sTREM-1 predicts mortality in hospitalized patients with infection in a tropical, middle-income country

Shelton W Wright, Lara Lovelace-Macon, Viriya Hantrakun, Kristina E Rudd, Prapit Teparrukkul, Susanna Kosamo, W Conrad Liles, Direk Limmathurotsakul, T Eoin West, Shelton W Wright, Lara Lovelace-Macon, Viriya Hantrakun, Kristina E Rudd, Prapit Teparrukkul, Susanna Kosamo, W Conrad Liles, Direk Limmathurotsakul, T Eoin West

Abstract

Background: Few studies of biomarkers as predictors of outcome in infection have been performed in tropical, low- and middle-income countries where the burden of sepsis is highest. We evaluated whether selected biomarkers could predict 28-day mortality in infected patients in rural Thailand.

Methods: Four thousand nine hundred eighty-nine adult patients admitted with suspected infection to a referral hospital in northeast Thailand were prospectively enrolled within 24 h of admission. In a secondary analysis of 760 patients, interleukin-8 (IL-8), soluble tumor necrosis factor receptor 1 (sTNFR-1), angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), and soluble triggering receptor expressed by myeloid cells 1 (sTREM-1) were measured in the plasma. Association with 28-day mortality was evaluated using regression; a parsimonious biomarker model was selected using the least absolute shrinkage and selection operator (LASSO) method. Discrimination of mortality was assessed by receiver operating characteristic curve analysis and verified by multiple methods.

Results: IL-8, sTNFR-1, Ang-2, and sTREM-1 concentrations were strongly associated with death. LASSO identified a three-biomarker model of sTREM-1, Ang-2, and IL-8, but sTREM-1 alone provided comparable mortality discrimination (p = 0.07). sTREM-1 alone was comparable to a model of clinical variables (area under receiver operating characteristic curve [AUC] 0.81, 95% confidence interval [CI] 0.77-0.85 vs AUC 0.79, 95% CI 0.74-0.84; p = 0.43). The combination of sTREM-1 and clinical variables yielded greater mortality discrimination than clinical variables alone (AUC 0.83, 95% CI 0.79-0.87; p = 0.004).

Conclusions: sTREM-1 predicts mortality from infection in a tropical, middle-income country comparably to a model derived from clinical variables and, when combined with clinical variables, can further augment mortality prediction.

Trial registration: The Ubon-sepsis study was registered on ClinicalTrials.gov ( NCT02217592 ), 2014.

Keywords: LMIC; Low- and middle-income countries; Sepsis; Soluble triggering receptor expressed by myeloid cells 1; sTREM-1.

Conflict of interest statement

WCL has the following patents: “Biomarkers for early determination of a critical or life threatening response to illness and monitoring response to treatment thereof” (Application CA2769433 A1 – August 27, 2013; WO20131270000 A1 – September 6, 2013), “Biomarkers for malaria” (Application: WO2012016333 A1 – February 9, 2012), “Angiopoietin-1 and -2 biomarkers for infectious diseases that compromise endothelial integrity” (Application: WO2009059404 A1 – May 14, 2009; US20110008804 A1 – January 13, 2011), “Biomarkers for early determination of a critical or life threatening response to illness and/or treatment response” (Application: US14/916,758 – March 4, 2016), and “Biomarkers to identify and predict severe toxicity after adoptive T cell therapy” (Application: US62/456,798 – February 9, 2017). All other authors declared that they have no competing interests. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest.

Figures

Fig. 1
Fig. 1
Discrimination of death by sTREM-1 and clinical variable models. Area under the receiver operating characteristic curve (AUC) for the clinical variable model including age, sex, Charlson Comorbidity Index, transfer status, and modified SOFA score; an sTREM-1 model (sTREM-1); and a model combining the clinical variable model and sTREM-1 (Clin. var. + sTREM-1) for 28-day mortality discrimination
Fig. 2
Fig. 2
sTREM-1 and death at 28 days by modified SOFA score. Concentrations of sTREM-1 (pg/ml) and proportion of non-survivors at 28-days (%) are shown by quartile of modified SOFA score

