Dose-response relationship of in vivo ambulatory load and mechanosensitive cartilage biomarkers-The role of age, tissue health and inflammation: A study protocol

Simon Herger, Werner Vach, Corina Nüesch, Anna-Maria Liphardt, Christian Egloff, Annegret Mündermann, Simon Herger, Werner Vach, Corina Nüesch, Anna-Maria Liphardt, Christian Egloff, Annegret Mündermann

Abstract

Objective: To describe a study protocol for investigating the in vivo dose-response relationship between ambulatory load magnitude and mechanosensitive blood markers of articular cartilage, the influence of age, cartilage tissue health and presence of inflammation on this relationship, and its ability to predict changes in articular cartilage quality and morphology within 2 years.

Design: Prospective experimental multimodal (clinical, biomechanical, biological) data collection under walking stress and three different load conditions varied in a randomized crossover design.

Experimental protocol: At baseline, equal numbers of healthy and anterior cruciate ligament injured participants aged 20-30 or 40-60 years will be assessed clinically and complete questionnaires regarding their knee health. Biomechanical parameters (joint kinetics, joint kinematics, and surface electromyography) will be recorded while performing different tasks including overground and treadmill walking, single leg balance and hopping tasks. Magnetic resonance images (MRI) of both of knees will be obtained. On separate stress test days, participants will perform a 30-minute walking stress with either reduced (80% body weight (BW)), normal (100%BW) or increased (120%BW) load. Serum blood samples will be taken immediately before, immediately after, 30, 120 and 210 minutes after the walking stress. Concentration of articular cartilage blood biomarkers will be assessed using enzyme linked immunosorbent assays. At 24-month follow-up, participants will be again assessed clinically, undergo an MRI, complete questionnaires, and have a blood sample taken.

Conclusion: The study design provides a standardized set up that allows to better understand the influence of ambulatory load on articular cartilage biomarkers and thereby extend current knowledge on in vivo cartilage metabolism and mechanosensitivity. Further, this study will help to elucidate the prognostic value of the load-induced cartilage biomarker response for early articular cartilage degeneration.

Trial registration: The protocol was approved by the regional ethics committee and has been registered at clinicaltrials.gov (NCT04128566).

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Schedule of enrollment and assessments.
Fig 1. Schedule of enrollment and assessments.
Fig 2. Planned participant characteristics.
Fig 2. Planned participant characteristics.
Injury subcategories healthy and ACL injured and the age subcategories 20 to 30 and 40 to 60 years. ACL–Anterior cruciate ligament.
Fig 3. Illustration of the study design.
Fig 3. Illustration of the study design.
Overview and timeline of the measurements of baseline, 12-month follow-up and 24-month follow-up data collection. KSS–Knee Society Score; KOOS–Knee Injury and Osteoarthritis Outcome Score; MRI–magnetic resonance imaging; FS-PD TSE–fat saturated proton density turbo spin echo; qDESS–quantitative double-echo steady-state.
Fig 4. Marker and electromyography electrodes placement…
Fig 4. Marker and electromyography electrodes placement during the biomechanical assessment.
Surface electromyography electrodes (blue circles; electrodes on gluteus medius under the pants) and marker placement (bright dots) for 3D motion analysis in front (left), back (middle) and side (right) view.
Fig 5. The applied loading conditions during…
Fig 5. The applied loading conditions during walking stress.
Reduced load (80% bodyweight (BW)) is achieved using a harness connected to a pneumatic pulley system (left). During normal load (100%BW) the BW is not altered (middle). Increased load (120%BW) is achieved using a weight vest (right).

