Exploring the Potential of Human Milk and Formula Milk on Infants' Gut and Health

Hui-Yuan Chong, Loh Teng-Hern Tan, Jodi Woan-Fei Law, Kar-Wai Hong, Vanassa Ratnasingam, Nurul-Syakima Ab Mutalib, Learn-Han Lee, Vengadesh Letchumanan, Hui-Yuan Chong, Loh Teng-Hern Tan, Jodi Woan-Fei Law, Kar-Wai Hong, Vanassa Ratnasingam, Nurul-Syakima Ab Mutalib, Learn-Han Lee, Vengadesh Letchumanan

Abstract

Early-life gut microbiota plays a role in determining the health and risk of developing diseases in later life. Various perinatal factors have been shown to contribute to the development and establishment of infant gut microbiota. One of the important factors influencing the infant gut microbial colonization and composition is the mode of infant feeding. While infant formula milk has been designed to resemble human milk as much as possible, the gut microbiome of infants who receive formula milk differs from that of infants who are fed human milk. A diverse microbial population in human milk and the microbes seed the infant gut microbiome. Human milk contains nutritional components that promote infant growth and bioactive components, such as human milk oligosaccharides, lactoferrin, and immunoglobulins, which contribute to immunological development. In an attempt to encourage the formation of a healthy gut microbiome comparable to that of a breastfed infant, manufacturers often supplement infant formula with prebiotics or probiotics, which are known to have a bifidogenic effect and can modulate the immune system. This review aims to elucidate the roles of human milk and formula milk on infants' gut and health.

Keywords: formula milk; gut microbiota; human milk; immune system; infant.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Illustration of how the different feeding mode modulates the infant gut microbiome. Human milk naturally contains lactoferrin, oligosaccharides, immunoglobulins, extracellular vesicles, and human milk microbiota, which aids in modulating a healthy infant gut. While formula milk often has additional supplements added to mimic human milk.

References

    1. Healy D.B., Ryan C.A., Ross R.P., Stanton C., Dempsey E.M. Clinical implications of preterm infant gut microbiome development. Nat. Microbiol. 2022;7:22–33. doi: 10.1038/s41564-021-01025-4.
    1. Thye A.Y.-K., Law J.W.-F., Tan L.T.-H., Thurairajasingam S., Chan K.-G., Letchumanan V., Lee L.-H. Exploring the Gut Microbiome in Myasthenia Gravis. Nutrients. 2022;14:1647. doi: 10.3390/nu14081647.
    1. Lau A.W.Y., Tan L.T.-H., Ab Mutalib N.-S., Wong S.H., Letchumanan V., Lee L.-H. The chemistry of gut microbiome in health and diseases. Prog. Microbes Mol. Biol. 2021;4:1–40. doi: 10.36877/pmmb.a0000175.
    1. Shen X., Wang M., Zhang X., He M., Li M., Cheng G., Wan C., He F. Dynamic construction of gut microbiota may influence allergic diseases of infants in Southwest China. BMC Microbiol. 2019;19:123. doi: 10.1186/s12866-019-1489-4.
    1. Cerdó T., Ruiz A., Campoy C. Adiposity—Omics and Molecular Understanding. InTechOpen; London, UK: 2017. Human gut microbiota and obesity during development; pp. 265–285.
    1. Uusitalo U., Liu X., Yang J., Aronsson C.A., Hummel S., Butterworth M., Lernmark Å., Rewers M., Hagopian W., She J.-X. Association of early exposure of probiotics and islet autoimmunity in the TEDDY study. JAMA Pediatrics. 2016;170:20–28. doi: 10.1001/jamapediatrics.2015.2757.
    1. Jiménez E., Fernández L., Marín M.L., Martín R., Odriozola J.M., Nueno-Palop C., Narbad A., Olivares M., Xaus J., Rodríguez J.M. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr. Microbiol. 2005;51:270–274. doi: 10.1007/s00284-005-0020-3.
    1. Aagaard K., Ma J., Antony K.M., Ganu R., Petrosino J., Versalovic J. The placenta harbors a unique microbiome. Sci. Transl. Med. 2014;6:237ra65. doi: 10.1126/scitranslmed.3008599.
    1. Collado M.C., Rautava S., Aakko J., Isolauri E., Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 2016;6:23129. doi: 10.1038/srep23129.
    1. Gosalbes M., Llop S., Valles Y., Moya A., Ballester F., Francino M. Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin. Exp. Allergy. 2013;43:198–211. doi: 10.1111/cea.12063.
    1. Perez-Muñoz M.E., Arrieta M.-C., Ramer-Tait A.E., Walter J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: Implications for research on the pioneer infant microbiome. Microbiome. 2017;5:48. doi: 10.1186/s40168-017-0268-4.
    1. Ihekweazu F.D., Versalovic J. Development of the pediatric gut microbiome: Impact on health and disease. Am. J. Med. Sci. 2018;356:413–423. doi: 10.1016/j.amjms.2018.08.005.
    1. Koo H., Crossman D.K., Morrow C.D. Strain tracking to identify individualized patterns of microbial strain stability in the developing infant gut ecosystem. Front. Pediatrics. 2020;8:549844. doi: 10.3389/fped.2020.549844.
    1. Wang S., Ryan C.A., Boyaval P., Dempsey E.M., Ross R.P., Stanton C. Maternal vertical transmission affecting early-life microbiota development. Trends Microbiol. 2020;28:28–45. doi: 10.1016/j.tim.2019.07.010.
    1. Van Daele E., Knol J., Belzer C. Microbial transmission from mother to child: Improving infant intestinal microbiota development by identifying the obstacles. Crit. Rev. Microbiol. 2019;45:613–648. doi: 10.1080/1040841X.2019.1680601.
    1. Matsuki T., Yahagi K., Mori H., Matsumoto H., Hara T., Tajima S., Ogawa E., Kodama H., Yamamoto K., Yamada T. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat. Commun. 2016;7:11939. doi: 10.1038/ncomms11939.
    1. Akay H.K., Bahar Tokman H., Hatipoglu N., Hatipoglu H., Siraneci R., Demirci M., Borsa B.A., Yuksel P., Karakullukcu A., Kangaba A.A., et al. The relationship between bifidobacteria and allergic asthma and/or allergic dermatitis: A prospective study of 0–3 years-old children in Turkey. Anaerobe. 2014;28:98–103. doi: 10.1016/j.anaerobe.2014.05.006.
    1. Dogra S., Sakwinska O., Soh S.-E., Ngom-Bru C., Brück W.M., Berger B., Brüssow H., Lee Y.S., Yap F., Chong Y.-S. Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. MBio. 2015;6:e02419-14. doi: 10.1128/mBio.02419-14.
    1. Bäckhed F., Roswall J., Peng Y., Feng Q., Jia H., Kovatcheva-Datchary P., Li Y., Xia Y., Xie H., Zhong H. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17:690–703. doi: 10.1016/j.chom.2015.04.004.
    1. Bergström A., Skov T.H., Bahl M.I., Roager H.M., Christensen L.B., Ejlerskov K.T., Mølgaard C., Michaelsen K.F., Licht T.R. Establishment of intestinal microbiota during early life: A longitudinal, explorative study of a large cohort of Danish infants. Appl. Environ. Microbiol. 2014;80:2889–2900. doi: 10.1128/AEM.00342-14.
    1. Arumugam M., Raes J., Pelletier E., Le Paslier D., Yamada T., Mende D.R., Fernandes G.R., Tap J., Bruls T., Batto J.-M. Enterotypes of the human gut microbiome. Nature. 2011;473:174–180. doi: 10.1038/nature09944.
    1. Yatsunenko T., Rey F.E., Manary M.J., Trehan I., Dominguez-Bello M.G., Contreras M., Magris M., Hidalgo G., Baldassano R.N., Anokhin A.P. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–227. doi: 10.1038/nature11053.
