tDCS of the Cerebellum: Where Do We Stand in 2016? Technical Issues and Critical Review of the Literature

Kim van Dun, Florian C A A Bodranghien, Peter Mariën, Mario U Manto, Kim van Dun, Florian C A A Bodranghien, Peter Mariën, Mario U Manto

Abstract

Transcranial Direct Current Stimulation (tDCS) is an up-and-coming electrical neurostimulation technique increasingly used both in healthy subjects and in selected groups of patients. Due to the high density of neurons in the cerebellum, its peculiar anatomical organization with the cortex lying superficially below the skull and its diffuse connections with motor and associative areas of the cerebrum, the cerebellum is becoming a major target for neuromodulation of the cerebellocerebral networks. We discuss the recent studies based on cerebellar tDCS with a focus on the numerous technical and open issues which remain to be solved. Our current knowledge of the physiological impacts of tDCS on cerebellar circuitry is criticized. We provide a comparison with transcranial Alternating Current Stimulation (tACS), another promising transcranial electrical neurostimulation technique. Although both tDCS and tACS are becoming established techniques to modulate the cerebellocerebral networks, it is surprising that their impacts on cerebellar disorders remains unclear. A major reason is that the literature lacks large trials with a double-blind, sham-controlled, and cross-over experimental design in cerebellar patients.

Keywords: anodal vs. cathodal; cerebellum; electrode placement; intensity; offline vs. online; sham; tACS; tDCS.

Figures

Figure 1
Figure 1
Examples of set-ups to apply tDCS over the cerebellum. (A) bilateral setup aiming to stimulate simultaneously the two cerebellar hemispheres and the vermis, the flow of the current is indicated with arrows for anodal stimulation of the cerebellum (for cathodal stimulation, the flow of the current is reversed); (B–D) unilateral setups (the target is one cerebellar hemisphere) with the reference electrode over (B) the deltoid muscle, (C) the buccinator muscle, and (D) the forehead/supraorbital area. For simplicity, the wires and stimulator are only shown in (A).
Figure 2
Figure 2
Cerebellar folding influences polarization along the sulci. The principal axis of the Purkinje cells (indicated with blue arrows—the color code has no particular significance in the inset) along a trace of cerebellar gyri is subject to an electric field. The resulting polarization (maximal hyperpolarization or depolarization) is indicated in false color along the trace. Adapted from Rahman et al. (2014). With permission from Elsevier.

References

    1. Alonzo A., Brassil J., Taylor J. L., Martin D., Loo C. K. (2012). Daily transcranial direct current stimulation (tDCS) leads to greater increases in cortical excitability than second daily transcranial direct current stimulation. Brain Stimul. 5, 208–213. 10.1016/j.brs.2011.04.006
    1. Ardolino G., Bossi B., Barbieri S., Priori A. (2005). Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain: non-synaptic after-effects of tDCS. J. Physiol. 568, 653–663. 10.1113/jphysiol.2005.088310
    1. Avila E., van der Geest J. N., Kengne Kamga S., Verhage M. C., Donchin O., Frens M. A. (2015). Cerebellar transcranial direct current stimulation effects on saccade adaptation. Neural Plast. 2015, 1–9. 10.1155/2015/968970
    1. Bation R., Poulet E., Haesebaert F., Saoud M., Brunelin J. (2016). Transcranial direct current stimulation in treatment-resistant obsessive–compulsive disorder: an open-label pilot study. Progr. Neuropsychopharmacol. Biol. Psychiatry 65, 153–157. 10.1016/j.pnpbp.2015.10.001
