Very high-power short-duration temperature-controlled ablation versus conventional power-controlled ablation for pulmonary vein isolation: The fast and furious - AF study

Roland Richard Tilz, Makoto Sano, Julia Vogler, Thomas Fink, Roza Saraei, Vanessa Sciacca, Bettina Kirstein, Huong-Lan Phan, Sascha Hatahet, Lisbeth Delgado Lopez, Anna Traub, Charlotte Eitel, Michael Schlüter, Karl-Heinz Kuck, Christian-Hendrik Heeger, Roland Richard Tilz, Makoto Sano, Julia Vogler, Thomas Fink, Roza Saraei, Vanessa Sciacca, Bettina Kirstein, Huong-Lan Phan, Sascha Hatahet, Lisbeth Delgado Lopez, Anna Traub, Charlotte Eitel, Michael Schlüter, Karl-Heinz Kuck, Christian-Hendrik Heeger

Abstract

Background: Catheter ablation for atrial fibrillation (AF) treatment provides effective and durable pulmonary vein isolation (PVI) and is associated with encouraging clinical outcome. A novel CF sensing temperature-controlled radiofrequency (RF) ablation catheter allows for very high-power short-duration (vHP-SD, 90 W/4 s) ablation aiming a potentially safer, more effective and faster ablation. We thought to evaluate preliminary safety and efficacy of vHP-SD ablation for PVI utilizing a novel vHP-SD catheter. The data was compared to conventional power-controlled ablation index (AI) guided PVI utilizing conventional contact force (CF) sensing catheters.

Methods and results: Fifty-six patients with paroxysmal or persistent AF were prospectively enrolled in this study. Twenty-eight consecutive patients underwent vHP-SD based PVI (vHP-SD group) and were compared to 28 consecutive patients treated with conventional CF-sensing catheters utilizing the AI (control group). All PVs were successfully isolated using vHP-SD. The median RF ablation time for vHP-SD was 338 (IQR 286, 367) seconds vs control 1580 (IQR 1350, 1848) seconds (p < 0.0001), the median procedure duration was vHP-SD 55 (IQR 48-60) minutes vs. control 105 (IQR 92-120) minutes (p < 0.0001). No differences in periprocedural complications were observed.

Conclusions: This preliminary data of the novel vHP-SD ablation mode provides safe and effective PVI. Procedure duration and RF ablation time were substantially shorter in the vHP-SD group in comparison to the control group.

Keywords: Acute efficacy; Atrial fibrillation; High-power short duration, pulmonary vein isolation; Radiofrequency.

Conflict of interest statement

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: CHH received travel grants and research grants by Boston Scientific, Biosense Webster and Cardiofocus and Speakeŕs Honoraria from Boston Scientific, Biosense Webster and Cardiofocus. RRT is a consultant of Boston Scientific, Biotronik and Biosense Webster and received Speakeŕs Honoraria from Biosense Webster, Medtronic, Boston Scientific and Abbot Medical. KHK reports grants and personal fees from Abbott Vascular,. Medtronic, Biosense Webster outside submitted work. All other authors have no relevant disclosures.

© 2021 Published by Elsevier B.V.

Figures

Fig. 1
Fig. 1
QDOT Micro ablation catheter and QMODE+ A: Three-dimensional electroanatomic reconstruction (CARTO 3, UNIVIEW module, Biosense Webster) of the left atrium of case #2 in PA view. Please note the two circles depicted through red-white tags created by radiofrequency ablation utilizing the QDOT Micro catheter in the QMODE+ ablation mode. The data of location 1 ablation point is depicted in the right sided diagram of the figure and shows the biophysics parameters of a very-high power short duration ablation by 90 W/4 s. The parameters of power (W) Impedance (Ω), temperature (°C) and contact force (g) are shown. B: Picture of the QDOT Micro catheter tip showing the three micro-electrodes on top of the tip. The black arrow highlights one micro-electrode. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 2
Fig. 2
Periprocedural data:Periprocedural duration (A): Procedure time, (B): left atrial dwelling time, (C): Total radiofrequency time, (D) total mean power/application and (E) total delivered energy of the QMODE+ (vHP-SD group) compared to the control group. W = Watts, J = Joules.