References

    1. Rudd KE, Kissoon N, Limmathurotsakul DI, Bory S, Mutahunga B, Seymour CW, et al. The global burden of sepsis: barriers and potential solutions. Crit Care. 2018;22(232):1–11.
    1. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease study. Lancet. 2020;6736(19):1–12.
    1. Sudarmono P, Aman AT, Arif M, Syarif AK, Kosasih H, Karyana M, et al. Causes and outcomes of sepsis in Southeast Asia: a multinational multicentre cross-sectional study. Lancet Glob Health. 2017;5(2):e157–e167. doi: 10.1016/S2214-109X(17)30007-4.
    1. World Bank and National Economic and Social Development Board. Thailand Northeast Economic Development Report. 2005;1–233.
    1. Kanoksil M, Jatapai A, Peacock SJ, Limmathurotsakul D. Epidemiology, microbiology and mortality associated with community-acquired bacteremia in northeast Thailand: a multicenter surveillance study. PLoS One. 2013;8(1):1–9. doi: 10.1371/journal.pone.0054714.
    1. Teparrukkul P, Hantrakun V, Imwong M, Teerawattanasook N, Wongsuvan G, Day NPJ, et al. Utility of qSOFA and modified SOFA in severe malaria presenting as sepsis. PLoS One. 2019;14(10):1–13. doi: 10.1371/journal.pone.0223457.
    1. Teparrukkul P, Hantrakun V, Day NPJ, West TE, Limmathurotsakul D. Management and outcomes of severe dengue patients presenting with sepsis in a tropical country. PLoS One. 2017;12(4):1–13. doi: 10.1371/journal.pone.0176233.
    1. Rudd KE, Hantrakun V, Somayaji R, Booraphun S, Boonsri C, Fitzpatrick AL, et al. Early management of sepsis in medical patients in rural Thailand: a single-center prospective observational study. J Intensive Care. 2019;7(55):1–8.
    1. Minne L, Abu-Hanna A, de Jonge E. Evaluation of SOFA-based models for predicting mortality in the ICU: a systematic review. Crit Care. 2008;12(6):1–13.
    1. Rudd KE, Seymour CW, Aluisio AR, Augustin ME, Bagenda DS, Beane A, et al. Association of the quick sequential (sepsis-related) organ failure assessment (qSOFA) score with excess hospital mortality in adults with suspected infection in low- and middle-income countries. JAMA. 2018;319(21):2202–2211. doi: 10.1001/jama.2018.6229.
    1. Hantrakun V, Somayaji R, Teparrukkul P, Boonsri C, Rudd K, Day NPJ, et al. Clinical epidemiology and outcomes of community acquired infection and sepsis among hospitalized patients in a resource limited setting in northeast Thailand: a prospective observational study (Ubon-sepsis) PLoS One. 2018;13(9):1–14. doi: 10.1371/journal.pone.0204509.
    1. van Engelen TSR, Wiersinga WJ, Scicluna BP, van der Poll T. Biomarkers in sepsis. Crit Care Clin. 2018;34(1):139–152. doi: 10.1016/j.ccc.2017.08.010.
    1. Lubell Y, Blacksell SD, Dunachie S, Tanganuchitcharnchai A, Althaus T, Watthanaworawit W, et al. Performance of C-reactive protein and procalcitonin to distinguish viral from bacterial and malarial causes of fever in Southeast Asia. BMC Infect Dis. 2015;15(1):1–10. doi: 10.1186/s12879-015-1272-6.
    1. Mikacenic C, Price BL, Harju-Baker S, O’Mahony DS, Robinson-Cohen C, Radella F, et al. A two-biomarker model predicts mortality in the critically ill with sepsis. Am J Respir Crit Care Med. 2017;196(8):1004–1011. doi: 10.1164/rccm.201611-2307OC.
    1. Ríos-Toro JJ, Márquez-Coello M, García-Álvarez JM, Martín-Aspas A, Rivera-Fernández R, De Benito AS, et al. Soluble membrane receptors, interleukin 6, procalcitonin and C reactive protein as prognostic markers in patients with severe sepsis and septic shock. PLoS One. 2017;12(4):1–18. doi: 10.1371/journal.pone.0175254.