    1. Benussi A., Koch G., Cotelli M., Padovani A., Borroni B. (2015). Cerebellar transcranial direct current stimulation in patients with ataxia: a double-blind, randomized, sham-controlled study. Mov. Disord. 30, 1701–1705. 10.1002/mds.26356
    1. Bersani F. S., Minichino A., Fattapposta F., Bernabei L., Spagnoli F., Mannarelli D., et al. . (2015). Prefrontocerebellar transcranial direct current stimulation increases amplitude and decreases latency of P3b component in patients with euthymic bipolar disorder. Neuropsychiatr. Dis. Treat. 11, 2913–2917. 10.2147/NDT.S91625
    1. Bikson M., Inoue M., Akiyama H., Deans J. K., Fox J. E., Miyakawa H., et al. . (2004). Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro: modulation of neuronal function by electric fields. J. Physiol. 557, 175–190. 10.1113/jphysiol.2003.055772
    1. Block H., Celnik P. (2013). Stimulating the cerebellum affects visuomotor adaptation but not intermanual transfer of learning. Cerebellum 12, 781–793. 10.1007/s12311-013-0486-7
    1. Bocci T., Barloscio D., Parenti L., Sartucci F., Carli G., Santarcangelo E. L. (2016). High hypnotizability impairs the cerebellar control of pain. Cerebellum. [Epub ahead of print]. 10.1007/s12311-016-0764-2
    1. Bocci T., Santarcangelo E., Vannini B., Torzini A., Carli G., Ferrucci R., et al. . (2015). Cerebellar direct current stimulation modulates pain perception in humans. Restor. Neurol. Neurosci. 33, 597–609. 10.3233/RNN-140453
    1. Boehringer A., Macher K., Dukart J., Villringer A., Pleger B. (2013). Cerebellar transcranial direct current stimulation modulates verbal working memory. Brain Stimul. 6, 649–653. 10.1016/j.brs.2012.10.001
    1. Boggio P. S., Ferrucci R., Rigonatti S. P., Covre P., Nitsche M. A., Pascual-Leone A., et al. . (2006). Effects of transcranial direct current stimulation on working memory in patients with Parkinson's disease. J. Neurol. Sci. 249, 31–38. 10.1016/j.jns.2006.05.062
    1. Boggio P. S., Nunes A., Rigonatti S. P., Nitsche M. A., Pascual-Leone A., Fregni F. (2007). Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor. Neurol. Neurosci. 25, 123–129.
    1. Bradnam L. V., Frasca J., Kimberley T. J. (2014). Direct current stimulation of primary motor cortex and cerebellum and botulinum toxin a injections in a person with cervical dystonia. Brain Stimul. 7, 909–911. 10.1016/j.brs.2014.09.008
    1. Bradnam L. V., Graetz L. J., McDonnell M. N., Ridding M. C. (2015). Anodal transcranial direct current stimulation to the cerebellum improves handwriting and cyclic drawing kinematics in focal hand dystonia. Front. Hum. Neurosci. 9:286. 10.3389/fnhum.2015.00286
    1. Brunoni A. R., Nitsche M. A., Bolognini N., Bikson M., Wagner T., Merabet L., et al. . (2012). Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul. 5, 175–195. 10.1016/j.brs.2011.03.002
    1. Calzolari E., Bolognini N., Casati C., Marzoli S. B., Vallar G. (2015). Restoring abnormal aftereffects of prismatic adaptation through neuromodulation. Neuropsychologia 74, 162–169. 10.1016/j.neuropsychologia.2015.04.022
    1. Cantarero G., Spampinato D., Reis J., Ajagbe L., Thompson T., Kulkarni K., et al. . (2015). Cerebellar direct current stimulation enhances on-line motor skill acquisition through an effect on accuracy. J. Neurosci. 35, 3285–3290. 10.1523/JNEUROSCI.2885-14.2015
    1. Chen J.-C., Hämmerer D., D'Ostilio K., Casula E. P., Marshall L., Tsai C.-H., et al. . (2014). Bi-directional modulation of somatosensory mismatch negativity with transcranial direct current stimulation: an event related potential study: modulation of sMMN with cerebellar TDCS. J. Physiol. 592, 745–757. 10.1113/jphysiol.2013.260331