References

    1. Hindricks G., Potpara T., Dagres N., Arbelo E., Bax J.J., Blomström-Lundqvist C. ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS)The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2020 2020;ehaa612.
    1. Ouyang F., Tilz R., Chun J., Schmidt B., Wissner E., Zerm T., Neven K., Köktürk B., Konstantinidou M., Metzner A., Fuernkranz A., Kuck K.-H. Long-term results of catheter ablation in paroxysmal atrial fibrillation: lessons from a 5-year follow-up. Circulation. 2010;122(23):2368–2377.
    1. Tilz R.R., Heeger C.-H., Wick A., Saguner A.M., Metzner A., Rillig A., Wohlmuth P., Reissmann B., Lemeš C., Maurer T., Santoro F., Riedl J., Sohns C., Mathew S., Kuck K.-H., Ouyang F. Ten-Year Clinical Outcome After Circumferential Pulmonary Vein Isolation Utilizing the Hamburg Approach in Patients With Symptomatic Drug-Refractory Paroxysmal Atrial Fibrillation. Circulation Arrhythmia and electrophysiology. 2018;11(2) doi: 10.1161/CIRCEP.117.005250.
    1. Hussein A., Das M., Chaturvedi V., Asfour I.K., Daryanani N., Morgan M., Ronayne C., Shaw M., Snowdon R., Gupta D. Prospective use of Ablation Index targets improves clinical outcomes following ablation for atrial fibrillation. J. Cardiovasc. Electrophysiol. 2017;28(9):1037–1047.
    1. Hussein A., Das M., Riva S., Morgan M., Ronayne C., Sahni A., Shaw M., Todd D., Hall M., Modi S., Natale A., Dello Russo A., Snowdon R., Gupta D. Use of Ablation Index-Guided Ablation Results in High Rates of Durable Pulmonary Vein Isolation and Freedom From Arrhythmia in Persistent Atrial Fibrillation Patients. Circulation Arrhythmia Electrophysiol. 2018;11(9) doi: 10.1161/CIRCEP.118.006576.
    1. Kuck K.-H., Brugada J., Fürnkranz A., Metzner A., Ouyang F., Chun K.R.J., Elvan A., Arentz T., Bestehorn K., Pocock S.J., Albenque J.-P., Tondo C. Cryoballoon or Radiofrequency Ablation for Paroxysmal Atrial Fibrillation. The New England journal of medicine. 2016;374(23):2235–2245.
    1. Kuck K.-H., Fürnkranz A., Chun K.R.J., Metzner A., Ouyang F., Schlüter M., Elvan A., Lim H.W., Kueffer F.J., Arentz T., Albenque J.-P., Tondo C., Kühne M., Sticherling C., Brugada J. Cryoballoon or radiofrequency ablation for symptomatic paroxysmal atrial fibrillation: reintervention, rehospitalization, and quality-of-life outcomes in the FIRE AND ICE trial. Eur. Heart J. 2016;37(38):2858–2865.
    1. Kottmaier M, Popa M, Bourier F, Reents T, Cifuentes J, Semmler V, et al. Safety and outcome of very high-power short-duration ablation using 70 W for pulmonary vein isolation in patients with paroxysmal atrial fibrillation. Ep Europace 2019;22:388–393
    1. Bourier F., Duchateau J., Vlachos K., Lam A., Martin C.A., Takigawa M., Kitamura T., Frontera A., Cheniti G., Pambrun T., Klotz N., Denis A., Derval N., Cochet H., Sacher F., Hocini M., Haïssaguerre M., Jais P. High-power short-duration versus standard radiofrequency ablation: Insights on lesion metrics. J Cardiovasc Electr. 2018;29(11):1570–1575.
    1. Chen S., Schmidt B., Bordignon S., Urbanek L., Tohoku S., Bologna F. Ablation index-guided 50 W ablation for pulmonary vein isolation in patients with atrial fibrillation: Procedural data, lesion analysis, and initial results from the FAFA AI High Power Study. J Cardiovasc Electr. 2019;30:2724–2731.
    1. Vassallo F., Cunha C., Serpa E., Meigre L.L., Carloni H., Simoes A., Hespanhol D., Lovatto C.V., Batista W., Serpa R. Comparison of high-power short-duration (HPSD) ablation of atrial fibrillation using a contact force-sensing catheter and conventional technique: Initial results. J Cardiovasc Electr. 2019;30(10):1877–1883.
