Online detection of fetal acidemia during labour by testing synchronization of EEG and heart rate: a prospective study in fetal sheep

Xiaogang Wang, L Daniel Durosier, Michael G Ross, Bryan S Richardson, Martin G Frasch, Xiaogang Wang, L Daniel Durosier, Michael G Ross, Bryan S Richardson, Martin G Frasch

Abstract

Severe fetal acidemia during labour can result in life-lasting neurological deficits, but the timely detection of this condition is often not possible. This is because the positive predictive value (PPV) of fetal heart rate (FHR) monitoring, the mainstay of fetal health surveillance during labour, to detect concerning fetal acidemia is around 50%. In fetal sheep model of human labour, we reported that severe fetal acidemia (pH<7.00) during repetitive umbilical cord occlusions (UCOs) is preceded ∼60 minutes by the synchronization of electroencephalogram (EEG) and FHR. However, EEG and FHR are cyclic and noisy, and although the synchronization might be visually evident, it is challenging to detect automatically, a necessary condition for bedside utility. Here we present and validate a novel non-parametric statistical method to detect fetal acidemia during labour by using EEG and FHR. The underlying algorithm handles non-stationary and noisy data by recording number of abnormal episodes in both EEG and FHR. A logistic regression is then deployed to test whether these episodes are significantly related to each other. We then apply the method in a prospective study of human labour using fetal sheep model (n = 20). Our results render a PPV of 68% for detecting impending severe fetal acidemia ∼60 min prior to pH drop to less than 7.00 with 100% negative predictive value. We conclude that this method has a great potential to improve PPV for detection of fetal acidemia when it is implemented at the bedside. We outline directions for further refinement of the algorithm that will be achieved by analyzing larger data sets acquired in prospective human pilot studies.

Conflict of interest statement

Competing Interests: BSR and MGF are inventors of related patent applications entitled “EEG Monitor of Fetal Health” including U.S. Patent Application Serial No. 12/532,874 and CA 2681926 National Stage Entries of PCT/CA08/00580 filed March 28, 2008, with priority to US provisional patent application 60/908,587, filed March 28, 2007. This does not alter the authors' adherence to all PLOS ONE policies on sharing data and materials. MGF is a current Academic Editor of PLOS ONE. This does not alter the authors' adherence to PLOS ONE editorial policies and criteria.

Figures

Figure 1. The algorithm to detect EEG-FHR…
Figure 1. The algorithm to detect EEG-FHR synchronisation.
Figure 2. Arterial blood gas values.
Figure 2. Arterial blood gas values.
Mean±SD. UCO, umbilical cord occlusions; values are shown for each 20 min of UCO. * p

Figure 3. Representative behaviour of the electroencephalogram…

Figure 3. Representative behaviour of the electroencephalogram (EEG) and fetal heart rate (FHR) at baseline…

Figure 3. Representative behaviour of the electroencephalogram (EEG) and fetal heart rate (FHR) at baseline and during repetitive umbilical cord occlusions (UCO).
10 minutes of baseline (A), mild (B), moderate (C) and severe (D) UCO series are shown. X axis shows time of the day. The segment during the severe UCO series represents the stage when the adaptive brain shut-down pattern is visible in EEG in phase with FHR decelerations triggered by changes in the umbilical cord occluder pressure (UCP). Note the brief, ∼60 seconds lasting, episodes of EEG suppression during each UCO-induced FHR decelerations and EEG amplitude recovery between the UCOs.

Figure 4. A representative example of crossing…

Figure 4. A representative example of crossing point detection.