References

    1. Losina E, Weinstein AM, Reichmann WM, Burbine SA, Solomon DH, Daigle ME, et al.. Lifetime risk and age at diagnosis of symptomatic knee osteoarthritis in the US. Arthritis Care Res (Hoboken). 2013;65(5):703–711. doi: 10.1002/acr.21898
    1. Woolf AD, Pfleger B. Burden of major musculoskeletal conditions. Bull World Health Organ. 2003;81(9):646–656.
    1. Murphy L, Schwartz TA, Helmick CG, Renner JB, Tudor G, Koch G, et al.. Lifetime risk of symptomatic knee osteoarthritis. Arthritis and rheumatism. 2008;59(9):1207–1213. doi: 10.1002/art.24021
    1. Muthuri SG, McWilliams DF, Doherty M, Zhang W. History of knee injuries and knee osteoarthritis: a meta-analysis of observational studies. Osteoarthritis Cartilage. 2011;19(11):1286–1293. doi: 10.1016/j.joca.2011.07.015
    1. Webster KE, Hewett TE. Anterior Cruciate Ligament Injury and Knee Osteoarthritis: An Umbrella Systematic Review and Meta-analysis. Clin J Sport Med. 2022;32(2):145–152. doi: 10.1097/JSM.0000000000000894
    1. Hawker GA, Stewart L, French MR, Cibere J, Jordan JM, March L, et al.. Understanding the pain experience in hip and knee osteoarthritis–an OARSI/OMERACT initiative. Osteoarthritis and cartilage. 2008;16(4):415–422. doi: 10.1016/j.joca.2007.12.017
    1. Abramoff B, Caldera FE. Osteoarthritis: Pathology, Diagnosis, and Treatment Options. Medical Clinics of North America. 2020;104(2):293–311. doi: 10.1016/j.mcna.2019.10.007
    1. Mobasheri A, Batt M. An update on the pathophysiology of osteoarthritis. Annals of Physical and Rehabilitation Medicine. 2016;59(5):333–339. doi: 10.1016/j.rehab.2016.07.004
    1. Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis and rheumatism. 2012;64(6):1697–1707. doi: 10.1002/art.34453
    1. Glyn-Jones S, Palmer AJR, Agricola R, Price AJ, Vincent TL, Weinans H, et al.. Osteoarthritis. The Lancet. 2015;386(9991):376–387.
    1. Kellgren JH, Lawrence JS. Radiological Assessment of Osteo-Arthrosis. Annals of the Rheumatic Diseases. 1957;16(4):494–502. doi: 10.1136/ard.16.4.494
    1. Roemer FW, Guermazi A, Demehri S, Wirth W, Kijowski R. Imaging in Osteoarthritis. Osteoarthritis and cartilage. 2021.
    1. Guermazi A, Roemer FW, Burstein D, Hayashi D. Why radiography should no longer be considered a surrogate outcome measure for longitudinal assessment of cartilage in knee osteoarthritis. Arthritis Research & Therapy. 2011;13(6):247. doi: 10.1186/ar3488
    1. Peterfy CG, Guermazi A, Zaim S, Tirman PFJ, Miaux Y, White D, et al.. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis and cartilage. 2004;12(3):177–190. doi: 10.1016/j.joca.2003.11.003
    1. Hunter DJ, Guermazi A, Lo GH, Grainger AJ, Conaghan PG, Boudreau RM, et al.. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis and cartilage. 2011;19(8):990–1002. doi: 10.1016/j.joca.2011.05.004
    1. Chaudhari AS, Black MS, Eijgenraam S, Wirth W, Maschek S, Sveinsson B, et al.. Five-minute knee MRI for simultaneous morphometry and T2 relaxometry of cartilage and meniscus and for semiquantitative radiological assessment using double-echo in steady-state at 3T. Journal of Magnetic Resonance Imaging. 2018;47(5):1328–1341. doi: 10.1002/jmri.25883
    1. Buckwalter JA, Mankin HJ. Instructional Course Lectures, The American Academy of Orthopaedic Surgeons—Articular Cartilage. Part I: Tissue Design and Chondrocyte-Matrix Interactions. JBJS. 1997;79(4).