    1. World Health Organization. Exclusive Breastfeeding for Six Months Best for Babies Everywhere. [(accessed on 18 April 2022)]. Available online: .
    1. Moubareck C.A. Human milk microbiota and oligosaccharides: A glimpse into benefits, diversity, and correlations. Nutrients. 2021;13:1123. doi: 10.3390/nu13041123.
    1. Section on Breastfeeding. Eidelman A.I., Schanler R.J., Johnston M., Landers S., Noble L., Szucs K., Viehmann L. Breastfeeding and the use of human milk. Pediatrics. 2012;129:e827–e841.
    1. Fernández L., Langa S., Martín V., Maldonado A., Jiménez E., Martín R., Rodríguez J.M. The human milk microbiota: Origin and potential roles in health and disease. Pharmacol. Res. 2013;69:1–10. doi: 10.1016/j.phrs.2012.09.001.
    1. Ballard O., Morrow A.L. Human milk composition: Nutrients and bioactive factors. Pediatric Clin. 2013;60:49–74.
    1. Le Doare K., Holder B., Bassett A., Pannaraj P.S. Mother’s milk: A purposeful contribution to the development of the infant microbiota and immunity. Front. Immunol. 2018;9:361. doi: 10.3389/fimmu.2018.00361.
    1. Koletzko B., Shamir R. Standards for infant formula milk. BMJ. 2006;332:621–622. doi: 10.1136/bmj.332.7542.621.
    1. Dominguez-Bello M.G., Costello E.K., Contreras M., Magris M., Hidalgo G., Fierer N., Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA. 2010;107:11971–11975. doi: 10.1073/pnas.1002601107.
    1. Ferretti P., Pasolli E., Tett A., Asnicar F., Gorfer V., Fedi S., Armanini F., Truong D.T., Manara S., Zolfo M. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe. 2018;24:133–145.e135. doi: 10.1016/j.chom.2018.06.005.
    1. Reyman M., van Houten M.A., van Baarle D., Bosch A.A., Man W.H., Chu M.L.J., Arp K., Watson R.L., Sanders E.A., Fuentes S. Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life. Nat. Commun. 2019;10:4997. doi: 10.1038/s41467-019-13014-7.
    1. Hesla H.M., Stenius F., Jäderlund L., Nelson R., Engstrand L., Alm J., Dicksved J. Impact of lifestyle on the gut microbiota of healthy infants and their mothers–the ALADDIN birth cohort. FEMS Microbiol. Ecol. 2014;90:791–801. doi: 10.1111/1574-6941.12434.
    1. Shao Y., Forster S.C., Tsaliki E., Vervier K., Strang A., Simpson N., Kumar N., Stares M.D., Rodger A., Brocklehurst P. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature. 2019;574:117–121. doi: 10.1038/s41586-019-1560-1.
    1. Hill C.J., Lynch D.B., Murphy K., Ulaszewska M., Jeffery I.B., O’Shea C.A., Watkins C., Dempsey E., Mattivi F., Tuohy K. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome. 2017;5:4. doi: 10.1186/s40168-016-0213-y.
    1. Wampach L., Heintz-Buschart A., Fritz J.V., Ramiro-Garcia J., Habier J., Herold M., Narayanasamy S., Kaysen A., Hogan A.H., Bindl L. Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. Nat. Commun. 2018;9:5091. doi: 10.1038/s41467-018-07631-x.
    1. Makino H., Kushiro A., Ishikawa E., Kubota H., Gawad A., Sakai T., Oishi K., Martin R., Ben-Amor K., Knol J. Mother-to-infant transmission of intestinal bifidobacterial strains has an impact on the early development of vaginally delivered infant’s microbiota. PLoS ONE. 2013;8:e78331. doi: 10.1371/journal.pone.0078331.
    1. Arboleya S., Binetti A., Salazar N., Fernández N., Solís G., Hernandez-Barranco A., Margolles A., de Los Reyes-Gavilán C.G., Gueimonde M. Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol. Ecol. 2012;79:763–772. doi: 10.1111/j.1574-6941.2011.01261.x.
    1. Korpela K., Blakstad E.W., Moltu S.J., Strømmen K., Nakstad B., Rønnestad A.E., Brække K., Iversen P.O., Drevon C.A., de Vos W. Intestinal microbiota development and gestational age in preterm neonates. Sci. Rep. 2018;8:2453. doi: 10.1038/s41598-018-20827-x.
    1. Eck A., Rutten N.B., Singendonk M.M., Rijkers G.T., Savelkoul P.H., Meijssen C.B., Crijns C.E., Oudshoorn J.H., Budding A.E., Vlieger A.M. Neonatal microbiota development and the effect of early life antibiotics are determined by two distinct settler types. PLoS ONE. 2020;15:e0228133. doi: 10.1371/journal.pone.0228133.
    1. Yassour M., Vatanen T., Siljander H., Hämäläinen A.-M., Härkönen T., Ryhänen S.J., Franzosa E.A., Vlamakis H., Huttenhower C., Gevers D. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med. 2016;8:343ra381. doi: 10.1126/scitranslmed.aad0917.
    1. Tapiainen T., Koivusaari P., Brinkac L., Lorenzi H.A., Salo J., Renko M., Pruikkonen H., Pokka T., Li W., Nelson K. Impact of intrapartum and postnatal antibiotics on the gut microbiome and emergence of antimicrobial resistance in infants. Sci. Rep. 2019;9:10635. doi: 10.1038/s41598-019-46964-5.
    1. Aloisio I., Mazzola G., Corvaglia L.T., Tonti G., Faldella G., Biavati B., Di Gioia D. Influence of intrapartum antibiotic prophylaxis against group B Streptococcus on the early newborn gut composition and evaluation of the anti-Streptococcus activity of Bifidobacterium strains. Appl. Microbiol. Biotechnol. 2014;98:6051–6060. doi: 10.1007/s00253-014-5712-9.
    1. Corvaglia L., Tonti G., Martini S., Aceti A., Mazzola G., Aloisio I., Di Gioia D., Faldella G. Influence of intrapartum antibiotic prophylaxis for group B streptococcus on gut microbiota in the first month of life. J. Pediatr. Gastroenterol. Nutr. 2016;62:304–308. doi: 10.1097/MPG.0000000000000928.
    1. Liu Y., Qin S., Song Y., Feng Y., Lv N., Xue Y., Liu F., Wang S., Zhu B., Ma J., et al. The Perturbation of Infant Gut Microbiota Caused by Cesarean Delivery Is Partially Restored by Exclusive Breastfeeding. Front. Microbiol. 2019;10:598. doi: 10.3389/fmicb.2019.00598.
    1. Cong X., Judge M., Xu W., Diallo A., Janton S., Brownell E.A., Maas K., Graf J. Influence of infant feeding type on gut microbiome development in hospitalized preterm infants. Nurs. Res. 2017;66:123. doi: 10.1097/NNR.0000000000000208.
    1. Adlerberth I., Wold A. Establishment of the gut microbiota in Western infants. Acta Paediatr. 2009;98:229–238. doi: 10.1111/j.1651-2227.2008.01060.x.
    1. Gopalakrishna K.P., Hand T.W. Influence of maternal milk on the neonatal intestinal microbiome. Nutrients. 2020;12:823. doi: 10.3390/nu12030823.
    1. Guo M. Human Milk Biochemistry and Infant Formula Manufacturing Technology. 2nd ed. Woodhead Publishing; Cambridge, UK: 2020. p. 422.
    1. Gnoth M.J., Kunz C., Kinne-Saffran E., Rudloff S. Human milk oligosaccharides are minimally digested in vitro. J. Nutr. 2000;130:3014–3020. doi: 10.1093/jn/130.12.3014.