    1. Chothia M., Doeltgen S., Bradnam L. V. (2016). Anodal cerebellar direct current stimulation reduces facilitation of propriospinal neurons in healthy humans. Brain Stimul.. [Epub ahead of print]. 10.1016/j.brs.2016.01.002
    1. Coffman B. A., Clark V. P., Parasuraman R. (2014). Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage 85, 895–908. 10.1016/j.neuroimage.2013.07.083
    1. Cohen Kadosh R. (2013). Using transcranial electrical stimulation to enhance cognitive functions in the typical and atypical brain. Transl. Neurosci. 4, 20–33. 10.2478/s13380-013-0104-7
    1. Deans J. K., Powell A. D., Jefferys J. G. R. (2007). Sensitivity of coherent oscillations in rat hippocampus to AC electric fields: AC electric fields. J. Physiol. 583, 555–565. 10.1113/jphysiol.2007.137711
    1. Debanne D., Daoudal G., Sourdet V., Russier M. (2003). Brain plasticity and ion channels. J. Physiol. 97, 403–414. 10.1016/j.jphysparis.2004.01.004
    1. Doeltgen S. H., Young J., Bradnam L. V. (2015). Anodal direct current stimulation of the cerebellum reduces cerebellar brain inhibition but does not influence afferent input from the hand or face in healthy adults. Cerebellum. [Epub ahead of print]. 10.1007/s12311-015-0713-5
    1. Dougherty E. T., Turner J. C., Vogel F. (2014). Multiscale coupling of transcranial direct current stimulation to neuron electrodynamics: modeling the influence of the transcranial electric field on neuronal depolarization. Comput. Math. Methods Med. 2014, 1–14. 10.1155/2014/360179
    1. Dutta A., Paulus W., Nitsche M. A., others . (2014). Facilitating myoelectric-control with transcranial direct current stimulation: a preliminary study in healthy humans. J. Neuroeng. Rehabil. 11:13. 10.1186/1743-0003-11-13
    1. Ferrucci R., Brunoni A. R., Parazzini M., Vergari M., Rossi E., Fumagalli M., et al. . (2013). Modulating human procedural learning by cerebellar transcranial direct current stimulation. Cerebellum 12, 485–492. 10.1007/s12311-012-0436-9
    1. Ferrucci R., Cortese F., Bianchi M., Pittera D., Turrone R., Bocci T., et al. . (2016). Cerebellar and motor cortical transcranial stimulation decrease levodopa-induced dyskinesias in Parkinson's Disease. Cerebellum 15, 43–47. 10.1007/s12311-015-0737-x
    1. Ferrucci R., Cortese F., Priori A. (2015). Cerebellar tDCS: how to do it. Cerebellum 14, 27–30. 10.1007/s12311-014-0599-7
    1. Ferrucci R., Giannicola G., Rosa M., Fumagalli M., Boggio P. S., Hallett M., et al. . (2012). Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cogn. Emot. 26, 786–799. 10.1080/02699931.2011.619520
    1. Ferrucci R., Marceglia S., Vergari M., Cogiamanian F., Mrakic-Sposta S., Mameli F., et al. . (2008). Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J. Cogn. Neurosci. 20, 1687–1697. 10.1162/jocn.2008.20112
    1. Flöel A. (2014). tDCS-enhanced motor and cognitive function in neurological diseases. Neuroimage 85, 934–947. 10.1016/j.neuroimage.2013.05.098
    1. Foerster Á., Rocha S., Wiesiolek C., Chagas A. P., Machado G., Silva E., et al. . (2013). Site-specific effects of mental practice combined with transcranial direct current stimulation on motor learning. Eur. J. Neurosci. 37, 786–794. 10.1111/ejn.12079
    1. Galea J. M., Jayaram G., Ajagbe L., Celnik P. (2009). Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J. Neurosci. 29, 9115–9122. 10.1523/JNEUROSCI.2184-09.2009