    1. Barkagan M., Contreras‐Valdes F.M., Leshem E., Buxton A.E., Nakagawa H., Anter E. High-power and short-duration ablation for pulmonary vein isolation: Safety, efficacy, and long-term durability. J Cardiovasc Electr. 2018;29(9):1287–1296.
    1. Leshem E., Tschabrunn C.M., Jang J., Whitaker J., Zilberman I., Beeckler C., Govari A., Kautzner J., Peichl P., Nezafat R., Anter E. High-Resolution Mapping of Ventricular Scar Evaluation of a Novel Integrated Multielectrode Mapping and Ablation Catheter. Jacc Clin Electrophysiol. 2017;3(3):220–231.
    1. Reddy VY, Grimaldi M, Potter TD, Vijgen JM, Bulava A, Duytschaever MF, et al. Pulmonary Vein Isolation With Very High Power, Short Duration, Temperature Controlled Lesions | Elsevier Enhanced Reader.pdf. JACC: Clinical Electrophysiology n.d.;7:778-786.
    1. Münkler P, Kröger S, Liosis S, Abdin A, Lyan E, Eitel C, et al. Ablation Index for Catheter Ablation of Atrial Fibrillation– Clinical Applicability and Comparison With Force-Time Integral –. Circ J 2018;82:CJ-18-0361
    1. Winkle R.A., Mohanty S., Patrawala R.A., Mead R.H., Kong M.H., Engel G., Salcedo J., Trivedi C.G., Gianni C., Jais P., Natale A., Day J.D. Low complication rates using high power (45–50 W) for short duration for atrial fibrillation ablations. Heart Rhythm. 2019;16(2):165–169.
    1. Piringer R., Deneke T., Foldyna B., Sonne K., Nentwich K., Ene E., Barth S., Lüsebrink U., Berkovitz A., Halbfass P. Incidence of ablation-induced esophageal injury associated with high-power short duration temperature-controlled pulmonary vein isolation using a specialized open-irrigated ablation catheter: A retrospective single-center study. J Cardiovasc Electr. 2021;32(3):695–703.
    1. Heeger C.-H., Wissner E., Wohlmuth P., Mathew S., Hayashi K., Sohns C., Reißmann B., Lemes C., Maurer T., Saguner A.M., Santoro F., Riedl J., Ouyang F., Kuck K.-H., Metzner A. Bonus-freeze: benefit or risk? Two-year outcome and procedural comparison of a “bonus-freeze” and “no bonus-freeze” protocol using the second-generation cryoballoon for pulmonary vein isolation. Clinical research in cardiology. 2016;105(9):774–782.
    1. Chun K.R.J., Stich M., Fürnkranz A., Bordignon S., Perrotta L., Dugo D., Bologna F., Schmidt B. Individualized cryoballoon energy pulmonary vein isolation guided by real-time pulmonary vein recordings, the randomized ICE-T trial. Heart rhythm. 2017;14(4):495–500.
    1. Reissmann B, Wissner E, Deiss S, Heeger C, Schlueter M, Wohlmuth P, et al. First insights into cryoballoon-based pulmonary vein isolation taking the individual time-to-isolation into account. Europace. 2017;19:1676–1680
    1. Heeger C.-H., Wissner E., Mathew S., Hayashi K., Sohns C., Reißmann B., Lemes C., Maurer T., Fink T., Saguner A.M., Santoro F., Riedl J., Ouyang F., Kuck K.-H., Metzner A. Short tip-big difference? First-in-man experience and procedural efficacy of pulmonary vein isolation using the third-generation cryoballoon. Clinical research in cardiology. 2016;105(6):482–488.
    1. Heeger C.-H., Tiemeyer C.M., Phan H.-L., Meyer-Saraei R., Fink T., Sciacca V., Liosis S., Brüggemann B., Große N., Fahimi B., Reincke S., Kuck K.-H., Ouyang F., Vogler J., Eitel C., Tilz R.R. Rapid pulmonary vein isolation utilizing the third-generation laserballoon – The PhoeniX registry. Ijc Hear Vasc. 2020;29:100576. doi: 10.1016/j.ijcha.2020.100576.

Source: PubMed

3
Abonner