The effect of the local administration of biological substances on the rate of orthodontic tooth movement: a systematic review of human studies

Sarah Abu Arqub, Vaibhav Gandhi, Marissa G Iverson, Maram Ahmed, Chia-Ling Kuo, Jinjian Mu, Eliane Dutra, Flavio Uribe, Sarah Abu Arqub, Vaibhav Gandhi, Marissa G Iverson, Maram Ahmed, Chia-Ling Kuo, Jinjian Mu, Eliane Dutra, Flavio Uribe

Abstract

Background: The influence of different biological agents on the rate of orthodontic tooth movement (OTM) has been extensively reviewed in animal studies with conflicting results. These findings cannot be extrapolated from animals to humans. Therefore, we aimed to systematically investigate the most up-to-date available evidence of human studies regarding the effect of the administration of different biological substances on the rate of orthodontic tooth movement.

Methods: A total of 8 databases were searched until the 16th of June 2020 without restrictions. Controlled randomized and non-randomized human clinical studies assessing the effect of biological substances on the rate of OTM were included. ROBINS-I and the Cochrane Risk of Bias tools were used. Reporting of this review was based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.

Results: A total of 11 studies (6 randomized clinical trials and 5 prospective clinical trials) were identified for inclusion. Local injections of prostaglandin E1 and vitamin C exerted a positive influence on the rate of OTM; vitamin D showed variable effects. The use of platelet-rich plasma and its derivatives showed inconsistent results, while the local use of human relaxin hormone showed no significant effects on the rate of OTM.

Limitations: The limited and variable observation periods after the administration of the biological substances, the high and medium risk of bias assessment for some included studies, the variable concentrations of the assessed biological agents, the different experimental designs and teeth evaluated, and the variety of measurement tools have hampered the quantitative assessment of the results as originally planned.

Conclusions and implications: Despite the methodological limitations of the included studies, this systematic review provides an important overview of the effects of a variety of biological agents on the rate of tooth movement and elucidates the deficiencies in the clinical studies that have been conducted so far to evaluate the effectiveness of these agents in humans, providing some guidelines for future robust research.

Trial registration: PROSPERO ( CRD42020168481 , www.crd.york.ac.uk/prospero ).

Keywords: Acceleration; Biological agents; Human trials; Orthodontic tooth movement; Platelet-rich plasma; Prostaglandins; Relaxin; Vitamin C; Vitamin D.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Figure 1
Figure 1
PRISMA
Figure 2
Figure 2
Effects of biologics