    1. Galea J. M., Vazquez A., Pasricha N., Orban de Xivry J.-J., Celnik P. (2011). Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb. Cortex 21, 1761–1770. 10.1093/cercor/bhq246
    1. Gandiga P. C., Hummel F. C., Cohen L. G. (2006). Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin. Neurophysiol. 117, 845–850. 10.1016/j.clinph.2005.12.003
    1. Gironell A., Martínez-Horta S., Aguilar S., Torres V., Pagonabarraga J., Pascual-Sedano B., et al. . (2014). Transcranial direct current stimulation of the cerebellum in essential tremor: a controlled study. Brain Stimul. 7, 491–492. 10.1016/j.brs.2014.02.001
    1. Grimaldi G., Argyropoulos G. P., Boehringer A., Celnik P., Edwards M. J., Ferrucci R., et al. . (2014a). Non-invasive cerebellar stimulation—a consensus paper. Cerebellum 13, 121–138. 10.1007/s12311-013-0514-7
    1. Grimaldi G., Manto M. (2013). Anodal transcranial direct current stimulation (tDCS) decreases the amplitudes of long-latency stretch reflexes in cerebellar ataxia. Ann. Biomed. Eng. 41, 2437–2447. 10.1007/s10439-013-0846-y
    1. Grimaldi G., Oulad Ben Taib N., Manto M., Bodranghien F. (2014b). Marked reduction of cerebellar deficits in upper limbs following transcranial cerebello-cerebral DC stimulation: tremor reduction and re-programming of the timing of antagonist commands. Front. Syst. Neurosci. 8:9. 10.3389/fnsys.2014.00009
    1. Hardwick R. M., Celnik P. A. (2014). Cerebellar direct current stimulation enhances motor learning in older adults. Neurobiol. Aging 35, 2217–2221. 10.1016/j.neurobiolaging.2014.03.030
    1. Herculano-Houzel S. (2009). The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3:31. 10.3389/neuro.09.031.2009
    1. Herzfeld D. J., Pastor D., Haith A. M., Rossetti Y., Shadmehr R., O'Shea J. (2014). Contributions of the cerebellum and the motor cortex to acquisition and retention of motor memories. Neuroimage 98, 147–158. 10.1016/j.neuroimage.2014.04.076
    1. Ho K.-A., Bai S., Martin D., Alonzo A., Dokos S., Puras P., et al. . (2014). A pilot study of alternative transcranial direct current stimulation electrode montages for the treatment of major depression. J. Affect. Disord. 167, 251–258. 10.1016/j.jad.2014.06.022
    1. Hodgkin A. L., Katz B. (1949). The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. 108, 37. 10.1113/jphysiol.1949.sp004310
    1. Horvath J. C., Forte J. D., Carter O. (2015). Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review. Neuropsychologia 66, 213–236. 10.1016/j.neuropsychologia.2014.11.021
    1. Iyer M. B., Mattu U., Grafman J., Lomarev M., Sato S., Wassermann E. M. (2005). Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology 64, 872–875. 10.1212/01.WNL.0000152986.07469.E9
    1. Jayaram G., Tang B., Pallegadda R., Vasudevan E. V. L., Celnik P., Bastian A. (2012). Modulating locomotor adaptation with cerebellar stimulation. J. Neurophysiol. 107, 2950–2957. 10.1152/jn.00645.2011
    1. Kabakov A. Y., Muller P. A., Pascual-Leone A., Jensen F. E., Rotenberg A. (2012). Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus. J. Neurophysiol. 107, 1881–1889. 10.1152/jn.00715.2011
    1. Kessler S. K., Turkeltaub P. E., Benson J. G., Hamilton R. H. (2012). Differences in the experience of active and sham transcranial direct current stimulation. Brain Stimul. 5, 155–162. 10.1016/j.brs.2011.02.007
    1. Krause B., Cohen Kadosh R. (2014). Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation. Front. Syst. Neurosci. 8:25. 10.3389/fnsys.2014.00025
    1. Kuo M.-F. (2007). Neuroplasticity: Induction and Modulation by External Stimulation and Pharmacological Intervention. Niedersächsische Staats-und Universitätsbibliothek Göttingen.