    1. Walsh C., Lane J.A., van Sinderen D., Hickey R.M. Human milk oligosaccharides: Shaping the infant gut microbiota and supporting health. J. Funct. Foods. 2020;72:104074. doi: 10.1016/j.jff.2020.104074.
    1. Czosnykowska-Łukacka M., Królak-Olejnik B., Orczyk-Pawiłowicz M. Breast milk macronutrient components in prolonged lactation. Nutrients. 2018;10:1893. doi: 10.3390/nu10121893.
    1. Thakore V., Jain N.K. Protein and fat examination from the raw milk of different mammalian species (Cow, buffalo, goat, and human) with successive lactation days. Pharma Innov. 2018;7:506–510.
    1. Kim S.Y., Yi D.Y. Components of human breast milk: From macronutrient to microbiome and microRNA. Clin. Exp. Pediatrics. 2020;63:301. doi: 10.3345/cep.2020.00059.
    1. Dror D.K., Allen L.H. Overview of nutrients in human milk. Adv. Nutr. 2018;9:278S–294S. doi: 10.1093/advances/nmy022.
    1. Paulaviciene I.J., Liubsys A., Molyte A., Eidukaite A., Usonis V. Circadian changes in the composition of human milk macronutrients depending on pregnancy duration: A cross-sectional study. Int. Breastfeed. J. 2020;15:49. doi: 10.1186/s13006-020-00291-y.
    1. Saarela T., Kokkonen J., Koivisto M. Macronutrient and energy contents of human milk fractions during the first six months of lactation. Acta Paediatr. 2005;94:1176–1181. doi: 10.1111/j.1651-2227.2005.tb02070.x.
    1. Khan S., Hepworth A.R., Prime D.K., Lai C.T., Trengove N.J., Hartmann P.E. Variation in fat, lactose, and protein composition in breast milk over 24 hours: Associations with infant feeding patterns. J. Hum. Lact. 2013;29:81–89. doi: 10.1177/0890334412448841.
    1. Castellote C., Casillas R., Ramírez-Santana C., Pérez-Cano F.J., Castell M., Moretones M.G., López-Sabater M.C., Franch À. Premature delivery influences the immunological composition of colostrum and transitional and mature human milk. J. Nutr. 2011;141:1181–1187. doi: 10.3945/jn.110.133652.
    1. Liu B., Gu F., Ye W., Ren Y., Guo S. Colostral and mature breast milk protein compositional determinants in Qingdao, Wuhan and Hohhot: Maternal food culture, vaginal delivery and neonatal gender. Asia Pac. J. Clin. Nutr. 2019;28:800.
    1. Moltó-Puigmartí C., Castellote A.I., Carbonell-Estrany X., López-Sabater M.C. Differences in fat content and fatty acid proportions among colostrum, transitional, and mature milk from women delivering very preterm, preterm, and term infants. Clin. Nutr. 2011;30:116–123. doi: 10.1016/j.clnu.2010.07.013.
    1. Sever O., Mandel D., Mimouni F.B., Marom R., Cohen S., Lubetzky R. Macronutrients in human milk: Colostrum lactose but not fat or protein predicts mature human milk content. ICAN Infant Child Adolesc. Nutr. 2015;7:162–165. doi: 10.1177/1941406415577676.
    1. Butte N.F., Lopez-Alarcon M.G., Garza C. Nutrient Adequacy of Exclusive Breastfeeding for the Term Infant during the First Six Months of Life. World Health Organization; Geneva, Switzerland: 2002. p. 47.
    1. Yang T., Zhang L., Bao W., Rong S. Nutritional composition of breast milk in Chinese women: A systematic review. Asia Pac. J. Clin. Nutr. 2018;27:491–502.
    1. Bauer J., Gerss J. Longitudinal analysis of macronutrients and minerals in human milk produced by mothers of preterm infants. Clin. Nutr. 2011;30:215–220. doi: 10.1016/j.clnu.2010.08.003.
    1. Caldeo V., Downey E., O’Shea C.-A., Affolter M., Volger S., Courtet-Compondu M.-C., De Castros C.A., O’Mahony J.A., Ryan C.A., Kelly A.L. Protein levels and protease activity in milk from mothers of pre-term infants: A prospective longitudinal study on human milk macronutrient composition. Clin. Nutr. 2020;40:3567–3577. doi: 10.1016/j.clnu.2020.12.013.
    1. Mills L., Coulter L., Savage E., Modi N. Macronutrient content of donor milk from a regional human milk bank: Variation with donor mother–infant characteristics. Br. J. Nutr. 2019;122:1155–1167. doi: 10.1017/S0007114519002228.
    1. Maly J., Burianova I., Vitkova V., Ticha E., Navratilova M., Cermakova E. Preterm human milk macronutrient concentration is independent of gestational age at birth. Arch. Dis. Child.-Fetal Neonatal Ed. 2019;104:F50–F56. doi: 10.1136/archdischild-2016-312572.
    1. Prentice P., Ong K.K., Schoemaker M.H., van Tol E.A., Vervoort J., Hughes I.A., Acerini C.L., Dunger D.B. Breast milk nutrient content and infancy growth. Acta Paediatr. 2016;105:641–647. doi: 10.1111/apa.13362.
    1. Austin S., De Castro C.A., Bénet T., Hou Y., Sun H., Thakkar S.K., Vinyes-Pares G., Zhang Y., Wang P. Temporal change of the content of 10 oligosaccharides in the milk of Chinese urban mothers. Nutrients. 2016;8:346. doi: 10.3390/nu8060346.
    1. Thurl S., Munzert M., Henker J., Boehm G., Müller-Werner B., Jelinek J., Stahl B. Variation of human milk oligosaccharides in relation to milk groups and lactational periods. Br. J. Nutr. 2010;104:1261–1271. doi: 10.1017/S0007114510002072.
    1. Elwakiel M., Hageman J., Wang W., Szeto I., Van Goudoever J., Hettinga K., Schols H. Human milk oligosaccharides in colostrum and mature milk of Chinese mothers: Lewis positive secretor subgroups. J. Agric. Food Chem. 2018;66:7036–7043. doi: 10.1021/acs.jafc.8b02021.
    1. Sprenger N., Lee L.Y., De Castro C.A., Steenhout P., Thakkar S.K. Longitudinal change of selected human milk oligosaccharides and association to infants’ growth, an observatory, single center, longitudinal cohort study. PLoS ONE. 2017;12:e0171814. doi: 10.1371/journal.pone.0171814.
    1. Gabrielli O., Zampini L., Galeazzi T., Padella L., Santoro L., Peila C., Giuliani F., Bertino E., Fabris C., Coppa G.V. Preterm milk oligosaccharides during the first month of lactation. Pediatrics. 2011;128:e1520–e1531. doi: 10.1542/peds.2011-1206.
    1. Seferovic M.D., Mohammad M., Pace R.M., Engevik M., Versalovic J., Bode L., Haymond M., Aagaard K.M. Maternal diet alters human milk oligosaccharide composition with implications for the milk metagenome. Sci. Rep. 2020;10:22092. doi: 10.1038/s41598-020-79022-6.
    1. De Leoz M.L.A., Kalanetra K.M., Bokulich N.A., Strum J.S., Underwood M.A., German J.B., Mills D.A., Lebrilla C.B. Human milk glycomics and gut microbial genomics in infant feces show a correlation between human milk oligosaccharides and gut microbiota: A proof-of-concept study. J. Proteome Res. 2015;14:491–502. doi: 10.1021/pr500759e.
    1. Marcobal A., Barboza M., Froehlich J.W., Block D.E., German J.B., Lebrilla C.B., Mills D.A. Consumption of human milk oligosaccharides by gut-related microbes. J. Agric. Food Chem. 2010;58:5334–5340. doi: 10.1021/jf9044205.