References

    1. Davidovitch Z. Tooth movement. Crit Rev Oral Biol Med. 1991;2(4):411–450. doi: 10.1177/10454411910020040101.
    1. Meikle MC. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod. 2006;28(3):221–240. doi: 10.1093/ejo/cjl001.
    1. Davidovitch Z, et al. Neurotransmitters, cytokines, and the control of alveolar bone remodeling in orthodontics. Dent Clin N Am. 1988;32(3):411–435.
    1. Skidmore KJ, et al. Factors influencing treatment time in orthodontic patients. Am J Orthod Dentofacial Orthop. 2006;129(2):230–238. doi: 10.1016/j.ajodo.2005.10.003.
    1. Jiang R-p, McDonald J, Fu M-k. Root resorption before and after orthodontic treatment: a clinical study of contributory factors. Eur J Orthod. 2010;32(6):693–697. doi: 10.1093/ejo/cjp165.
    1. Pinto AS, et al. Gingival enlargement in orthodontic patients: effect of treatment duration. Am J Orthod Dentofacial Orthop. 2017;152(4):477–482. doi: 10.1016/j.ajodo.2016.10.042.
    1. Richter AE, et al. Incidence of caries lesions among patients treated with comprehensive orthodontics. Am J Orthod Dentofacial Orthop. 2011;139(5):657–664. doi: 10.1016/j.ajodo.2009.06.037.
    1. Long H, et al. Interventions for accelerating orthodontic tooth movement: a systematic review. Angle Orthod. 2013;83(1):164–171. doi: 10.2319/031512-224.1.
    1. Makrygiannakis MA, Kaklamanos EG, Athanasiou AE. Does common prescription medication affect the rate of orthodontic tooth movement? A systematic review. Eur J Orthod. 2018;40(6):649–659. doi: 10.1093/ejo/cjy001.
    1. JP R. Use of laser in orthodontics: applications and perspectives. Laser Ther. 2013;22(2):115–124. doi: 10.5978/islsm.13-OR-10.
    1. Santana LG, et al. Systematic review of biological therapy to accelerate orthodontic tooth movement in animals: Translational approach. Arch Oral Biol. 2020;110:104597. doi: 10.1016/j.archoralbio.2019.104597.
    1. Yamasaki K, Miura F, Suda T. Prostaglandin as a mediator of bone resorption induced by experimental tooth movement in rats. J Dent Res. 1980;59(10):1635–1642. doi: 10.1177/00220345800590101301.
    1. Yamasaki K, Shibata Y, Fukuhara T. The effect of prostaglandins on experimental tooth movement in monkeys (Macaca fuscata) J Dent Res. 1982;61(12):1444–1446. doi: 10.1177/00220345820610121401.
    1. Madan MS, et al. Effects of human relaxin on orthodontic tooth movement and periodontal ligaments in rats. Am J Orthod Dentofacial Orthop. 2007;131(1):8. e1–8. e10. doi: 10.1016/j.ajodo.2006.06.014.
    1. Nicozisis JL, Nah-Cederquist HD, Tuncay OC. Relaxin affects the dentofacial sutural tissues. Clin Orthod Res. 2000;3(4):192–201. doi: 10.1034/j.1600-0544.2000.030405.x.
    1. Stewart DR, et al. Use of relaxin in orthodontics. Ann N Y Acad Sci. 2005;1041(1):379–387. doi: 10.1196/annals.1282.058.
    1. Liu ZJ, et al. Does human relaxin accelerate orthodontic tooth movement in rats? Ann N Y Acad Sci. 2005;1041(1):388–394. doi: 10.1196/annals.1282.059.
    1. Collins MK, Sinclair PM. The local use of vitamin D to increase the rate of orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 1988;94(4):278–284. doi: 10.1016/0889-5406(88)90052-2.
    1. Miresmaeili A, et al. Effect of dietary vitamin C on orthodontic tooth movement in rats. J Dent (Tehran, Iran) 2015;12(6):409.
    1. Rashid A, et al. Effect of platelet-rich plasma on orthodontic tooth movement in dogs. Orthod Craniofac Res. 2017;20(2):102–110. doi: 10.1111/ocr.12146.
    1. Nakornnoi T, Leethanakul C, Samruajbenjakun B. The influence of leukocyte-platelet-rich plasma on accelerated orthodontic tooth movement in rabbits. Korean J Orthod. 2019;49(6):372–380. doi: 10.4041/kjod.2019.49.6.372.
    1. Shanks N, Greek R, Greek J. Philosophy, ethics, and humanities in medicine. Philos Ethics Humanit Med. 2009;4(2).
    1. Güleç A, et al. Effects of local platelet-rich plasma injection on the rate of orthodontic tooth movement in a rat model: a histomorphometric study. Am J Orthod Dentofacial Orthop. 2017;151(1):92–104. doi: 10.1016/j.ajodo.2016.05.016.
    1. Kale S, et al. Comparison of the effects of 1, 25 dihydroxycholecalciferol and prostaglandin E2 on orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2004;125(5):607–614. doi: 10.1016/j.ajodo.2003.06.002.
    1. Spielmann T, Wieslander L, Hefti A. Acceleration of orthodontically induced tooth movement through the local application of prostaglandin (PGE1) Schweiz Monatsschr Zahnmed. 1989;99(2):162–165.
    1. Al-Hasani NR, et al. Clinical efficacy of locally injected calcitriol in orthodontic tooth movement. Int J Pharm Pharm Sci. 2011;3(5):139–143.
    1. Yamasaki K, et al. Clinical application of prostaglandin E1 (PGE1) upon orthodontic tooth movement. Am J Orthod. 1984;85(6):508–518. doi: 10.1016/0002-9416(84)90091-5.
    1. McGorray SP, et al. A randomized, placebo-controlled clinical trial on the effects of recombinant human relaxin on tooth movement and short-term stability. Am J Orthod Dentofacial Orthop. 2012;141(2):196–203. doi: 10.1016/j.ajodo.2011.07.024.
    1. Shetty A, et al. Local infiltration of vitamin D3 does not accelerate orthodontic tooth movement in humans: a preliminary study. Angle Orthod. 2015.