    1. Liebetanz D., Nitsche M. A., Tergau F., Paulus W. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 125, 2238–2247. 10.1093/brain/awf238
    1. Lindenberg R., Zhu L. L., Schlaug G. (2012). Combined central and peripheral stimulation to facilitate motor recovery after stroke the effect of number of sessions on outcome. Neurorehabil. Neural Repair 26, 479–483. 10.1177/1545968311427568
    1. Macher K., Böhringer A., Villringer A., Pleger B. (2014). Cerebellar-parietal connections underpin phonological storage. J. Neurosci. 34, 5029–5037. 10.1523/JNEUROSCI.0106-14.2014
    1. Manola L., Roelofsen B. H., Holsheimer J., Marani E., Geelen J. (2005). Modelling motor cortex stimulation for chronic pain control: electrical potential field, activating functions and responses of simple nerve fibre models. Med. Biol. Eng. Comput. 43, 335–343. 10.1007/BF02345810
    1. Manto M. U., Hampe C. S., Rogemond V., Honnorat J. (2011). Respective implications of glutamate decarboxylase antibodies in stiff person syndrome and cerebellar ataxia. Orphanet J. Rare Dis. 6:3. 10.1186/1750-1172-6-3
    1. Martin D. M., Chan H.-N., Alonzo A., Green M. J., Mitchell P. B., Loo C. K. (2015). Transcranial direct current stimulation to enhance cognition in euthymic bipolar disorder. Bipolar Disord. 17, 849–858. 10.1111/bdi.12350
    1. McCreery D. B., Agnew W. F., Yuen T. G. H., Bullara L. (1990). Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans. Biomed. Eng. 37, 996–1001. 10.1109/10.102812
    1. McIntyre C. C. (2004). Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J. Neurophysiol. 91, 1457–1469. 10.1152/jn.00989.2003
    1. McIntyre C. C., Grill W. M. (1999). Excitation of central nervous system neurons by nonuniform electric fields. Biophys. J. 76, 878–888. 10.1016/S0006-3495(99)77251-6
    1. Mehta A. R., Brittain J.-S., Brown P. (2014). The selective influence of rhythmic cortical versus cerebellar transcranial stimulation on human physiological tremor. J. Neurosci. 34, 7501–7508. 10.1523/JNEUROSCI.0510-14.2014
    1. Mehta A. R., Pogosyan A., Brown P., Brittain J.-S. (2015). Montage matters: the influence of transcranial alternating current stimulation on human physiological tremor. Brain Stimul. 8, 260–268. 10.1016/j.brs.2014.11.003
    1. Minichino A., Bersani F. S., Bernabei L., Spagnoli F., Vergnani L., Corrado A., et al. . (2015). Prefronto-cerebellar transcranial direct current stimulation improves visuospatial memory, executive functions, and neurological soft signs in patients with euthymic bipolar disorder. Neuropsychiatr. Dis. Treat. 11, 2265–2270. 10.2147/NDT.S79108
    1. Molaee-Ardekani B., Márquez-Ruiz J., Merlet I., Leal-Campanario R., Gruart A., Sánchez-Campusano R., et al. . (2013). Effects of transcranial Direct Current Stimulation (tDCS) on cortical activity: a computational modeling study. Brain Stimul. 6, 25–39. 10.1016/j.brs.2011.12.006
    1. Monte-Silva K., Kuo M. F., Liebetanz D., Paulus W., Nitsche M. A. (2010). Shaping the optimal repetition interval for cathodal transcranial Direct Current Stimulation (tDCS). J. Neurophysiol. 103, 1735–1740. 10.1152/jn.00924.2009
    1. Monti A., Ferrucci R., Fumagalli M., Mameli F., Cogiamanian F., Ardolino G., et al. . (2013). Transcranial direct current stimulation (tDCS) and language. J. Neurol. Neurosurg. Psychiatry 84, 832–842. 10.1136/jnnp-2012-302825
    1. Nardone R., Höller Y., Taylor A., Thomschewski A., Orioli A., Frey V., et al. . (2015). Noninvasive spinal cord stimulation: technical aspects and therapeutic applications: spinal cord stimulation. Neuromodulation 18, 580–591. 10.1111/ner.12332
