The Effect of Holder Pasteurization on Nutrients and Biologically-Active Components in Donor Human Milk: A Review

Chiara Peila, Guido E Moro, Enrico Bertino, Laura Cavallarin, Marzia Giribaldi, Francesca Giuliani, Francesco Cresi, Alessandra Coscia, Chiara Peila, Guido E Moro, Enrico Bertino, Laura Cavallarin, Marzia Giribaldi, Francesca Giuliani, Francesco Cresi, Alessandra Coscia

Abstract

When a mother's milk is unavailable, the best alternative is donor milk (DM). Milk delivered to Human Milk Banks should be pasteurized in order to inactivate the microbial agents that may be present. Currently, pasteurization, performed at 62.5 °C for 30 min (Holder Pasteurization, HoP), is recommended for this purpose in international guidelines. Several studies have been performed to investigate the effects of HoP on the properties of DM. The present paper has the aim of reviewing the published papers on this topic, and to provide a comparison of the reported variations of biologically-active DM components before and after HoP. This review was performed by searching the MEDLINE, EMBASE, CINHAL and Cochrane Library databases. Studies that clearly identified the HoP parameters and compared the same DM samples, before and after pasteurization, were focused on. A total of 44 articles satisfied the above criteria, and were therefore selected. The findings from the literature report variable results. A possible explanation for this may be the heterogeneity of the test protocols that were applied. Moreover, the present review spans more than five decades, and modern pasteurizers may be able to modify the degradation kinetics for heat-sensitive substances, compared to older ones. Overall, the data indicate that HoP affects several milk components, although it is difficult to quantify the degradation degree. However, clinical practices demonstrate that many beneficial properties of DM still persist after HoP.

Keywords: Human Milk Banks; donor milk; holder pasteurization; human milk.

References

    1. American Academy of Paediatrics Breastfeeding and use of human milk. Pediatrics. 2012;129:e827–e841.
    1. Hamosh M. Protective function of proteins and lipids in human milk. Biol. Neonate. 1998;74:163–176. doi: 10.1159/000014021.
    1. Horta B.L., Victora C.G., World Health Organization . Long-Term Effects of Breastfeeding: A Systematic Review. WHO Library; Geneva, Switzerland: 2013.
    1. Newman J. How breast milk protects newborns. Sci. Am. 1995;273:76–79. doi: 10.1038/scientificamerican1295-76.
    1. Italian Association of Human Milk Banks. Arslanoglu S., Bertino E., Tonetto P., De Nisi G., Ambruzzi A.M., Biasini A., Profeti C., Spreghini M.R., Moro G.E. Guidelines for the establishment and operation of a donor human milk bank. J. Matern. Fetal Neonat. Med. 2010;23:1–20.
    1. Human Milk Banking Association of North America . Guidelines for the Establishment and Operation of a Donor Human Milk Bank. Human Milk Banking Association of North America; Raleigh, NC, USA: 2000.
    1. Boyd C.A., Quigley M.A., Brocklehurst P. Donor breast milk versus infant formula for preterm infants: Systematic review and meta-analysis. Arch. Dis. Child. Fetal Neonat. Ed. 2007;92:F169–F175. doi: 10.1136/adc.2005.089490.
    1. McGuire W., Anthony M.Y. Donor human milk versus formula for preventing necrotising enterocolitis in preterm infants: Systematic review. Arch. Dis. Child. Fetal Neonat. Ed. 2003;88:F11–F14. doi: 10.1136/fn.88.1.F11.
    1. Quigley M.A., Henderson G., Anthony M.Y., McGuire W. Formula milk versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst. Rev. 2007;4 doi: 10.1002/14651858.CD002971.pub2.
    1. Rønnestad A., Abrahamsen T.G., Medbø S., Reigstad H., Lossius K., Kaaresen P.I., Egeland T., Engelund I.E., Irgens L.M., Markestad T. Late onset septicemia in a Norwegian national cohort of extremely premature infants receiving very early full human milk feeding. Pediatrics. 2005;115:269–276. doi: 10.1542/peds.2004-1833.