    1. Ricciuto DR, Dos Santos CC, Hawkes M, Toltl LJ, Conroy AL, Rajwans N, et al. Angiopoietin-1 and angiopoietin-2 as clinically informative prognostic biomarkers of morbidity and mortality in severe sepsis. Crit Care Med. 2011;39(4):702–710. doi: 10.1097/CCM.0b013e318206d285.
    1. Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, et al. Assessment of clinical criteria for sepsis for the third international consensus definitions for sepsis and septic shock (sepsis-3) JAMA. 2016;315(8):762–774. doi: 10.1001/jama.2016.0288.
    1. Kaewarpai T, Ekchariyawat P, Phunpang R, Wright S, Dulsuk A, Moonmueangsan B, et al. Longitudinal profiling of plasma cytokines in melioidosis and their association with mortality: a prospective cohort study. Clin Microbiol Infect. 2019; In press.
    1. Pepe MS. The statistical evaluation of medical tests for classification and prediction. New York City: Oxford University Press; 2003. p. 302.
    1. Mikacenic C, Hahn WO, Price BL, Harju-Baker S, Katz R, Kain KC, et al. Biomarkers of endothelial activation are associated with poor outcome in critical illness. PLoS One. 2015;10(10):1–13. doi: 10.1371/journal.pone.0141251.
    1. Hahn WO, Mikacenic C, Price BL, Harju-Baker S, Katz R, Himmelfarb J, et al. Host derived biomarkers of inflammation, apoptosis, and endothelial activation are associated with clinical outcomes in patients with bacteremia and sepsis regardless of microbial etiology. Virulence. 2016;7(4):387–394. doi: 10.1080/21505594.2016.1144003.
    1. Jeong SJ, Song YG, Kim CO, Kim HW, Ku NS, Han SH, et al. Measurement of plasma STREM-1 in patients with severe sepsis receiving early goal-directed therapy and evaluation of its usefulness. Shock. 2012;37(6):574–578. doi: 10.1097/SHK.0b013e318250da40.
    1. Su L, Liu D, Chai W, Liu D, Long Y. Role of sTREM-1 in predicting mortality of infection: a systematic review and meta-analysis. BMJ Open. 2016;6(5):1–8. doi: 10.1136/bmjopen-2015-010314.
    1. Clark DV, Banura P, Bandeen-Roche K, Liles WC, Kain KC, Scheld WM, et al. Biomarkers of endothelial activation/dysfunction distinguish sub-groups of Ugandan patients with sepsis and differing mortality risks. JCI Insight. 2019;1:0–12.
    1. Ravetti CG, Moura AD, Vieira ÉL, Pedroso ERP, Teixeira AL. STREM-1 predicts intensive care unit and 28-day mortality in cancer patients with severe sepsis and septic shock. J Crit Care. 2015;30(2):440.e7–440.e13. doi: 10.1016/j.jcrc.2014.12.002.
    1. Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B. 1996;58(1):267–288.
    1. Pavlou M, Ambler G, Seaman S, De Iorio M, Omar RZ. Review and evaluation of penalised regression methods for risk prediction in low-dimensional data with few events. Stat Med. 2016;35(7):1159–1177. doi: 10.1002/sim.6782.
    1. Penciana MJ, D’Agostino RB. Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation. Stat Med. 2004;23(13):2109–2123. doi: 10.1002/sim.1802.
    1. Pencina MJ, D’Agostino RB, Sr, D’Agostino RB, Jr, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27(2):157–172. doi: 10.1002/sim.2929.
    1. Cook NR. Quantifying the added value of new biomarkers: how and how not. Diagn Progn Res. 2018;2(1):1–7. doi: 10.1186/s41512-018-0037-2.