    1. Yu Z.-T., Chen C., Newburg D.S. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology. 2013;23:1281–1292. doi: 10.1093/glycob/cwt065.
    1. Rubio-del-Campo A., Alcántara C., Collado M.C., Rodríguez-Díaz J., Yebra M.J. Human milk and mucosa-associated disaccharides impact on cultured infant fecal microbiota. Sci. Rep. 2020;10:11845. doi: 10.1038/s41598-020-68718-4.
    1. Macfarlane G.T., Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health. J. AOAC Int. 2012;95:50–60. doi: 10.5740/jaoacint.SGE_Macfarlane.
    1. Chichlowski M., Guillaume De Lartigue J., Raybould H.E., Mills D.A. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. J. Pediatr. Gastroenterol. Nutr. 2012;55:321. doi: 10.1097/MPG.0b013e31824fb899.
    1. Wickramasinghe S., Pacheco A.R., Lemay D.G., Mills D.A. Bifidobacteria grown on human milk oligosaccharides downregulate the expression of inflammation-related genes in Caco-2 cells. BMC Microbiol. 2015;15:172. doi: 10.1186/s12866-015-0508-3.
    1. Kavanaugh D.W., O’Callaghan J., Butto L.F., Slattery H., Lane J., Clyne M., Kane M., Joshi L., Hickey R.M. Exposure of Bifidobacterium longum subsp. infantis to milk oligosaccharides increases adhesion to epithelial cells and induces a substantial transcriptional response. PLoS ONE. 2013;8:e67224. doi: 10.1371/journal.pone.0067224.
    1. Musilova S., Modrackova N., Doskocil I., Svejstil R., Rada V. Influence of human milk oligosaccharides on adherence of bifidobacteria and clostridia to cell lines. Acta Microbiol. Immunol. Hung. AMicr. 2017;64:415. doi: 10.1556/030.64.2017.029.
    1. Weichert S., Jennewein S., Hüfner E., Weiss C., Borkowski J., Putze J., Schroten H. Bioengineered 2′-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines. Nutr. Res. 2013;33:831–838. doi: 10.1016/j.nutres.2013.07.009.
    1. Weichert S., Koromyslova A., Singh B.K., Hansman S., Jennewein S., Schroten H., Hansman G.S. Structural basis for norovirus inhibition by human milk oligosaccharides. J. Virol. 2016;90:4843–4848. doi: 10.1128/JVI.03223-15.
    1. Facinelli B., Marini E., Magi G., Zampini L., Santoro L., Catassi C., Monachesi C., Gabrielli O., Coppa G.V. Breast milk oligosaccharides: Effects of 2′-fucosyllactose and 6′-sialyllactose on the adhesion of Escherichia coli and Salmonella fyris to Caco-2 cells. J. Matern.-Fetal Neonatal Med. 2019;32:2950–2952. doi: 10.1080/14767058.2018.1450864.
    1. Groves M.L. The isolation of a red protein from Milk2. J. Am. Chem. Soc. 1960;82:3345–3350. doi: 10.1021/ja01498a029.
    1. Yang Z., Jiang R., Chen Q., Wang J., Duan Y., Pang X., Jiang S., Bi Y., Zhang H., Lönnerdal B. Concentration of lactoferrin in human milk and its variation during lactation in different Chinese populations. Nutrients. 2018;10:1235. doi: 10.3390/nu10091235.
    1. Garcia-Rodenas C.L., De Castro C.A., Jenni R., Thakkar S.K., Beauport L., Tolsa J.-F., Fischer-Fumeaux C.J., Affolter M. Temporal changes of major protein concentrations in preterm and term human milk. A prospective cohort study. Clin. Nutr. 2019;38:1844–1852. doi: 10.1016/j.clnu.2018.07.016.
    1. Trend S., Strunk T., Lloyd M.L., Kok C.H., Metcalfe J., Geddes D.T., Lai C.T., Richmond P., Doherty D.A., Simmer K. Levels of innate immune factors in preterm and term mothers’ breast milk during the 1st month postpartum. Br. J. Nutr. 2016;115:1178–1193. doi: 10.1017/S0007114516000234.
    1. Mastromarino P., Capobianco D., Campagna G., Laforgia N., Drimaco P., Dileone A., Baldassarre M.E. Correlation between lactoferrin and beneficial microbiota in breast milk and infant’s feces. Biometals. 2014;27:1077–1086. doi: 10.1007/s10534-014-9762-3.
    1. Woodman T., Strunk T., Patole S., Hartmann B., Simmer K., Currie A. Effects of lactoferrin on neonatal pathogens and Bifidobacterium breve in human breast milk. PLoS ONE. 2018;13:e0201819. doi: 10.1371/journal.pone.0201819.
    1. Jahani S., Shakiba A., Jahani L. The Antimicrobial effect of lactoferrin on Gram-negative and Gram-positive bacteria. Int. J. Infect. 2015;2:e27954. doi: 10.17795/iji27594.
    1. Tian H., Maddox I.S., Ferguson L.R., Shu Q. Influence of bovine lactoferrin on selected probiotic bacteria and intestinal pathogens. Biometals. 2010;23:593–596. doi: 10.1007/s10534-010-9318-0.
    1. Oram J., Reiter B. Inhibition of bacteria by lactoferrin and other iron-chelating agents. Biochim. Biophys. Acta (BBA)-Gen. Subj. 1968;170:351–365. doi: 10.1016/0304-4165(68)90015-9.
    1. Brandenburg K., Jürgens G., Müller M., Fukuoka S., Koch M.H. Biophysical characterization of lipopolysaccharide and lipid A inactivation by lactoferrin. Biol. Chem. 2001;382:1215–1225. doi: 10.1515/BC.2001.152.
    1. Garbe J., Sjögren J., Cosgrave E.F., Struwe W.B., Bober M., Olin A.I., Rudd P.M., Collin M. EndoE from Enterococcus faecalis hydrolyzes the glycans of the biofilm inhibiting protein lactoferrin and mediates growth. PLoS ONE. 2014;9:e91035. doi: 10.1371/journal.pone.0091035.
    1. Angulo-Zamudio U.A., Vidal J.E., Nazmi K., Bolscher J.G., Leon-Sicairos C., Antezana B.S., Canizalez-Roman A., León-Sicairos N. Lactoferrin disaggregates pneumococcal biofilms and inhibits acquisition of resistance through its DNase activity. Front. Microbiol. 2019;10:2386. doi: 10.3389/fmicb.2019.02386.
    1. Wambach K., Spencer B. Breastfeeding and Human Lactation. 6th ed. Jones & Bartlett Learning; Burlington, MA, USA: 2019. p. 820.
    1. Czosnykowska-Łukacka M., Lis-Kuberka J., Królak-Olejnik B., Orczyk-Pawiłowicz M. Changes in human milk immunoglobulin profile during prolonged lactation. Front. Pediatrics. 2020;8:428. doi: 10.3389/fped.2020.00428.
    1. Goonatilleke E., Huang J., Xu G., Wu L., Smilowitz J.T., German J.B., Lebrilla C.B. Human milk proteins and their glycosylation exhibit quantitative dynamic variations during lactation. J. Nutr. 2019;149:1317–1325. doi: 10.1093/jn/nxz086.
    1. Berdi M., de Lauzon-Guillain B., Forhan A., Castelli F.A., Fenaille F., Charles M.A., Heude B., Junot C., Adel-Patient K., EDEN Mother-Child Cohort Study Group Immune components of early breastmilk: Association with maternal factors and with reported food allergy in childhood. Pediatr. Allergy Immunol. 2019;30:107–116. doi: 10.1111/pai.12998.
    1. Abuidhail J., Al-Shudiefat A.A.R., Darwish M. Alterations of immunoglobulin G and immunoglobulin M levels in the breast milk of mothers with exclusive breastfeeding compared to mothers with non-exclusive breastfeeding during 6 months postpartum: The Jordanian cohort study. Am. J. Hum. Biol. 2019;31:e23197. doi: 10.1002/ajhb.23197.