    1. Fischer AE, Carpenter TA, Tyler JA, Hall LD. Visualisation of mass transport of small organic molecules and metal ions through articular cartilage by magnetic resonance imaging. Magnetic Resonance Imaging. 1995;13(6):819–826. doi: 10.1016/0730-725x(95)00040-n
    1. Woo SL-Y, Buckwalter JA. Injury and repair of the musculoskeletal soft tissues. Savannah, Georgia, June 18–20, 1987. J Orthop Res. 1988;6(6):907–931.
    1. Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports health. 2009;1(6):461–468. doi: 10.1177/1941738109350438
    1. Dewan AK, Gibson MA, Elisseeff JH, Trice ME. Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques. BioMed research international. 2014;2014:272481. doi: 10.1155/2014/272481
    1. Martin JA, Buckwalter JA. Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology. 2002;3(5):257–264. doi: 10.1023/a:1020185404126
    1. Sanchez-Adams J, Leddy HA, McNulty AL, O’Conor CJ, Guilak F. The mechanobiology of articular cartilage: bearing the burden of osteoarthritis. Current rheumatology reports. 2014;16(10):451. doi: 10.1007/s11926-014-0451-6
    1. Andriacchi TP, Favre J, Erhart-Hledik JC, Chu CR. A systems view of risk factors for knee osteoarthritis reveals insights into the pathogenesis of the disease. Annals of biomedical engineering. 2015;43(2):376–387. doi: 10.1007/s10439-014-1117-2
    1. Zheng L, Zhang Z, Sheng P, Mobasheri A. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Research Reviews. 2021;66:101249. doi: 10.1016/j.arr.2020.101249
    1. Chu CR, Sheth S, Erhart-Hledik JC, Do B, Titchenal MR, Andriacchi TP. Mechanically stimulated biomarkers signal cartilage changes over 5 years consistent with disease progression in medial knee osteoarthritis patients. Journal of orthopaedic research: official publication of the Orthopaedic Research Society. 2018;36(3):891–897. doi: 10.1002/jor.23720
    1. Kraus VB, Collins JE, Hargrove D, Losina E, Nevitt M, Katz JN, et al.. Predictive validity of biochemical biomarkers in knee osteoarthritis: data from the FNIH OA Biomarkers Consortium. Annals of the Rheumatic Diseases. 2017;76(1):186–195. doi: 10.1136/annrheumdis-2016-209252
    1. Van Spil WE, Welsing PMJ, Bierma-Zeinstra SMA, Bijlsma JWJ, Roorda LD, Cats HA, et al.. The ability of systemic biochemical markers to reflect presence, incidence, and progression of early-stage radiographic knee and hip osteoarthritis: data from CHECK. Osteoarthritis and cartilage. 2015;23(8):1388–1397. doi: 10.1016/j.joca.2015.03.023
    1. Van Spil WE, Szilagyi IA. Osteoarthritis year in review 2019: biomarkers (biochemical markers). Osteoarthritis and cartilage. 2020;28(3):296–315. doi: 10.1016/j.joca.2019.11.007
    1. Martel-Pelletier J, Tardif G, Paiement P, Pelletier J-P. Common Biochemical and Magnetic Resonance Imaging Biomarkers of Early Knee Osteoarthritis and of Exercise/Training in Athletes: A Narrative Review. Diagnostics. 2021;11(8):1488. doi: 10.3390/diagnostics11081488
    1. Yves H. Osteoarthritis in year 2021: biochemical markers. Osteoarthritis and cartilage. 2021;30(2):237–248. doi: 10.1016/j.joca.2021.11.001
    1. Herger S, Nüesch C, Liphardt A-M, Egloff C, Mündermann A. Framework for modulating ambulatory load in the context of in vivo mechanosensitivity of articular cartilage. Osteoarthritis and Cartilage Open. 2020;2(4):100108.