    1. Schanler R.J., Lau C., Hurst N.M., Smith E.O. Randomized trial of donor human milk versus preterm formula as substitutes for mothers’ own milk in the feeding of extremely premature infants. Pediatrics. 2005;116:400–406. doi: 10.1542/peds.2004-1974.
    1. Tully D.B., Jones F., Tully M.R. Donor milk: What’s in it and what’s not. J. Hum. Lact. 2001;17:152–155. doi: 10.1177/089033440101700212.
    1. Ogundele M.O. Techniques for the storage of human breast milk: Implications for anti-microbial functions and safety of stored milk. Eur. J. Pediatr. 2000;159:793–797. doi: 10.1007/s004310000577.
    1. ESPGHAN Committee on Nutrition. Arslanoglu S., Corpeleijn W., Moro G., Braegger C., Campoy C., Colomb V., Decsi T., Domellöf M., Fewtrell M., et al. Donor human milk for preterm infants: Current evidence and research directions. J. Pediatr. Gastroenterol. Nutr. 2013;57:535–542.
    1. Björksten B., Burman L.G., De Château P., Fredrikzon B., Gothefors L., Hernell O. Collecting and banking human milk: To heat or not to heat. Br. Med. J. 1980;281:765–769. doi: 10.1136/bmj.281.6243.765.
    1. Ewaschuk J.B., Unger S., Harvey S., O’Connor D.L., Field C.J. Effect of pasteurization on immune components of milk: Implications for feeding preterm infants. Appl. Physiol. Nutr. Metab. 2011;36:175–182. doi: 10.1139/h11-008.
    1. Ley S.H., Hanley A.J., Stone D., O’Connor D.L. Effects of pasteurization on adiponectin and insulin concentrations in donor human milk. Pediatr. Res. 2011;70:278–281. doi: 10.1203/PDR.0b013e318224287a.
    1. García-Lara N.R., Vieco D.E., De la Cruz-Bértolo J., Lora-Pablos D., Velasco N.U., Pallás-Alonso C.R. Effect of Holder pasteurization and frozen storage on macronutrients and energy content of breast milk. J. Pediatr. Gastroenterol. Nutr. 2013;57:377–382. doi: 10.1097/MPG.0b013e31829d4f82.
    1. Vieira A.A., Soares F.V., Pimenta H.P., Abranches A.D., Moreira M.E. Analysis of the influence of pasteurization, freezing/thawing, and offer processes on human milk’s macronutrient concentrations. Early Hum. Dev. 2011;87:577–580. doi: 10.1016/j.earlhumdev.2011.04.016.
    1. Koenig A., de Albuquerque Diniz E.M., Barbosa S.F., Vaz F.A. Immunologic factors in human milk: The effects of gestational age and pasteurization. J. Hum. Lact. 2005;21:439–443. doi: 10.1177/0890334405280652.
    1. Hamprecht K., Maschmann J., Müller D., Dietz K., Besenthal I., Goelz R., Middeldorp J.M., Speer C.P., Jahn G. Cytomegalovirus (CMV) inactivation in breast milk: Reassessment of pasteurization and freeze-thawing. Pediatr. Res. 2004;56:529–535. doi: 10.1203/.
    1. Silvestre D., Ferrer E., Gayá J., Jareño E., Miranda M., Muriach M., Romero F.J. Available lysine content in human milk: Stability during manipulation prior to ingestion. Biofactors. 2006;26:71–79. doi: 10.1002/biof.5520260107.
    1. Góes H.C., Torres A.G., Donangelo C.M., Trugo N.M. Nutrient composition of banked human milk in Brazil and influence of processing on zinc distribution in milk fractions. Nutrition. 2002;18:590–594. doi: 10.1016/S0899-9007(02)00813-4.
    1. Ford J.E., Law B.A., Marshall V.M.E., Reiter B. Influence of the heat treatment of human milk on some of its protective constituents. J. Pediatr. 1977;90:29–35. doi: 10.1016/S0022-3476(77)80759-2.
