lumbar fusion. Eur Spine J. 2020;29(5):1131–1140. doi:10.1007/s00586-020-06348-0
    1. Marchi L, Abdala N, Oliveira L, Amaral R, Coutinho E, Pimenta L. Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion. J Neurosurg Spine. 2013;19(1):110–118. doi:10.3171/2013.4.SPINE12319
    1. Wang H, Guo J, Wang S, et al. Instrumentation failure after posterior vertebral column resection in adult spinal deformity. Spine (Phila Pa 1976). 2017;42(7):471–478. doi:10.1097/BRS.0000000000001844
    1. Bridwell KH, Lenke LG, McEnery KW, Baldus C, Blanke K. Anterior fresh frozen structural allografts in the thoracic and lumbar spine. Spine (Phila Pa 1976). 1995;20(12):1410–1418. doi:10.1097/00007632-199506020-00014
    1. Tsai -T-T, Chen W-J, Lai P-L, et al. Polymethylmethacrylate cement dislodgment following percutaneous vertebroplasty: a case report. Spine (Phila Pa 1976). 2003;28(22):E457–E460. doi:10.1097/01.brs.0000096668.54378.25
    1. Li X, Lou X, Lin X, Du J. Refracture of osteoporotic vertebral body concurrent with cement fragmentation at the previously treated vertebral level after balloon kyphoplasty: a case report. Osteoporos Int. 2014;25(5):1647–1650. doi:10.1007/s00198-014-2626-4
    1. Yu WB, Jiang XB, Liang D, Xu WX, Ye LQ, Wang J. Risk factors and score for recollapse of the augmented vertebrae after percutaneous vertebroplasty in osteoporotic vertebral compression fractures. Osteoporos Int. 2019;30(2):423–430. doi:10.1007/s00198-018-4754-8
    1. Yu W, Xu W, Jiang X, Liang D, Jian W. Risk factors for recollapse of the augmented vertebrae after percutaneous vertebral augmentation: a systematic review and meta-analysis. World Neurosurg. 2018;111(August2017):119–129. doi:10.1016/j.wneu.2017.12.019
    1. Kashii M, Yamazaki R, Yamashita T, et al. Surgical treatment for osteoporotic vertebral collapse with neurological deficits: retrospective comparative study of three procedures - Anterior surgery versus posterior spinal shorting osteotomy versus posterior spinal fusion using vertebroplasty. Eur Spine J. 2013;22(7):1633–1642. doi:10.1007/s00586-013-2759-8
    1. Yang SC, Chen WJ, Yu SW, Tu YK, Kao YH, Chung KC. Revision strategies for complications and failure of vertebroplasties. Eur Spine J. 2008;17(7):982–988. doi:10.1007/s00586-008-0680-3
    1. Matsumoto M, Watanabe K, Tsuji T, et al. Late instrumentation failure after total en bloc spondylectomy. J Neurosurg Spine. 2011;15(3):320–327. doi:10.3171/2011.5.SPINE10813
    1. Ji C, Yu S, Yan N, et al. Risk factors for subsidence of titanium mesh cage following single-level anterior cervical corpectomy and fusion. BMC Musculoskelet Disord. 2020;21(1):32. doi:10.1186/s12891-019-3036-8
    1. Daubs MD. Early failures following cervical corpectomy reconstruction with titanium mesh cages and anterior plating. Spine (Phila Pa 1976). 2005;30(12):1402–1406. doi:10.1097/01.brs.0000166526.78058.3c
    1. Wu J, Luo D, Ye X, Luo X, Yan L, Qian H. Anatomy-related risk factors for the subsidence of titanium mesh cage in cervical reconstruction after one-level corpectomy. Int J Clin Exp Med. 2015;8(5):7405–7411.
    1. Oh KW, Lee JH, Lee J-H, Lee D-Y, Shim HJ. The correlation between cage subsidence, bone mineral density, and clinical results in posterior lumbar interbody fusion. Clin Spine Surg. 2017;30(6):E683–E689. doi:10.1097/BSD.0000000000000315
    1. Fengbin Y, Jinhao M, Xinyuan L, Xinwei W, Yu C, Deyu C. Evaluation of a new type of titanium mesh cage versus the traditional titanium mesh cage for single-level, anterior cervical corpectomy and fusion. Eur Spine J. 2013;22(12):2891–2896. doi:10.1007/s00586-013-2976-1
    1. Xu N, Wei F, Liu X, et al. Reconstruction of the upper cervical spine using a personalized 3d-printed vertebral body in an adolescent with ewing sarcoma. Spine (Phila Pa 1976). 2016;41(1):E50–E54. doi:10.1097/BRS.0000000000001179
    1. Li P, Jiang W, Yan J, et al. A novel 3D printed cage with microporous structure and in vivo fusion function. J Biomed Mater Res Part A. 2019;107(7):1386–1392. doi:10.1002/jbm.a.36652
    1. Chung KS, Shin DA, Kim KN, Ha Y, Yoon DH, Yi S. Vertebral reconstruction with customized 3-dimensional−printed spine implant replacing large vertebral defect with 3-year follow-up. World Neurosurg. 2019;126:90–95. doi:10.1016/j.wneu.2019.02.020
    1. Mobbs RJ, Choy WJ, Wilson P, McEvoy A, Phan K, Parr WCH. L5 en-bloc vertebrectomy with customized reconstructive implant: comparison of patient-specific versus off-the-shelf implant. World Neurosurg. 2018;112:94–100. doi:10.1016/j.wneu.2018.01.078
    1. Liu X, Chen Y, Yang H, et al. The application of a new type of titanium mesh cage in hybrid anterior decompression and fusion technique for the treatment of continuously three-level cervical spondylotic myelopathy. Eur Spine J. 2017;26(1):122–130. doi:10.1007/s00586-016-4888-3
    1. Wu WJ, Jiang LS, Liang Y, Dai LY. Cage subsidence does not, but cervical lordosis improvement does affect the long-term results of anterior cervical fusion with stand-alone cage for degenerative cervical disc disease: a retrospective study. Eur Spine J. 2012;21(7):1374–1382. doi:10.1007/s00586-011-2131-9
    1. Chen Y, Chen D, Guo Y, et al. Subsidence of titanium mesh cage: a study based on 300 cases. J Spinal Disord Tech. 2008;21(7):489–492. doi:10.1097/BSD.0b013e318158de22

Source: PubMed

3
Abonner