    1. Perrin M.T., Fogleman A.D., Newburg D.S., Allen J.C. A longitudinal study of human milk composition in the second year postpartum: Implications for human milk banking. Matern. Child Nutr. 2017;13:e12239. doi: 10.1111/mcn.12239.
    1. Mathias A., Duc M., Favre L., Benyacoub J., Blum S., Corthésy B. Potentiation of polarized intestinal Caco-2 cell responsiveness to probiotics complexed with secretory IgA. J. Biol. Chem. 2010;285:33906–33913. doi: 10.1074/jbc.M110.135111.
    1. Donaldson G.P., Ladinsky M.S., Yu K.B., Sanders J.G., Yoo B., Chou W.-C., Conner M., Earl A., Knight R., Bjorkman P. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science. 2018;360:795–800. doi: 10.1126/science.aaq0926.
    1. Rogier E.W., Frantz A.L., Bruno M.E., Wedlund L., Cohen D.A., Stromberg A.J., Kaetzel C.S. Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. Proc. Natl. Acad. Sci. USA. 2014;111:3074–3079. doi: 10.1073/pnas.1315792111.
    1. Van Bergenhenegouwen J., Kraneveld A.D., Rutten L., Kettelarij N., Garssen J., Vos A.P. Extracellular vesicles modulate host-microbe responses by altering TLR2 activity and phagocytosis. PLoS ONE. 2014;9:e89121.
    1. Liao Y., Du X., Li J., Lönnerdal B. Human milk exosomes and their microRNAs survive digestion in vitro and are taken up by human intestinal cells. Mol. Nutr. Food Res. 2017;61:1700082. doi: 10.1002/mnfr.201700082.
    1. Mathivanan S., Fahner C.J., Reid G.E., Simpson R.J. ExoCarta 2012: Database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 2012;40:D1241–D1244. doi: 10.1093/nar/gkr828.
    1. Lässer C., Alikhani V.S., Ekström K., Eldh M., Paredes P.T., Bossios A., Sjöstrand M., Gabrielsson S., Lötvall J., Valadi H. Human saliva, plasma and breast milk exosomes contain RNA: Uptake by macrophages. J. Transl. Med. 2011;9:9. doi: 10.1186/1479-5876-9-9.
    1. van Herwijnen M.J., Zonneveld M.I., Goerdayal S., Nolte E.N., Garssen J., Stahl B., Altelaar A.M., Redegeld F.A., Wauben M.H. Comprehensive proteomic analysis of human milk-derived extracellular vesicles unveils a novel functional proteome distinct from other milk components. Mol. Cell. Proteom. 2016;15:3412–3423. doi: 10.1074/mcp.M116.060426.
    1. Weber J.A., Baxter D.H., Zhang S., Huang D.Y., How Huang K., Jen Lee M., Galas D.J., Wang K. The microRNA spectrum in 12 body fluids. Clin. Chem. 2010;56:1733–1741. doi: 10.1373/clinchem.2010.147405.
    1. Kosaka N., Izumi H., Sekine K., Ochiya T. microRNA as a new immune-regulatory agent in breast milk. Silence. 2010;1:7. doi: 10.1186/1758-907X-1-7.
    1. Zhou Q., Li M., Wang X., Li Q., Wang T., Zhu Q., Zhou X., Wang X., Gao X., Li X. Immune-related microRNAs are abundant in breast milk exosomes. Int. J. Biol. Sci. 2012;8:118. doi: 10.7150/ijbs.8.118.
    1. Alsaweed M., Lai C.T., Hartmann P.E., Geddes D.T., Kakulas F. Human milk miRNAs primarily originate from the mammary gland resulting in unique miRNA profiles of fractionated milk. Sci. Rep. 2016;6:20680. doi: 10.1038/srep20680.
    1. Pisano C., Galley J., Elbahrawy M., Wang Y., Farrell A., Brigstock D., Besner G.E. Human breast milk-derived extracellular vesicles in the protection against experimental necrotizing enterocolitis. J. Pediatr. Surg. 2020;55:54–58. doi: 10.1016/j.jpedsurg.2019.09.052.
    1. Wang X., Yan X., Zhang L., Cai J., Zhou Y., Liu H., Hu Y., Chen W., Xu S., Liu P. Identification and peptidomic profiling of exosomes in preterm human milk: Insights into necrotizing enterocolitis prevention. Mol. Nutr. Food Res. 2019;63:1801247. doi: 10.1002/mnfr.201801247.
    1. Martin C., Patel M., Williams S., Arora H., Sims B. Human breast milk-derived exosomes attenuate cell death in intestinal epithelial cells. Innate Immun. 2018;24:278–284. doi: 10.1177/1753425918785715.
    1. Ward T.L., Hosid S., Ioshikhes I., Altosaar I. Human milk metagenome: A functional capacity analysis. BMC Microbiol. 2013;13:116. doi: 10.1186/1471-2180-13-116.
    1. Kim S.Y., Yi D.Y. Analysis of the human breast milk microbiome and bacterial extracellular vesicles in healthy mothers. Exp. Mol. Med. 2020;52:1288–1297. doi: 10.1038/s12276-020-0470-5.
    1. Cabrera-Rubio R., Mira-Pascual L., Mira A., Collado M. Impact of mode of delivery on the milk microbiota composition of healthy women. J. Dev. Orig. Health Dis. 2016;7:54–60. doi: 10.1017/S2040174415001397.
    1. Jost T., Lacroix C., Braegger C., Chassard C. Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Br. J. Nutr. 2013;110:1253–1262. doi: 10.1017/S0007114513000597.
    1. Jiménez E., de Andrés J., Manrique M., Pareja-Tobes P., Tobes R., Martínez-Blanch J.F., Codoñer F.M., Ramón D., Fernández L., Rodríguez J.M. Metagenomic analysis of milk of healthy and mastitis-suffering women. J. Hum. Lact. 2015;31:406–415. doi: 10.1177/0890334415585078.
    1. Hunt K.M., Foster J.A., Forney L.J., Schütte U.M., Beck D.L., Abdo Z., Fox L.K., Williams J.E., McGuire M.K., McGuire M.A. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE. 2011;6:e21313. doi: 10.1371/journal.pone.0021313.
    1. Williams J.E., Carrothers J.M., Lackey K.A., Beatty N.F., York M.A., Brooker S.L., Shafii B., Price W.J., Settles M.L., McGuire M.A. Human milk microbial community structure is relatively stable and related to variations in macronutrient and micronutrient intakes in healthy lactating women. J. Nutr. 2017;147:1739–1748.
    1. Pannaraj P.S., Li F., Cerini C., Bender J.M., Yang S., Rollie A., Adisetiyo H., Zabih S., Lincez P.J., Bittinger K. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatrics. 2017;171:647–654. doi: 10.1001/jamapediatrics.2017.0378.
    1. Hermansson H., Kumar H., Collado M.C., Salminen S., Isolauri E., Rautava S. Breast milk microbiota is shaped by mode of delivery and intrapartum antibiotic exposure. Front. Nutr. 2019;6:4. doi: 10.3389/fnut.2019.00004.
    1. Khodayar-Pardo P., Mira-Pascual L., Collado M., Martínez-Costa C. Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota. J. Perinatol. 2014;34:599–605. doi: 10.1038/jp.2014.47.
    1. Urbaniak C., Angelini M., Gloor G.B., Reid G. Human milk microbiota profiles in relation to birthing method, gestation and infant gender. Microbiome. 2016;4:1. doi: 10.1186/s40168-015-0145-y.