    1. Nemtoi A, et al. The effect of a plasma with platelet-rich fibrin in bone regeneration and on rate of orthodontic tooth movement in adolescents. Rev Chim. 2018;69:3727–3730. doi: 10.37358/RC.18.12.6829.
    1. Tehranchi A, et al. The effect of autologous leukocyte platelet rich fibrin on the rate of orthodontic tooth movement: a prospective randomized clinical trial. Eur J Dent. 2018;12(3):350. doi: 10.4103/ejd.ejd_424_17.
    1. El-Timamy A, et al. Effect of platelet-rich plasma on the rate of orthodontic tooth movement: a split-mouth randomized trial. Angle Orthod. 2020;90(3):354–361. doi: 10.2319/072119-483.1.
    1. Moher D, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1. doi: 10.1186/2046-4053-4-1.
    1. Chien PF, Khan KS, Siassakos D. Registration of systematic reviews: PROSPERO. BJOG. 2012;119(8):903–905. doi: 10.1111/j.1471-0528.2011.03242.x.
    1. Higgins JP, et al. Cochrane handbook for systematic reviews of interventions: Wiley; 2019.
    1. Sterne JA, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. Bmj. 2016;355.
    1. Higgins JP, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. Bmj. 2011;343:d5928. doi: 10.1136/bmj.d5928.
    1. Borenstein M, et al. Introduction to meta-analysis: Wiley; 2011.
    1. Guyatt GH, et al. GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol. 2011;64(4):380–382. doi: 10.1016/j.jclinepi.2010.09.011.
    1. Patil AK, Keluskar K, Gaitonde S. The clinical application of prostaglandin E1 on orthodontic tooth movement-A clinical trial. J Indian Orthod Soc. 2005;39(2):91–98. doi: 10.1177/0974909820050204.
    1. Ciur M-DI, et al. Evaluation of the influence of local administration of vitamin D on the rate of orthodontic tooth movement. Med-Surg J. 2016;120(3):694–699.
    1. Yussif NMA, et al. Efficacy and safety of locally injectable vitamin C on accelerating the orthodontic movement of maxillary canine impaction (oral mesotherapy technique): prospective study. Clin Cases Miner Metab. 2018;15(2):280–287.
    1. Varughese ST, et al. Effect of vitamin D on canine distalization and alveolar bone density using multi-slice spiral CT: a randomized controlled trial. Dent Pract. 2019;20(12):1430–1435. doi: 10.5005/jp-journals-10024-2698.
    1. GRADEpro, G. GRADEpro guideline development tool [software]: McMaster University; 2015.
    1. Proffit WR, et al. Contemporary orthodontics-e-book: Elsevier Health Sciences; 2018.
    1. Krishnan V, Davidovitch Ze. Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop. 2006;129(4):469. e1–469. e32. doi: 10.1016/j.ajodo.2005.10.007.
    1. Henneman S, Von den Hoff J, Maltha J. Mechanobiology of tooth movement. Eur J Orthod. 2008;30(3):299–306. doi: 10.1093/ejo/cjn020.
    1. Turner AG, Anderson PH, Morris HA. Vitamin D and bone health. Scand J Clin Lab Invest. 2012;72(sup243):65–72.
    1. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–342. doi: 10.1038/nature01658.
    1. Mori K, et al. Modulation of mouse RANKL gene expression by Runx2 and PKA pathway. J Cell Biochem. 2006;98(6):1629–1644. doi: 10.1002/jcb.20891.
    1. St. John HC, et al. The osteoblast to osteocyte transition: epigenetic changes and response to the vitamin D3 hormone. Mol Endocrinol. 2014;28(7):1150–1165. doi: 10.1210/me.2014-1091.
    1. Triliana R, et al. Skeletal characterization of an osteoblast-specific vitamin D receptor transgenic (ObVDR-B6) mouse model. J Steroid Biochem Mol Biol. 2016;164:331–336. doi: 10.1016/j.jsbmb.2015.08.009.
    1. Han G, et al. Expression of cathepsin K and IL-6 mRNA in root-resorbing tissue during tooth movement in rats. Zhonghua Kou Qiang Yi Xue Za Zhi. 2004;39(4):320.
    1. Bumann A, et al. Collagen synthesis from human PDL cells following orthodontic tooth movement. Eur J Orthod. 1997;19(1):29–37. doi: 10.1093/ejo/19.1.29.
    1. Rodriguez IA, et al. Platelet-rich plasma in bone regeneration: engineering the delivery for improved clinical efficacy. Biomed Res Int. 2014;2014.
    1. Anitua E, et al. Leukocyte inclusion within a platelet rich plasma-derived fibrin scaffold stimulates a more pro-inflammatory environment and alters fibrin properties. PLoS One. 2015;10(3):e0121713. doi: 10.1371/journal.pone.0121713.
    1. Kang Y-H, et al. Platelet-rich fibrin is a bioscaffold and reservoir of growth factors for tissue regeneration. Tissue Eng Part A. 2011;17(3-4):349–359. doi: 10.1089/ten.tea.2010.0327.
    1. Otsuka E, et al. Role of ascorbic acid in the osteoclast formation: induction of osteoclast differentiation factor with formation of the extracellular collagen matrix. Endocrinology. 2000;141(8):3006–3011. doi: 10.1210/endo.141.8.7597.
    1. Tsuneto M, et al. Ascorbic acid promotes osteoclastogenesis from embryonic stem cells. Biochem Biophys Res Commun. 2005;335(4):1239–1246. doi: 10.1016/j.bbrc.2005.08.016.
    1. Litton SF. Orthodontic tooth movement during an ascorbic acid deficiency. Am J Orthod. 1974;65(3):290–302. doi: 10.1016/S0002-9416(74)90333-9.
    1. Dreizen S, Levy BM, Bernick S. Studies on the biology of the periodontium of marmosets: VII. The effect of vitamin C deficiency on the marmoset periodontium. J Periodontal Res. 1969;4(4):274–280. doi: 10.1111/j.1600-0765.1969.tb01979.x.

Source: PubMed

3
Abonner