TOP: Single change point and crossing…

Figure 4. A representative example of crossing point detection.
TOP: Single change point and crossing point detection. BOTTOM: Complete experimental recording demonstrating detection of EEG-FHR synchronisation based on the crossing point detection and subsequent validation using logistic regression analysis. Vertical black line denotes onset of EEG-FHR synchronization as per visual expert analysis. Vertical orange bar denotes the drop of pH to less than 7.00. The p-values over time are rendered by red lines where the null hypothesis (no EEG-FHR synchronization) was rejected, i.e., p less than 5% and yellow lines where p value was between 5% and 10%. Note, that three subsequent crossing point detections are required to consider identifying EEG-FHR synchronization. This corresponds to a window length of 10 min (cf. Fig. 1).
Figure 3. Representative behaviour of the electroencephalogram…
Figure 3. Representative behaviour of the electroencephalogram (EEG) and fetal heart rate (FHR) at baseline and during repetitive umbilical cord occlusions (UCO).
10 minutes of baseline (A), mild (B), moderate (C) and severe (D) UCO series are shown. X axis shows time of the day. The segment during the severe UCO series represents the stage when the adaptive brain shut-down pattern is visible in EEG in phase with FHR decelerations triggered by changes in the umbilical cord occluder pressure (UCP). Note the brief, ∼60 seconds lasting, episodes of EEG suppression during each UCO-induced FHR decelerations and EEG amplitude recovery between the UCOs.
Figure 4. A representative example of crossing…
Figure 4. A representative example of crossing point detection.
TOP: Single change point and crossing point detection. BOTTOM: Complete experimental recording demonstrating detection of EEG-FHR synchronisation based on the crossing point detection and subsequent validation using logistic regression analysis. Vertical black line denotes onset of EEG-FHR synchronization as per visual expert analysis. Vertical orange bar denotes the drop of pH to less than 7.00. The p-values over time are rendered by red lines where the null hypothesis (no EEG-FHR synchronization) was rejected, i.e., p less than 5% and yellow lines where p value was between 5% and 10%. Note, that three subsequent crossing point detections are required to consider identifying EEG-FHR synchronization. This corresponds to a window length of 10 min (cf. Fig. 1).