    1. Moossavi S., Sepehri S., Robertson B., Bode L., Goruk S., Field C.J., Lix L.M., de Souza R.J., Becker A.B., Mandhane P.J. Composition and variation of the human milk microbiota are influenced by maternal and early-life factors. Cell Host Microbe. 2019;25:324–335.e324. doi: 10.1016/j.chom.2019.01.011.
    1. Gonzalez E., Brereton N.J., Li C., Lopez Leyva L., Solomons N.W., Agellon L.B., Scott M.E., Koski K.G. Distinct Changes Occur in the Human Breast Milk Microbiome Between Early and Established Lactation in Breastfeeding Guatemalan Mothers. Front. Microbiol. 2021;12:194. doi: 10.3389/fmicb.2021.557180.
    1. Wan Y., Jiang J., Lu M., Tong W., Zhou R., Li J., Yuan J., Wang F., Li D. Human milk microbiota development during lactation and its relation to maternal geographic location and gestational hypertensive status. Gut Microbes. 2020;11:1438–1449. doi: 10.1080/19490976.2020.1760711.
    1. Murphy K., Curley D., O’Callaghan T.F., O’Shea C.-A., Dempsey E.M., O’Toole P.W., Ross R.P., Ryan C.A., Stanton C. The composition of human milk and infant faecal microbiota over the first three months of life: A pilot study. Sci. Rep. 2017;7:40597. doi: 10.1038/srep40597.
    1. Cabrera-Rubio R., Collado M.C., Laitinen K., Salminen S., Isolauri E., Mira A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 2012;96:544–551. doi: 10.3945/ajcn.112.037382.
    1. Rossen L.M., Simon A.E., Herrick K.A. Types of infant formulas consumed in the United States. Clin. Pediatr. 2016;55:278–285. doi: 10.1177/0009922815591881.
    1. Park Y.W., Haenlein G.F. Milk and Dairy Products in Human Nutrition: Production, Composition and Health. John Wiley & Sons; Chichester, UK: 2013. p. 728.
    1. Aldredge D.L., Geronimo M.R., Hua S., Nwosu C.C., Lebrilla C.B., Barile D. Annotation and structural elucidation of bovine milk oligosaccharides and determination of novel fucosylated structures. Glycobiology. 2013;23:664–676. doi: 10.1093/glycob/cwt007.
    1. Fong B., Ma K., McJarrow P. Quantification of bovine milk oligosaccharides using liquid chromatography–selected reaction monitoring–mass spectrometry. J. Agric. Food Chem. 2011;59:9788–9795. doi: 10.1021/jf202035m.
    1. Fiocchi A., Brozek J., Schünemann H., Bahna S.L., Von Berg A., Beyer K., Bozzola M., Bradsher J., Compalati E., Ebisawa M. World Allergy Organization (WAO) diagnosis and rationale for action against cow’s milk allergy (DRACMA) guidelines. World Allergy Organ. J. 2010;3:57–161. doi: 10.1097/WOX.0b013e3181defeb9.
    1. Muraro A., Werfel T., Hoffmann-Sommergruber K., Roberts G., Beyer K., Bindslev-Jensen C., Cardona V., Dubois A., Dutoit G., Eigenmann P. EAACI food allergy and anaphylaxis guidelines: Diagnosis and management of food allergy. Allergy. 2014;69:1008–1025. doi: 10.1111/all.12429.
    1. Koletzko S., Niggemann B., Arató A., Dias J., Heuschkel R., Husby S., Mearin M., Papadopoulou A., Ruemmele F., Staiano A. Diagnostic approach and management of cow’s-milk protein allergy in infants and children: ESPGHAN GI Committee practical guidelines. J. Pediatr. Gastroenterol. Nutr. 2012;55:221–229. doi: 10.1097/MPG.0b013e31825c9482.
    1. Andres A., Cleves M.A., Bellando J.B., Pivik R., Casey P.H., Badger T.M. Developmental status of 1-year-old infants fed breast milk, cow’s milk formula, or soy formula. Pediatrics. 2012;129:1134–1140. doi: 10.1542/peds.2011-3121.
    1. Borewicz K., Suarez-Diez M., Hechler C., Beijers R., de Weerth C., Arts I., Penders J., Thijs C., Nauta A., Lindner C. The effect of prebiotic fortified infant formulas on microbiota composition and dynamics in early life. Sci. Rep. 2019;9:2434. doi: 10.1038/s41598-018-38268-x.
    1. Scalabrin D.M., Mitmesser S.H., Welling G.W., Harris C.L., Marunycz J.D., Walker D.C., Bos N.A., Tölkkö S., Salminen S., Vanderhoof J.A. New prebiotic blend of polydextrose and galacto-oligosaccharides has a bifidogenic effect in young infants. J. Pediatr. Gastroenterol. Nutr. 2012;54:343–352. doi: 10.1097/MPG.0b013e318237ed95.
    1. Ashley C., Johnston W.H., Harris C.L., Stolz S.I., Wampler J.L., Berseth C.L. Growth and tolerance of infants fed formula supplemented with polydextrose (PDX) and/or galactooligosaccharides (GOS): Double-blind, randomized, controlled trial. Nutr. J. 2012;11:38. doi: 10.1186/1475-2891-11-38.
    1. Williams T., Choe Y., Price P., Katz G., Suarez F., Paule C., Mackey A. Tolerance of formulas containing prebiotics in healthy, term infants. J. Pediatr. Gastroenterol. Nutr. 2014;59:653–658. doi: 10.1097/MPG.0000000000000513.
    1. Piemontese P., Giannì M.L., Braegger C.P., Chirico G., Grüber C., Riedler J., Arslanoglu S., van Stuijvenberg M., Boehm G., Jelinek J. Tolerance and safety evaluation in a large cohort of healthy infants fed an innovative prebiotic formula: A randomized controlled trial. PLoS ONE. 2011;6:e28010.
    1. Puccio G., Alliet P., Cajozzo C., Janssens E., Corsello G., Sprenger N., Wernimont S., Egli D., Gosoniu L., Steenhout P. Effects of infant formula with human milk oligosaccharides on growth and morbidity: A randomized multicenter trial. J. Pediatr. Gastroenterol. Nutr. 2017;64:624. doi: 10.1097/MPG.0000000000001520.
    1. Steenhout P., Sperisen P., Martin F.P., Sprenger N., Wernimont S., Pecquet S., Berger B. Term Infant Formula Supplemented with Human Milk Oligosaccharides (2′ Fucosyllactose and Lacto-N-neotetraose) Shifts Stool Microbiota and Metabolic Signatures Closer to that of Breastfed Infants. FASEB J. 2016;30:275.7.
    1. Holscher H.D., Faust K.L., Czerkies L.A., Litov R., Ziegler E.E., Lessin H., Hatch T., Sun S., Tappenden K.A. Effects of prebiotic-containing infant formula on gastrointestinal tolerance and fecal microbiota in a randomized controlled trial. J. Parenter. Enter. Nutr. 2012;36:95S–105S. doi: 10.1177/0148607111430087.
    1. Veereman-Wauters G., Staelens S., Van de Broek H., Plaskie K., Wesling F., Roger L., McCartney A., Assam P. Physiological and bifidogenic effects of prebiotic supplements in infant formulae. J. Pediatr. Gastroenterol. Nutr. 2011;52:763–771. doi: 10.1097/MPG.0b013e3182139f39.
    1. Castanet M., Costalos C., Haiden N., Hascoet J.-M., Berger B., Sprenger N., Grathwohl D., Brüssow H., De Groot N., Steenhout P. Early effect of supplemented infant formulae on intestinal biomarkers and microbiota: A randomized clinical trial. Nutrients. 2020;12:1481. doi: 10.3390/nu12051481.
    1. Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B., Morelli L., Canani R.B., Flint H.J., Salminen S. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014;11:506–514. doi: 10.1038/nrgastro.2014.66.