    1. Naro A., Russo M., Leo A., Cannavò A., Manuli A., Bramanti A., et al. . (2016). Cortical connectivity modulation induced by cerebellar oscillatory transcranial direct current stimulation in patients with chronic disorders of consciousness: a marker of covert cognition? Clin. Neurophysiol. 127, 1845–1854. 10.1016/j.clinph.2015.12.010
    1. Nitsche M. A., Liebetanz D., Antal A., Lang N., Tergau F., Paulus W. (2003a). Modulation of cortical excitability by weak direct current stimulation–technical, safety and functional aspects. Suppl. Clin. Neurophysiol. 56, 255–276. 10.1016/S1567-424X(09)70230-2
    1. Nitsche M. A., Liebetanz D., Lang N., Antal A., Tergau F., Paulus W. (2003b). Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin. Neurophysiol. 114, 2220–2222. 10.1016/S1388-2457(03)00235-9
    1. Nitsche M. A., Nitsche M. S., Klein C. C., Tergau F., Rothwell J. C., Paulus W. (2003c). Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin. Neurophysiol. 114, 600–604. 10.1016/S1388-2457(02)00412-1
    1. Nitsche M. A., Paulus W. (2011). Transcranial direct current stimulation - update 2011. Restor. Neurol. Neurosci. 29, 463–492. 10.3233/RNN-2011-0618
    1. Nitsche M. A., Schauenburg A., Lang N., Liebetanz D., Exner C., Paulus W., et al. . (2003d). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J. Cogn. Neurosci. 15, 619–626. 10.1162/089892903321662994
    1. O'Connell N. E., Cossar J., Marston L., Wand B. M., Bunce D., Moseley G. L., et al. . (2012). Rethinking clinical trials of transcranial direct current stimulation: participant and assessor blinding is inadequate at intensities of 2mA. PLoS ONE 7:e47514. 10.1371/journal.pone.0047514
    1. Panouillères M. T. N., Joundi R. A., Brittain J.-S., Jenkinson N. (2015a). Reversing motor adaptation deficits in the ageing brain using non-invasive stimulation: restoring motor adaptation in older adults. J. Physiol. 593, 3645–3655. 10.1113/JP270484
    1. Panouillères M. T. N., Miall R. C., Jenkinson N. (2015b). The role of the posterior cerebellum in saccadic adaptation: a transcranial direct current stimulation study. J. Neurosci. 35, 5471–5479. 10.1523/JNEUROSCI.4064-14.2015
    1. Parazzini M., Fiocchi S., Liorni I., Priori A., Ravazzani P. (2014a). Computational modeling of transcranial direct current stimulation in the child brain: implications for the treatment of refractory childhood focal epilepsy. Int. J. Neural Syst. 24, 1430006. 10.1142/S012906571430006X
    1. Parazzini M., Rossi E., Ferrucci R., Liorni I., Priori A., Ravazzani P. (2014b). Modelling the electric field and the current density generated by cerebellar transcranial DC stimulation in humans. Clin. Neurophysiol. 125, 577–584. 10.1016/j.clinph.2013.09.039
    1. Picazio S., Granata C., Caltagirone C., Petrosini L., Oliveri M. (2015). Shaping pseudoneglect with transcranial cerebellar direct current stimulation and music listening. Front. Hum. Neurosci. 9:158. 10.3389/fnhum.2015.00158
    1. Pirulli C., Fertonani A., Miniussi C. (2013). The role of timing in the induction of neuromodulation in perceptual learning by transcranial electric stimulation. Brain Stimul. 6, 683–689. 10.1016/j.brs.2012.12.005
    1. Pope P. A., Miall R. C. (2012). Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul. 5, 84–94. 10.1016/j.brs.2012.03.006
    1. Poreisz C., Boros K., Antal A., Paulus W. (2007). Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res. Bull. 72, 208–214. 10.1016/j.brainresbull.2007.01.004
    1. Priori A., Ciocca M., Parazzini M., Vergari M., Ferrucci R. (2014). Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists: cerebellar and spinal tDCS. J. Physiol. 592, 3345–3369. 10.1113/jphysiol.2013.270280
    1. Priori A., Hallett M., Rothwell J. C. (2009). Repetitive transcranial magnetic stimulation or transcranial direct current stimulation? Brain Stimul. 2, 241–245. 10.1016/j.brs.2009.02.004