    1. Herger S, Vach W, Liphardt AM, Egloff C, Nüesch C, Mündermann A. Dose-response relationship between ambulatory load magnitude and load-induced changes in COMP in young healthy adults. Osteoarthritis and cartilage. 2019;27(1):106–113. doi: 10.1016/j.joca.2018.09.002
    1. Herger S, Vach W, Liphardt AM, Nüesch C, Egloff C, Mündermann A. Experimental-analytical approach to assessing mechanosensitive cartilage blood marker kinetics in healthy adults: dose-response relationship and interrelationship of nine candidate markers. F1000Res. 2021;10:490. doi: 10.12688/f1000research.52159.2
    1. Cooper C, Snow S, McAlindon TE, Kellingray S, Stuart B, Coggon D, et al.. Risk factors for the incidence and progression of radiographic knee osteoarthritis. Arthritis and Rheumatism. 2000;43(5):995–1000. doi: 10.1002/1529-0131(200005)43:5<995::AID-ANR6>;2-1
    1. Oliveria SA, Felson DT, Reed JI, Cirillo PA, Walker AM. Incidence of symptomatic hand, hip, and knee osteoarthritis among patients in a health maintenance organization. Arthritis and rheumatism. 1995;38(8):1134–1141. doi: 10.1002/art.1780380817
    1. Ackerman IN, Cavka B, Lippa J, Bucknill A. The feasibility of implementing the ICHOM Standard Set for Hip and Knee Osteoarthritis: a mixed-methods evaluation in public and private hospital settings. J Patient Rep Outcomes. 2017;2:32. doi: 10.1186/s41687-018-0062-5
    1. Insall JN, Dorr LD, Scott RD, Scott WN. Rationale of the Knee Society clinical rating system. Clinical orthopaedics and related research. 1989(248):13–14.
    1. Roos EM, Lohmander LS. The Knee injury and Osteoarthritis Outcome Score (KOOS): from joint injury to osteoarthritis. Health and Quality of Life Outcomes. 2003;1(1):64.
    1. Heule R, Ganter C, Bieri O. Rapid estimation of cartilage T2 with reduced T1 sensitivity using double echo steady state imaging. Magn Reson Med. 2014;71(3):1137–1143. doi: 10.1002/mrm.24748
    1. Wirth W, Eckstein F. A technique for regional analysis of femorotibial cartilage thickness based on quantitative magnetic resonance imaging. IEEE Trans Med Imaging. 2008;27(6):737–744. doi: 10.1109/TMI.2007.907323
    1. Stahl R, Blumenkrantz G, Carballido-Gamio J, Zhao S, Munoz T, Hellio Le Graverand-Gastineau MP, et al.. MRI-derived T2 relaxation times and cartilage morphometry of the tibio-femoral joint in subjects with and without osteoarthritis during a 1-year follow-up. Osteoarthritis and cartilage. 2007;15(11):1225–1234. doi: 10.1016/j.joca.2007.04.018
    1. Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology. 2004;232(2):592–598. doi: 10.1148/radiol.2322030976
    1. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361–374. doi: 10.1016/s1050-6411(00)00027-4
    1. Dyrby CO, Andriacchi TP. Secondary motions of the knee during weight bearing and non-weight bearing activities. J Orthop Res. 2004;22(4):794–800. doi: 10.1016/j.orthres.2003.11.003
    1. Leboeuf F, Baker R, Barré A, Reay J, Jones R, Sangeux M. The conventional gait model, an open-source implementation that reproduces the past but prepares for the future. Gait & posture. 2019;69:235–241.
    1. Leboeuf F, Reay J, Jones R, Sangeux M. The effect on conventional gait model kinematics and kinetics of hip joint centre equations in adult healthy gait. J Biomech. 2019;87:167–171. doi: 10.1016/j.jbiomech.2019.02.010
    1. Migueles JH, Rowlands AV, Huber F, Sabia S, Van Hees VT. GGIR: A Research Community–Driven Open Source R Package for Generating Physical Activity and Sleep Outcomes From Multi-Day Raw Accelerometer Data. Journal for the Measurement of Physical Behaviour. 2019;2(3):188–196.