    1. Gil-Campos M., López M.Á., Rodriguez-Benítez M.V., Romero J., Roncero I., Linares M.D., Maldonado J., López-Huertas E., Berwind R., Ritzenthaler K.L. Lactobacillus fermentum CECT 5716 is safe and well tolerated in infants of 1–6 months of age: A randomized controlled trial. Pharmacol. Res. 2012;65:231–238. doi: 10.1016/j.phrs.2011.11.016.
    1. Scalabrin D., Harris C., Johnston W., Berseth C. Long-term safety assessment in children who received hydrolyzed protein formulas with Lactobacillus rhamnosus GG: A 5-year follow-up. Eur. J. Pediatr. 2017;176:217–224. doi: 10.1007/s00431-016-2825-4.
    1. Maldonado-Lobón J., Gil-Campos M., Maldonado J., López-Huertas E., Flores-Rojas K., Valero A., Rodríguez-Benítez M., Bañuelos O., Lara-Villoslada F., Fonollá J. Long-term safety of early consumption of Lactobacillus fermentum CECT5716: A 3-year follow-up of a randomized controlled trial. Pharmacol. Res. 2015;95:12–19. doi: 10.1016/j.phrs.2015.01.006.
    1. Rautava S., Kalliomäki M., Isolauri E. Probiotics during pregnancy and breast-feeding might confer immunomodulatory protection against atopic disease in the infant. J. Allergy Clin. Immunol. 2002;109:119–121. doi: 10.1067/mai.2002.120273.
    1. Maldonado J., Cañabate F., Sempere L., Vela F., Sánchez A.R., Narbona E., López-Huertas E., Geerlings A., Valero A.D., Olivares M. Human milk probiotic Lactobacillus fermentum CECT5716 reduces the incidence of gastrointestinal and upper respiratory tract infections in infants. J. Pediatr. Gastroenterol. Nutr. 2012;54:55–61. doi: 10.1097/MPG.0b013e3182333f18.
    1. Chi C., Xue Y., Liu R., Wang Y., Lv N., Zeng H., Buys N., Zhu B., Sun J., Yin C. Effects of a formula with a probiotic Bifidobacterium lactis supplement on the gut microbiota of low birth weight infants. Eur. J. Nutr. 2019;59:1493–1503. doi: 10.1007/s00394-019-02006-4.
    1. Salminen S., Stahl B., Vinderola G., Szajewska H. Infant formula supplemented with biotics: Current knowledge and future perspectives. Nutrients. 2020;12:1952. doi: 10.3390/nu12071952.
    1. Radke M., Picaud J.-C., Loui A., Cambonie G., Faas D., Lafeber H.N., de Groot N., Pecquet S.S., Steenhout P.G., Hascoet J.-M. Starter formula enriched in prebiotics and probiotics ensures normal growth of infants and promotes gut health: A randomized clinical trial. Pediatr. Res. 2017;81:622–631. doi: 10.1038/pr.2016.270.
    1. Azad M.B., Konya T., Maughan H., Guttman D.S., Field C.J., Chari R.S., Sears M.R., Becker A.B., Scott J.A., Kozyrskyj A.L. Gut microbiota of healthy Canadian infants: Profiles by mode of delivery and infant diet at 4 months. CMAJ. 2013;185:385–394. doi: 10.1503/cmaj.121189.
    1. Praveen P., Jordan F., Priami C., Morine M.J. The role of breast-feeding in infant immune system: A systems perspective on the intestinal microbiome. Microbiome. 2015;3:41. doi: 10.1186/s40168-015-0104-7.
    1. Ma J., Li Z., Zhang W., Zhang C., Zhang Y., Mei H., Zhuo N., Wang H., Wang L., Wu D. Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: A study of 91 term infants. Sci. Rep. 2020;10:15792. doi: 10.1038/s41598-020-72635-x.
    1. Stewart C.J., Ajami N.J., O’Brien J.L., Hutchinson D.S., Smith D.P., Wong M.C., Ross M.C., Lloyd R.E., Doddapaneni H., Metcalf G.A. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018;562:583–588. doi: 10.1038/s41586-018-0617-x.
    1. Liu Z., Roy N.C., Guo Y., Jia H., Ryan L., Samuelsson L., Thomas A., Plowman J., Clerens S., Day L., et al. Human Breast Milk and Infant Formulas Differentially Modify the Intestinal Microbiota in Human Infants and Host Physiology in Rats. J. Nutr. 2015;146:191–199. doi: 10.3945/jn.115.223552.
    1. Lee S.A., Lim J.Y., Kim B.-S., Cho S.J., Kim N.Y., Kim O.B., Kim Y. Comparison of the gut microbiota profile in breast-fed and formula-fed Korean infants using pyrosequencing. Nutr. Res. Pract. 2015;9:242. doi: 10.4162/nrp.2015.9.3.242.
    1. Salli K., Anglenius H., Hirvonen J., Hibberd A.A., Ahonen I., Saarinen M.T., Tiihonen K., Maukonen J., Ouwehand A.C. The effect of 2′-fucosyllactose on simulated infant gut microbiome and metabolites; a pilot study in comparison to GOS and lactose. Sci. Rep. 2019;9:13232. doi: 10.1038/s41598-019-49497-z.
    1. Wang M., Li M., Wu S., Lebrilla C.B., Chapkin R.S., Ivanov I., Donovan S.M. Fecal microbiota composition of breast-fed infants is correlated with human milk oligosaccharides consumed. J. Pediatr. Gastroenterol. Nutr. 2015;60:825. doi: 10.1097/MPG.0000000000000752.
    1. Hascoët J.-M., Hubert C., Rochat F., Legagneur H., Gaga S., Emady-Azar S., Steenhout P.G. Effect of formula composition on the development of infant gut microbiota. J. Pediatr. Gastroenterol. Nutr. 2011;52:756–762. doi: 10.1097/MPG.0b013e3182105850.
    1. Hackam D.J. Necrotizing Enterocolitis: Pathogenesis, Diagnosis and Treatment. CRC Press; Boca Raton, FL, USA: 2021. p. 302.
    1. Clark R.H., Gordon P., Walker W.M., Laughon M., Smith P.B., Spitzer A.R. Characteristics of patients who die of necrotizing enterocolitis. J. Perinatol. 2012;32:199–204. doi: 10.1038/jp.2011.65.
    1. Claud E.C., Keegan K.P., Brulc J.M., Lu L., Bartels D., Glass E., Chang E.B., Meyer F., Antonopoulos D.A. Bacterial community structure and functional contributions to emergence of health or necrotizing enterocolitis in preterm infants. Microbiome. 2013;1:20. doi: 10.1186/2049-2618-1-20.
    1. Zhou Y., Shan G., Sodergren E., Weinstock G., Walker W.A., Gregory K.E. Longitudinal analysis of the premature infant intestinal microbiome prior to necrotizing enterocolitis: A case-control study. PLoS ONE. 2015;10:e0118632. doi: 10.1371/journal.pone.0118632.
    1. Mai V., Torrazza R.M., Ukhanova M., Wang X., Sun Y., Li N., Shuster J., Sharma R., Hudak M.L., Neu J. Distortions in development of intestinal microbiota associated with late onset sepsis in preterm infants. PLoS ONE. 2013;8:e52876.
    1. Arboleya S., Sánchez B., Milani C., Duranti S., Solís G., Fernández N., de los Reyes-Gavilán C.G., Ventura M., Margolles A., Gueimonde M. Intestinal Microbiota Development in Preterm Neonates and Effect of Perinatal Antibiotics. J. Pediatrics. 2015;166:538–544. doi: 10.1016/j.jpeds.2014.09.041.
    1. Ahlén K.M., Örtqvist A.K., Gong T., Wallas A., Ye W., Lundholm C., Almqvist C. Antibiotic treatment and length of hospital stay in relation to delivery mode and prematurity. PLoS ONE. 2016;11:e0164126. doi: 10.1371/journal.pone.0164126.