References

    1. Low JA, Galbraith RS, Muir DW, Killen HL, Pater EA, et al. (1984) Factors associated with motor and cognitive deficits in children after intrapartum fetal hypoxia. American Journal of Obstetrics and Gynecology 148: 533–539.
    1. Goldaber KG, Gilstrap LC 3rd, Leveno KJ, Dax JS, McIntire DD (1991) Pathologic fetal acidemia. Obstetrics and gynecology 78: 1103–1107.
    1. Winkler CL, Hauth JC, Tucker JM, Owen J, Brumfield CG (1991) Neonatal complications at term as related to the degree of umbilical artery acidemia. American Journal of Obstetrics and Gynecology 164: 637–641.
    1. Low JA, Boston RW, Pancham SR (1972) Fetal asphyxia during the intrapartum period in intrauterine growth-retarded infants. Am J Obstet Gynecol 113: 351–357.
    1. Low JA, Panagiotopoulos C, Derrick EJ (1995) Newborn complications after intrapartum asphyxia with metabolic acidosis in the preterm fetus. Am J Obstet Gynecol 172: 805–810.
    1. Executive summary: Neonatal encephalopathy and neurologic outcome, second edition. Report of the American College of Obstetricians and Gynecologists' Task Force on Neonatal Encephalopathy. Obstet Gynecol 123: 896–901.
    1. Duncombe G, Veldhuizen RA, Gratton RJ, Han VK, Richardson BS (2010) IL-6 and TNFalpha across the umbilical circulation in term pregnancies: relationship with labour events. Early Hum Dev 86: 113–117.
    1. Chan CJ, Summers KL, Chan NG, Hardy DB, Richardson BS (2013) Cytokines in umbilical cord blood and the impact of labor events in low-risk term pregnancies. Early Hum Dev 89: 1005–1010.
    1. Liston R, Crane J, Hughes O, Kuling S, MacKinnon C, et al. (2002) Fetal health surveillance in labour. J Obstet Gynaecol Can 24: 342–355.
    1. Liston R, Sawchuck D, Young D (2007) Fetal health surveillance: antepartum and intrapartum consensus guideline. J Obstet Gynaecol Can 29: S3–56.
    1. Frasch MG, Keen AE, Gagnon R, Ross MG, Richardson BS (2011) Monitoring fetal electrocortical activity during labour for predicting worsening acidemia: a prospective study in the ovine fetus near term. PLoS ONE 6: e22100.
    1. Frasch M, Keen A, Matushewski B, Richardson B (2010) Comparability of electroenkephalogram (EEG) versus electrocorticogram (ECOG) in the ovine fetus near term. Reprod Sci 17: 51A.
    1. Frasch M, Durosier L, Duchatellier C, Richardson B (2012) Fetal sheep electrocorticogram and electroencephalogram changes accompanying variable fetal heart rate decelerations warn early of acidemia. Reprod Sci 19: F–090.
    1. Soothill PW, Nicolaides KH, Campbell S (1987) Prenatal asphyxia, hyperlacticaemia, hypoglycaemia, and erythroblastosis in growth retarded fetuses. Br Med J (Clin Res Ed) 294: 1051–1053.
    1. Cox WL, Daffos F, Forestier F, Descombey D, Aufrant C, et al. (1988) Physiology and management of intrauterine growth retardation: a biologic approach with fetal blood sampling. Am J Obstet Gynecol 159: 36–41.
    1. Goldenberg RL, Culhane JF, Iams JD, Romero R (2008) Epidemiology and causes of preterm birth. Lancet 371: 75–84.
    1. Becroft DM, Thompson JM, Mitchell EA (2010) Placental chorioamnionitis at term: epidemiology and follow-up in childhood. Pediatr Dev Pathol 13: 282–290.
    1. Frasch MG, Mansano RZ, McPhaul L, Gagnon R, Richardson BS, et al. (2009) Measures of acidosis with repetitive umbilical cord occlusions leading to fetal asphyxia in the near-term ovine fetus. Am J Obstet Gynecol 200: 200 e201–207.
    1. Prout AP, Frasch MG, Veldhuizen RA, Hammond R, Ross MG, et al. (2010) Systemic and cerebral inflammatory response to umbilical cord occlusions with worsening acidosis in the ovine fetus. Am J Obstet Gynecol 202: 82 e81–89.
    1. Ross MG, Jessie M, Amaya K, Matushewski B, Durosier LD, et al. (2013) Correlation of arterial fetal base deficit and lactate changes with severity of variable heart rate decelerations in the near-term ovine fetus. Am J Obstet Gynecol 208: 285 e281–286.
    1. Cheah FC, Jobe AH, Moss TJ, Newnham JP, Kallapur SG (2008) Oxidative stress in fetal lambs exposed to intra-amniotic endotoxin in a chorioamnionitis model. Pediatr Res 63: 274–279.
    1. Brock W, Lakonishok J, LeBaron B (1992) Simple Technical Rules and Stochastic Properties of Stock Returns. Journal of Finance 47: 1731–1764.
    1. Brown G (2004) Smoothing, forcasting and prediction of Discrete Time Series: Dover Publications.
    1. Agresti A (2007) An Introduction to Categorical Data Analysis: Wiley-Interscience.
    1. De Haan HH, Gunn AJ, Williams CE, Gluckman PD (1997) Brief repeated umbilical cord occlusions cause sustained cytotoxic cerebral edema and focal infarcts in near-term fetal lambs. Pediatr Res 41: 96–104.
    1. Wassink G, Bennet L, Davidson JO, Westgate JA, Gunn AJ (2013) Pre-existing hypoxia is associated with greater EEG suppression and early onset of evolving seizure activity during brief repeated asphyxia in near-term fetal sheep. PLoS One 8: e73895.
    1. Astrup J, Symon L, Branston NM, Lassen NA (1977) Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8: 51–57.
    1. Kaneko M, White S, Homan J, Richardson B (2003) Cerebral blood flow and metabolism in relation to electrocortical activity with severe umbilical cord occlusion in the near-term ovine fetus. Am J Obstet Gynecol 188: 961–972.
    1. Kawagoe Y, Green L, White S, Richardson B (1999) Intermittent umbilical cord occlusion in the ovine fetus near term: Effects on behavioral state activity. American Journal of Obstetrics & Gynecology 181: 1520.
    1. Matsuda Y, Patrick J, Carmichael L, Fraher L, Richardson B (1994) Recovery of the ovine fetus from sustained hypoxia: effects on endocrine, cardiovascular, and biophysical activity. American Journal of Obstetrics and Gynecology 170: 1433–1441.
    1. Hunter CJ, Bennet L, Power GG, Roelfsema V, Blood AB, et al. (2003) Key neuroprotective role for endogenous adenosine A1 receptor activation during asphyxia in the fetal sheep. Stroke; a journal of cerebral circulation 34: 2240–2245.
    1. Frasch MG (2014) Putative role of AMPK in fetal adaptive brain shut-down: linking metabolism and inflammation in the brain. Front Neurol 5: 150.

Source: PubMed

3
Abonner