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. Journal of Biomedical Informatics. 2009;42(2):377–381. doi: 10.1016/j.jbi.2008.08.010
    1. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, et al.. The REDCap consortium: Building an international community of software platform partners. Journal of Biomedical Informatics. 2019;95:103208. doi: 10.1016/j.jbi.2019.103208
    1. Carbone A, Rodeo S. Review of current understanding of post-traumatic osteoarthritis resulting from sports injuries. Journal of orthopaedic research: official publication of the Orthopaedic Research Society. 2017;35(3):397–405. doi: 10.1002/jor.23341
    1. Hunt ER, Jacobs CA, Conley CE, Ireland ML, Johnson DL, Lattermann C. Anterior cruciate ligament reconstruction reinitiates an inflammatory and chondrodegenerative process in the knee joint. Journal of orthopaedic research: official publication of the Orthopaedic Research Society. 2021;39(6):1281–1288. doi: 10.1002/jor.24783
    1. Whittaker JL, Woodhouse LJ, Nettel-Aguirre A, Emery CA. Outcomes associated with early post-traumatic osteoarthritis and other negative health consequences 3–10 years following knee joint injury in youth sport. Osteoarthritis and cartilage. 2015;23(7):1122–1129. doi: 10.1016/j.joca.2015.02.021
    1. Lohmander LS, Östenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis & Rheumatism. 2004;50(10):3145–3152.
    1. Friel NA, Chu CR. The Role of ACL Injury in the Development of Posttraumatic Knee Osteoarthritis. Clinics in Sports Medicine. 2013;32(1):1–12. doi: 10.1016/j.csm.2012.08.017
    1. Racine J, Aaron RK. Post-traumatic osteoarthritis after ACL injury. R I Med J (2013). 2014;97(11):25–28.
    1. Dare D, Rodeo S. Mechanisms of post-traumatic osteoarthritis after ACL injury. Current rheumatology reports. 2014;16(10):448. doi: 10.1007/s11926-014-0448-1
    1. Wang L-J, Zeng N, Yan Z-P, Li J-T, Ni G-X. Post-traumatic osteoarthritis following ACL injury. Arthritis Research & Therapy. 2020;22(1):57. doi: 10.1186/s13075-020-02156-5
    1. Müller G, Michel A, Altenburg E. COMP (Cartilage Oligomeric Matrix Protein) is Synthesized in Ligament, Tendon, Meniscus, and Articular Cartilage. Connect Tissue Res. 1998;39(4):233–244. doi: 10.3109/03008209809021499
    1. Rosenberg K, Olsson H, Mörgelin M, Heinegård D. Cartilage oligomeric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen. Journal of Biological Chemistry. 1998;273(32):20397–20403. doi: 10.1074/jbc.273.32.20397
    1. Acharya C, Yik JHN, Kishore A, Van Dinh V, Di Cesare PE, Haudenschild DR. Cartilage oligomeric matrix protein and its binding partners in the cartilage extracellular matrix: Interaction, regulation and role in chondrogenesis. Matrix Biology. 2014;37:102–111. doi: 10.1016/j.matbio.2014.06.001
    1. Halasz K, Kassner A, Morgelin M, Heinegard D. COMP Acts as a Catalyst in Collagen Fibrillogenesis. 2007;282(43):31166–31173. doi: 10.1074/jbc.M705735200
    1. Maly K, Andres Sastre E, Farrell E, Meurer A, Zaucke F. COMP and TSP-4: Functional Roles in Articular Cartilage and Relevance in Osteoarthritis. Int J Mol Sci. 2021;22(5):2242. doi: 10.3390/ijms22052242
    1. Van Spil WE, Degroot J, Lems WF, Oostveen JCM, Lafeber FPJG. Serum and urinary biochemical markers for knee and hip-osteoarthritis: a systematic review applying the consensus BIPED criteria. Osteoarthritis and cartilage. 2010;18(5):605–612. doi: 10.1016/j.joca.2010.01.012
    1. Bi X. Correlation of serum cartilage oligomeric matrix protein with knee osteoarthritis diagnosis: a meta-analysis. Journal of Orthopaedic Surgery and Research. 2018;13(1).