    1. Hosmer DW, Hosmer T, Le Cessie S, Lemeshow S. A comparison of goodness-of-fit tests for the logistic regression model. Stat Med. 1997;16:965–980. doi: 10.1002/(SICI)1097-0258(19970515)16:9<965::AID-SIM509>;2-O.
    1. Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Mak. 2006;26(6):565–574. doi: 10.1177/0272989X06295361.
    1. Conroy AL, Lafferty EI, Lovegrove FE, Krudsood S, Tangpukdee N, Liles WC, et al. Whole blood angiopoietin-1 and-2 levels discriminate cerebral and severe (non-cerebral) malaria from uncomplicated malaria. Malar J. 2009;8(1):1–7. doi: 10.1186/1475-2875-8-295.
    1. Bouchon A, Dietrich J, Colonna M. Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol. 2000;164(10):4991–4995. doi: 10.4049/jimmunol.164.10.4991.
    1. Gibot S, Cravoisy A. Soluble form of the triggering receptor expressed on myeloid cells 1 as a marker of microbial infection. Clin Med Res. 2004;2(3):181–187. doi: 10.3121/cmr.2.3.181.
    1. Gibot S, Cravoisy A, Levy B, Bene M-C, Faure G, Bollaert P-E. Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia. N Engl J Med. 2004;350(5):451–458. doi: 10.1056/NEJMoa031544.
    1. Barati M, Bashar FR, Shahrami R, Zadeh MHJ, Taher MT, Nojomi M. Soluble triggering receptor expressed on myeloid cells 1 and the diagnosis of sepsis. J Crit Care. 2010;25(2):362.e1–362.e6. doi: 10.1016/j.jcrc.2009.10.004.
    1. Richard-Greenblatt M, Boillat-Blanco N, Zhong K, Mbarack Z, Samaka J, Mlaganile T, et al. Prognostic accuracy of soluble triggering receptor expressed on myeloid cells (sTREM-1)-based algorithms in febrile adults presenting to Tanzanian outpatient clinics. Clin Infect Dis. 2019;70(7):1304–1312.
    1. Moore CC, Hazard R, Saulters KJ, Ainsworth J, Adakun SA, Amir A, et al. Derivation and validation of a universal vital assessment (UVA) score: a tool for predicting mortality in adult hospitalised patients in sub-Saharan Africa. BMJ Glob Health. 2017;2(2):1–12. doi: 10.1136/bmjgh-2017-000344.
    1. Haniffa R, Mukaka M, Munasinghe SB, De Silva AP, Jayasinghe KSA, Beane A, et al. Simplified prognostic model for critically ill patients in resource limited settings in South Asia. Crit Care. 2017;21(1):1–8. doi: 10.1186/s13054-017-1843-6.
    1. Lie KC, Lau CY, Van Vinh CN, West TE, Limmathurotsakul D, Sudarmono P, et al. Utility of SOFA score, management and outcomes of sepsis in Southeast Asia: a multinational multicenter prospective observational study. J Intensive Care. 2018;6(1):1–8. doi: 10.1186/s40560-018-0279-7.
    1. Edward U, Sawe HR, Mfinanga JA, Ottaru TA, Kiremeji M, Kitapondya DN, et al. The utility of point of care serum lactate in predicting serious adverse outcomes among critically ill adult patients at urban emergency departments of tertiary hospitals in Tanzania. Trop Med Health. 2019;47(1):1–13. doi: 10.1186/s41182-019-0186-1.
    1. Rello J, Leblebicioglu H. Sepsis and septic shock in low-income and middle-income countries: need for a different paradigm. Int J Infect Dis. 2016;48:120–122. doi: 10.1016/j.ijid.2016.04.017.
    1. Drain PK, Hyle EP, Noubary F, Freedberg KA, Wilson D, Bishai WR, et al. Diagnostic point-of-care tests in resource-limited settings. Lancet Infect Dis. 2014;14(3):239–249. doi: 10.1016/S1473-3099(13)70250-0.
    1. Semret M, Ndao M, Jacobs J, Yansouni CP. Point-of-care and point-of-‘can’: leveraging reference-laboratory capacity for integrated diagnosis of fever syndromes in the tropics. Clin Microbiol Infect. 2018;24(8):836–844. doi: 10.1016/j.cmi.2018.03.044.

Source: PubMed

3
Abonner