    1. Viazis S., Farkas B.E., Allen J.C. Effects of high-pressure processing on immunoglobulin A and lysozyme activity in human milk. J. Hum. Lact. 2007;23:253–261. doi: 10.1177/0890334407303945.
    1. Contador R., Delgado-Adámez J., Delgado F.J., Cava R., Ramírez R. Effect of thermal pasteurisation or high pressure processing on immunoglobulin and leukocyte contents of human milk. Int. Dairy J. 2013;32:1–5. doi: 10.1016/j.idairyj.2013.03.006.
    1. Permanyer M., Castellote C., Ramírez-Santana C., Audí C., Pérez-Cano F.J., Castell M., López-Sabater M.C., Franch A. Maintenance of breast milk immunoglobulin A after high-pressure processing. J. Dairy Sci. 2010;93:877–883. doi: 10.3168/jds.2009-2643.
    1. Liebhaber M., Lewiston N.J., Asquith M.T., Olds-Arroyo L., Sunshine P. Alterations of lymphocytes and of antibody content of human milk after processing. J. Pediatr. 1977;91:897–900. doi: 10.1016/S0022-3476(77)80885-8.
    1. Goldsmith S.J., Dickson J.S., Barnhart H.M., Toledo R.T., Eiten-Miller R.R. IgA, IgG, IgM and lactoferrin contents of human milk during early lactation and the effect of processing and storage. J. Food Prot. 1983;1:4–7.
    1. Evans T.J., Ryley H.C., Neale L.M., Dodge J.A., Lewarne V.M. Effect of storage and heat on antimicrobial proteins in human milk. Arch. Dis. Child. 1978;53:239–241. doi: 10.1136/adc.53.3.239.
    1. Espinosa-Martos I., Montilla A., de Segura A.G., Escuder D., Bustos G., Pallás C., Rodríguez J.M., Corzo N., Fernández L. Bacteriological, biochemical, and immunological modifications in human colostrum after Holder pasteurisation. J. Pediatr. Gastroenterol. Nutr. 2013;56:560–568. doi: 10.1097/MPG.0b013e31828393ed.
    1. Sousa S.G., Santos M.D., Fidalgo L.G., Delgadillo I., Saraiva J.A. Effect of thermal pasteurisation and high-pressure processing on immunoglobulin content and lysozyme and lactoperoxidase activity in human colostrum. Food Chem. 2014;151:79–85. doi: 10.1016/j.foodchem.2013.11.024.
    1. Baro C., Giribaldi M., Arslanoglu S., Giuffrida M.G., Dellavalle G., Conti A., Tonetto P., Biasini A., Coscia A., Fabris C., et al. Effect of two pasteurization methods on the protein content of human milk. Front. Biosci. 2001;3:818–829. doi: 10.2741/289.
    1. Czank C., Prime D.K., Hartmann B., Simmer K., Hartmann P.E. Retention of the immunological proteins of pasteurized human milk in relation to pasteurizer design and practice. Pediatr. Res. 2009;66:374–379. doi: 10.1203/PDR.0b013e3181b4554a.
    1. Christen L., Lai C.T., Hartmann B., Hartmann P.E., Geddes D.T. The effect of UV-C pasteurization on bacteriostatic properties and immunological proteins of donor human milk. PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0085867.
    1. Gibbs J.H., Fisher C., Bhattacharya S., Goddard P., Baum J.D. Drip breast milk: Its composition, collection and pasteurization. Early Hum. Dev. 1977;1:227–245. doi: 10.1016/0378-3782(77)90037-8.
    1. Henderson T.R., Fay T.N., Hamosh M. Effect of pasteurization on long chain polyunsaturated fatty acid levels and enzyme activities of human milk. J. Pediatr. 1998;132:876–878. doi: 10.1016/S0022-3476(98)70323-3.
    1. Ewaschuk J.B., Unger S., O’Connor D.L., Stone D., Harvey S., Clandinin M.T., Field C.J. Effect of pasteurization on selected immune components of donated human breast milk. J. Perinatol. 2011;31:593–598. doi: 10.1038/jp.2010.209.