    1. Georgiev T, Ivanova M, Kopchev A, Velikova T, Miloshov A, Kurteva E, et al.. Cartilage oligomeric protein, matrix metalloproteinase-3, and Coll2-1 as serum biomarkers in knee osteoarthritis: a cross-sectional study. Rheumatology International. 2018;38(5):821–830. doi: 10.1007/s00296-017-3887-y
    1. Hao HQ, Zhang JF, He QQ, Wang Z. Cartilage oligomeric matrix protein, C-terminal cross-linking telopeptide of type II collagen, and matrix metalloproteinase-3 as biomarkers for knee and hip osteoarthritis (OA) diagnosis: a systematic review and meta-analysis. Osteoarthritis and cartilage. 2019;27(5):726–736. doi: 10.1016/j.joca.2018.10.009
    1. Clark AG, Jordan JM, Vilím V, Renner JB, Dragomir AD, Luta G, et al.. Serum cartilage oligomeric matrix protein reflects osteoarthritis presence and severity: the Johnston County Osteoarthritis Project. Arthritis and Rheumatism. 1999;42(11):2356–2364. doi: 10.1002/1529-0131(199911)42:11<2356::AID-ANR14>;2-R
    1. Palmieri-Smith RM, Wojtys EM, Potter HG. Early Cartilage Changes After Anterior Cruciate Ligament Injury: Evaluation With Imaging and Serum Biomarkers-A Pilot Study. Arthroscopy: the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2016;32(7):1309–1318. doi: 10.1016/j.arthro.2015.12.045
    1. Denning WM, Becker Pardo M, Winward JG, Hunter I, Ridge S, Hopkins JT, et al.. Ambulation speed and corresponding mechanics are associated with changes in serum cartilage oligomeric matrix protein. Gait & posture. 2016;44:131–136. doi: 10.1016/j.gaitpost.2015.11.007
    1. Pruksakorn D, Tirankgura P, Luevitoonvechkij S, Chamnongkich S, Sugandhavesa N, Leerapun T, et al.. Changes in the serum cartilage biomarker levels of healthy adults in response to an uphill walk. Singapore Med J. 2013;54(12):702–708. doi: 10.11622/smedj.2013245
    1. Celik O, Salci Y, Ak E, Kalaci A, Korkusuz F. Serum cartilage oligomeric matrix protein accumulation decreases significantly after 12 weeks of running but not swimming and cycling training–A randomised controlled trial. The Knee. 2013;20(1):19–25. doi: 10.1016/j.knee.2012.06.001
    1. Liphardt AM, Mündermann A, Koo S, Backer N, Andriacchi TP, Zange J, et al.. Vibration training intervention to maintain cartilage thickness and serum concentrations of cartilage oligometric matrix protein (COMP) during immobilization. Osteoarthritis and cartilage. 2009;17(12):1598–1603. doi: 10.1016/j.joca.2009.07.007
    1. Liphardt A-M, Mündermann A, Andriacchi TP, Achtzehn S, Heer M, Mester J. Sensitivity of serum concentration of cartilage biomarkers to 21-days of bed rest. Journal of Orthopaedic Research®. 2018;36(5):1465–1471. doi: 10.1002/jor.23786
    1. Liphardt A-M, Mündermann A, Heer M, Achtzehn S, Niehoff A, Mester J. Locomotion replacement exercise cannot counteract cartilage biomarker response to 5 days of immobilization in healthy adults. J Orthop Res. 2020;38(11):2373–2382. doi: 10.1002/jor.24753
    1. Erhart-Hledik JC, Favre J, Asay JL, Smith RL, Giori NJ, Mündermann A, et al.. A relationship between mechanically-induced changes in serum cartilage oligomeric matrix protein (COMP) and changes in cartilage thickness after 5 years. Osteoarthritis and cartilage. 2012;20(11):1309–1315. doi: 10.1016/j.joca.2012.07.018
    1. Erhart-Hledik JC, Chehab EF, Asay JL, Favre J, Chu CR, Andriacchi TP. Longitudinal changes in tibial and femoral cartilage thickness are associated with baseline ambulatory kinetics and cartilage oligomeric matrix protein (COMP) measures in an asymptomatic aging population. Osteoarthritis and cartilage. 2021;29(5):687–696. doi: 10.1016/j.joca.2021.02.006
    1. Chapter Nagase H. 158—Matrix Metalloproteinase 3/Stromelysin 1. In: Rawlings ND, Salvesen G, editors. Handbook of Proteolytic Enzymes (Third Edition): Academic Press; 2013. p. 763–774.