    1. Radman T., Su Y., An J. H., Parra L. C., Bikson M. (2007). Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects. J. Neurosci. 27, 3030–3036. 10.1523/JNEUROSCI.0095-07.2007
    1. Rahman A., Reato D., Arlotti M., Gasca F., Datta A., Parra L. C., et al. . (2013). Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects: somatic and terminal origin of DCS effects. J. Physiol. 591, 2563–2578. 10.1113/jphysiol.2012.247171
    1. Rahman A., Toshev P. K., Bikson M. (2014). Polarizing cerebellar neurons with transcranial Direct Current Stimulation. Clin. Neurophysiol. 125, 435–438. 10.1016/j.clinph.2013.10.003
    1. Rampersad S. M., Janssen A. M., Lucka F., Aydin Ü., Lanfer B., Lew S., et al. . (2014). Simulating transcranial direct current stimulation with a detailed anisotropic human head model. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 441–452. 10.1109/TNSRE.2014.2308997
    1. Reis J., Fritsch B. (2011). Modulation of motor performance and motor learning by transcranial direct current stimulation. Curr. Opin. Neurol. 24, 590–596. 10.1097/WCO.0b013e32834c3db0
    1. Russo R., Wallace D., Fitzgerald P. B., Cooper N. R. (2013). Perception of comfort during active and sham transcranial direct current stimulation: a double blind study. Brain Stimul. 6, 946–951. 10.1016/j.brs.2013.05.009
    1. Sadnicka A., Kassavetis P., Saifee T. A., Pareés I., Rothwell J. C., Edwards M. J. (2013). Cerebellar transcranial direct current stimulation does not alter motor surround inhibition. Int. J. Neurosci. 123, 425–432. 10.3109/00207454.2012.763165
    1. Schlerf J., Wiestler T., Verstynen T., Diedrichsen J. (2014). Big challenges from the little brain—imaging the cerebellum, in Advanced Brain Neuroimaging Topics in Health and Disease—Methods and Applications, eds Papageorgiou T. D., Christopoulos G. I., Smirnakis (Rijeka: InTech; ), 191–215.
    1. Shah B., Nguyen T. T., Madhavan S. (2013). Polarity independent effects of cerebellar tdcs on short term ankle visuomotor learning. Brain Stimul. 6, 966–968. 10.1016/j.brs.2013.04.008
    1. Stagg C. J., Nitsche M. A. (2011). Physiological basis of transcranial direct current stimulation. Neuroscientist 17, 37–53. 10.1177/1073858410386614
    1. Van Wessel B. W. V., Verhage M. C., Holland P., Frens M. A., van der Geest J. N. (2016). Cerebellar tDCS does not affect performance in the N-back task. J. Clin. Exp. Neuropsychol. 38, 319–326. 10.1080/13803395.2015.1109610
    1. Wessel M. J., Zimerman M., Timmermann J. E., Heise K. F., Gerloff C., Hummel F. C. (2016). Enhancing consolidation of a new temporal motor skill by cerebellar noninvasive stimulation. Cereb. Cortex 26, 1660–1667. 10.1093/cercor/bhu335
    1. Woods A. J., Antal A., Bikson M., Boggio P. S., Brunoni A. R., Celnik P., et al. . (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin. Neurophysiol. 127, 1031–1048. 10.1016/j.clinph.2015.11.012
    1. Yavari F., Mahdavi S., Towhidkhah F., Ahmadi-Pajouh M.-A., Ekhtiari H., Darainy M. (2016). Cerebellum as a forward but not inverse model in visuomotor adaptation task: a tDCS-based and modeling study. Exp. Brain Res. 234, 997–1012. 10.1007/s00221-015-4523-2
    1. Yuen T. G. H., Agnew W. F., Bullara L., Skip J. B. S., McCreery D. B. (1981). Histological evaluation of neural damage from electrical stimulation - considerations for the selection of parameters for clinical application. Neurosurgery 9, 292–299. 10.1227/00006123-198109000-00013
    1. Zuchowski M. L., Timmann D., Gerwig M. (2014). Acquisition of conditioned eyeblink responses is modulated by cerebellar tDCS. Brain Stimul. 7, 525–531. 10.1016/j.brs.2014.03.010

Source: PubMed

3
Abonner