    1. Delgado F.J., Cava R., Delgado J., Ramírez R. Tocopherols, fatty acids and cytokines content of Holder pasteurised and high-pressure processed human milk. Dairy Sci. Technol. 2014;94:145–156. doi: 10.1007/s13594-013-0149-y.
    1. Untalan P.B., Keeney S.E., Palkowetz K.H., Rivera A., Goldman A.S. Heat susceptibility of interleukin-10 and other cytokines in donor human milk. Breastfeed Med. 2009;4:137–144. doi: 10.1089/bfm.2008.0145.
    1. Goelz R., Hihn E., Hamprecht K., Dietz K., Jahn G., Poets C., Elmlinger M. Effects of different CMV heat- inactivation-methods on growth factors in human breast milk. Pediatr. Res. 2009;65:458–461. doi: 10.1203/PDR.0b013e3181991f18.
    1. Carratù B., Ambruzzi A.M., Fedele E., Sanzini E. Human Milk Banking: Influence of different pasteurization temperatures on levels of protein sulphur amino acids and some free amino acids. J. Food Sci. 2005;70:c373–c375. doi: 10.1111/j.1365-2621.2005.tb11431.x.
    1. Valentine C.J., Morrow B.S., Fernandez S., Gulati P., Bartholomew D., Long D., Welty S.E., Morrow A.L., Rogers L.K. Docosahexaenoic acid and amino acid contents in pasteurized donor milk are low for preterm infants. J. Pediatr. 2010;157:906–910. doi: 10.1016/j.jpeds.2010.06.017.
    1. Van Zoeren-Grobben D., Schrijver J., Van den Berg H., Berger H.M. Human milk vitamin content after pasteurisation, storage, or tube feeding. Arch. Dis. Child. 1987;62:161–165. doi: 10.1136/adc.62.2.161.
    1. Goldsmith S.J., Eitenmiller I.R.R., Toledo R.T., Barnhart H.M. Effects of processing and storage on the water-soluble vitamin content of human milk. J. Food Sci. 1983;48:994–995. doi: 10.1111/j.1365-2621.1983.tb14951.x.
    1. Moltó-Puigmartí C., Permanyer M., Castellote A.I., López-Sabater M.C. Effects of pasteurisation and high-pressure processing on vitamin C, tocopherols and fatty acids in mature human milk. Food Chem. 2011;124:697–702. doi: 10.1016/j.foodchem.2010.05.079.
    1. Romeu-Nadal M., Castellote A.I., Gayà A., López-Sabater M.C. Effect of pasteurisation on ascorbic acid, dehydroascorbic acid, tocopherols and fatty acids in pooled mature human milk. Food Chem. 2008;107:434–438. doi: 10.1016/j.foodchem.2007.06.060.
    1. Oliveira A.M.M.M., Marinho H.A. Determination of Vitamin A in the milk of donor mothers from the human milk bank in Manaus/AM. Effect of processing. Acta Amazon. 2010;40:59–64. doi: 10.1590/S0044-59672010000100008.
    1. Ribeiro K.D., Melo I.L., Pristo A.Z., Dimenstein R. The effect of processing on the Vitamin A content of human milk. J. Pediatr. 2005;81:61–64. doi: 10.2223/JPED.1284.
    1. Fidler N., Sauerwald T.U., Demmelmair H., Koletzko B. Fat content and fatty acid composition of fresh, pasteurized, or sterilized human milk. Adv. Exp. Med. Biol. 2001;501:485–495.
    1. Lepri L., Del Bubba M., Maggini R., Donzelli G.P., Galvan P. Effect of pasteurization and storage on some components of pooled human milk. J. Chromatogr. B Biomed. Sci. Appl. 1997;704:1–10. doi: 10.1016/S0378-4347(97)00439-8.
    1. Borgo L.A., Cohelho Araujo W.M., Conceição M.H., Sabioni Resck I., Mendonça M.A. Are fat acids of human milk impacted by pasteurization and freezing? Nutr. Hosp. 2015;31:1386–1393.