    1. Manka SW, Bihan D, Farndale RW. Structural studies of the MMP-3 interaction with triple-helical collagen introduce new roles for the enzyme in tissue remodelling. Sci Rep. 2019;9(1):18785. doi: 10.1038/s41598-019-55266-9
    1. Murphy G, Allan JA, Willenbrock F, Cockett MI, O’Connell JP, Docherty AJ. The role of the C-terminal domain in collagenase and stromelysin specificity. Journal of Biological Chemistry. 1992;267(14):9612–9618.
    1. Suzuki K, Enghild JJ, Morodomi T, Salvesen G, Nagase H. Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin). Biochemistry. 1990;29(44):10261–10270. doi: 10.1021/bi00496a016
    1. Georgiev T, Ivanova M, Velikova T, Stoilov R. Serum levels of matrix metalloproteinase-3 as a prognostic marker for progression of cartilage injury in patients with knee osteoarthritis. Acta Reumatol Port. 2020;45(3):207–213.
    1. Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014;2014:561459–561459. doi: 10.1155/2014/561459
    1. Livshits G, Zhai G, Hart DJ, Kato BS, Wang H, Williams FM, et al.. Interleukin-6 is a significant predictor of radiographic knee osteoarthritis: The Chingford Study. Arthritis and rheumatism. 2009;60(7):2037–2045. doi: 10.1002/art.24598
    1. Stannus O, Jones G, Cicuttini F, Parameswaran V, Quinn S, Burgess J, et al.. Circulating levels of IL-6 and TNF-α are associated with knee radiographic osteoarthritis and knee cartilage loss in older adults. Osteoarthritis and cartilage. 2010;18(11):1441–1447. doi: 10.1016/j.joca.2010.08.016
    1. Pan F, Tian J, Cicuttini F, Jones G. Prospective Association Between Inflammatory Markers and Knee Cartilage Volume Loss and Pain Trajectory. Pain Ther. 2022;11(1):107–119. doi: 10.1007/s40122-021-00341-1
    1. Wiegertjes R, van de Loo FAJ, Blaney Davidson EN. A roadmap to target interleukin-6 in osteoarthritis. Rheumatology (Oxford). 2020;59(10):2681–2694. doi: 10.1093/rheumatology/keaa248
    1. Velazquez-Salinas L, Verdugo-Rodriguez A, Rodriguez LL, Borca MV. The Role of Interleukin 6 During Viral Infections. Frontiers in Microbiology. 2019;10. doi: 10.3389/fmicb.2019.01057
    1. Mumme M, Barbero A, Miot S, Wixmerten A, Feliciano S, Wolf F, et al.. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial. Lancet. 2016;388(10055):1985–1994. doi: 10.1016/S0140-6736(16)31658-0

Source: PubMed

3
Abonner