    1. Wardell J.M., Hill C.M., D’Souza S.W. Effect of pasteurization and of freezing and thawing human milk on its triglyceride content. Acta Paediatr. Scand. 1981;70:467–471. doi: 10.1111/j.1651-2227.1981.tb05724.x.
    1. De Segura A.G., Escuder D., Montilla A., Bustos G., Pallás C., Fernández L., Corzo N., Rodríguez J.M. Heating-induced bacteriological and biochemical modifications in human donor milk after Holder pasteurisation. J. Pediatr. Gastroenterol. Nutr. 2012;54:197–203. doi: 10.1097/MPG.0b013e318235d50d.
    1. Bertino E., Coppa G.V., Giuliani F., Coscia A., Gabrielli O., Sabatino G., Sgarrella M., Testa T., Zampini L., Fabris C. Effects of Holder pasteurization on human milk oligosaccharides. Int. J. Immunopathol. Pharmacol. 2008;21:381–385.
    1. Coscia A., Peila C., Bertino E., Coppa G.V., Moro G.E., Gabrielli O., Zampini L., Galeazzi T., Maccari F., Volpi N. Effect of Holder pasteurisation on human milk glycosaminoglycans. J. Pediatr. Gastroenterol. Nutr. 2015;60:127–130. doi: 10.1097/MPG.0000000000000570.
    1. Contador R., Delgado F.J., García-Parra J., Garrido M., Ramírez R. Volatile profile of breast milk subjected to high-pressure processing or thermal treatment. Food Chem. 2015;180:17–24. doi: 10.1016/j.foodchem.2015.02.019.
    1. Silvestre D., Miranda M., Muriach M., Almansa I., Jareno E., Romero F.J. Antioxidant capacity of human milk: Effect of thermal conditions for the pasteurization. Acta Paediatr. 2008;97:1070–1074. doi: 10.1111/j.1651-2227.2008.00870.x.
    1. Elisia I., Kitts D.D. Quantification of hexanal as an index of lipid oxidation in human milk and association with antioxidant components. J. Clin. Biochem. Nutr. 2011;49:147–152. doi: 10.3164/jcbn.10-142.
    1. Mateos-Vivas M., Rodríguez-Gonzalo E., Domínguez-Álvarez J., García-Gómez D., Ramírez-Bernabé R., Carabias-Martínez R. Analysis of free nucleotide monophosphates in human milk and effect of pasteurisation or high-pressure processing on their contents by capillary electrophoresis coupled to mass spectrometry. Food Chem. 2015;174:348–355. doi: 10.1016/j.foodchem.2014.11.051.
    1. Ballard O., Morrow A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013;60:49–74. doi: 10.1016/j.pcl.2012.10.002.
    1. Lönnerdal B. Nutritional and physiologic significance of human milk proteins. Am. J. Clin. Nutr. 2003;77:1537S–1543S.
    1. Ochoa T.J., Cleary T.G. Effect of lactoferrin on enteric pathogens. Biochimie. 2009;91:30–34. doi: 10.1016/j.biochi.2008.04.006.
    1. Mayayo C., Monteserrat M., Ramos S.J., Martínez-Lorenzo C., Calvo M., Sánchez L., Péreza M.D. Kinetic parameters for high-pressure-induced denaturation of lactoferrin in human milk. Int. Dairy J. 2014;39:246–252. doi: 10.1016/j.idairyj.2014.07.001.
    1. Hamosh M. Digestion of the premature infant: The effect of the human milk. Sem. Perinatol. 1994;18:485–494.
    1. Macdonald L.E., Brett J., Kelton D., Majowicz S.E., Snedeker K., Sargeant J.M. A systematic review and meta-analysis of the effects of pasteurization on milk vitamins, and evidence for raw milk consumption and other health-related outcomes. J. Food Prot. 2011;74:1814–1832. doi: 10.4315/0362-028X.JFP-10-269.
    1. Newburg D.S. Glycobiology of human milk. Biochemistry. 2013;78:771–785. doi: 10.1134/S0006297913070092.

Source: PubMed

3
Abonner