    1. Cong X., Xu W., Janton S., Henderson W.A., Matson A., McGrath J.M., Maas K., Graf J. Gut microbiome developmental patterns in early life of preterm infants: Impacts of feeding and gender. PLoS ONE. 2016;11:e0152751. doi: 10.1371/journal.pone.0152751.
    1. Arboleya S., Sánchez B., Solís G., Fernández N., Suárez M., Hernández-Barranco A.M., Milani C., Margolles A., los Reyes-Gavilán D., Clara G. Impact of prematurity and perinatal antibiotics on the developing intestinal microbiota: A functional inference study. Int. J. Mol. Sci. 2016;17:649. doi: 10.3390/ijms17050649.
    1. McMurtry V.E., Gupta R.W., Tran L., Blanchard E.E., Penn D., Taylor C.M., Ferris M.J. Bacterial diversity and Clostridia abundance decrease with increasing severity of necrotizing enterocolitis. Microbiome. 2015;3:11. doi: 10.1186/s40168-015-0075-8.
    1. Sisk P.M., Lambeth T.M., Rojas M.A., Lightbourne T., Barahona M., Anthony E., Auringer S.T. Necrotizing enterocolitis and growth in preterm infants fed predominantly maternal milk, pasteurized donor milk, or preterm formula: A retrospective study. Am. J. Perinatol. 2017;34:676–683.
    1. Pourcyrous M., Nolan V., Goodwin A., Davis S., Buddington R. Fecal short-chain fatty acids of very-low-birth-weight preterm infants fed expressed breast milk or formula. J. Pediatr. Gastroenterol. Nutr. 2014;59:725–731. doi: 10.1097/MPG.0000000000000515.
    1. Autran C.A., Kellman B.P., Kim J.H., Asztalos E., Blood A.B., Spence E.C.H., Patel A.L., Hou J., Lewis N.E., Bode L. Human milk oligosaccharide composition predicts risk of necrotising enterocolitis in preterm infants. Gut. 2018;67:1064–1070. doi: 10.1136/gutjnl-2016-312819.
    1. Robertson C., Savva G.M., Clapuci R., Jones J., Maimouni H., Brown E., Minocha A., Hall L.J., Clarke P. Incidence of necrotising enterocolitis before and after introducing routine prophylactic Lactobacillus and Bifidobacterium probiotics. Arch. Dis. Child.-Fetal Neonatal Ed. 2020;105:380–386. doi: 10.1136/archdischild-2019-317346.
    1. Demirel G., Erdeve O., Celik I.H., Dilmen U. Saccharomyces boulardii for prevention of necrotizing enterocolitis in preterm infants: A randomized, controlled study. Acta Paediatr. 2013;102:e560–e565. doi: 10.1111/apa.12416.
    1. Saengtawesin V., Tangpolkaiwalsak R., Kanjanapattankul W. Effect of oral probiotics supplementation in the prevention of necrotizing enterocolitis among very low birth weight preterm infants. J. Med. Assoc. Thai. 2014;97:S20–S25.
    1. Scheepers L., Penders J., Mbakwa C., Thijs C., Mommers M., Arts I. The intestinal microbiota composition and weight development in children: The KOALA Birth Cohort Study. Int. J. Obes. 2015;39:16–25. doi: 10.1038/ijo.2014.178.
    1. Stanislawski M.A., Dabelea D., Wagner B.D., Iszatt N., Dahl C., Sontag M.K., Knight R., Lozupone C.A., Eggesbø M. Gut microbiota in the first 2 years of life and the association with body mass index at age 12 in a Norwegian birth cohort. MBio. 2018;9:e01751-18. doi: 10.1128/mBio.01751-18.
    1. Penders J., Gerhold K., Stobberingh E.E., Thijs C., Zimmermann K., Lau S., Hamelmann E. Establishment of the intestinal microbiota and its role for atopic dermatitis in early childhood. J. Allergy Clin. Immunol. 2013;132:601–607.e608. doi: 10.1016/j.jaci.2013.05.043.
    1. West C.E., Rydén P., Lundin D., Engstrand L., Tulic M.K., Prescott S.L. Gut microbiome and innate immune response patterns in I g E-associated eczema. Clin. Exp. Allergy. 2015;45:1419–1429. doi: 10.1111/cea.12566.
    1. Elbert N., Van Meel E., Den Dekker H., de Jong N., Nijsten T., Jaddoe V., de Jongste J., Pasmans S., Duijts L. Duration and exclusiveness of breastfeeding and risk of childhood atopic diseases. Allergy. 2017;72:1936–1943. doi: 10.1111/all.13195.
    1. Arslanoglu S., Moro G., Boehm G., Wienz F., Stahl B., Bertino E. Early Neutral Prebiotic Oligosaccharide Supplentation reduces the incidence of some allergic manifestations in the first 5 years of life. J. Biol. Regul. Homeost. Agents. 2012;26:49–59.
    1. Rautava S., Kainonen E., Salminen S., Isolauri E. Maternal probiotic supplementation during pregnancy and breast-feeding reduces the risk of eczema in the infant. J. Allergy Clin. Immunol. 2012;130:1355–1360. doi: 10.1016/j.jaci.2012.09.003.
    1. Wickens K., Black P., Stanley T., Mitchell E., Barthow C., Fitzharris P., Purdie G., Crane J. A protective effect of L actobacillus rhamnosus HN 001 against eczema in the first 2 years of life persists to age 4 years. Clin. Exp. Allergy. 2012;42:1071–1079. doi: 10.1111/j.1365-2222.2012.03975.x.
    1. Zamrik S., Giachero F., Heldmann M., Hensel K.O., Wirth S., Jenke A.C. Impact of an in-house pediatric surgery unit and human milk centered enteral nutrition on necrotizing enterocolitis. BioMed Res. Int. 2018;2018:5042707. doi: 10.1155/2018/5042707.
    1. Cristofalo E.A., Schanler R.J., Blanco C.L., Sullivan S., Trawoeger R., Kiechl-Kohlendorfer U., Dudell G., Rechtman D.J., Lee M.L., Lucas A. Randomized trial of exclusive human milk versus preterm formula diets in extremely premature infants. J. Pediatrics. 2013;163:1592–1595.e1591. doi: 10.1016/j.jpeds.2013.07.011.
    1. Herrmann K., Carroll K. An exclusively human milk diet reduces necrotizing enterocolitis. Breastfeed. Med. 2014;9:184–190. doi: 10.1089/bfm.2013.0121.
    1. Kimak K.S., de Castro Antunes M.M., Braga T.D., Brandt K.G., de Carvalho Lima M. Influence of enteral nutrition on occurrences of necrotizing enterocolitis in very-low-birth-weight infants. J. Pediatr. Gastroenterol. Nutr. 2015;61:445–450. doi: 10.1097/MPG.0000000000000835.
    1. Gopalakrishna K.P., Macadangdang B.R., Rogers M.B., Tometich J.T., Firek B.A., Baker R., Ji J., Burr A.H., Ma C., Good M. Maternal IgA protects against the development of necrotizing enterocolitis in preterm infants. Nat. Med. 2019;25:1110–1115. doi: 10.1038/s41591-019-0480-9.
    1. Good M., Sodhi C.P., Yamaguchi Y., Jia H., Lu P., Fulton W.B., Martin L.Y., Prindle T., Nino D.F., Zhou Q. The human milk oligosaccharide 2′-fucosyllactose attenuates the severity of experimental necrotising enterocolitis by enhancing mesenteric perfusion in the neonatal intestine. Br. J. Nutr. 2016;116:1175–1187. doi: 10.1017/S0007114516002944.
    1. Jantscher-Krenn E., Zherebtsov M., Nissan C., Goth K., Guner Y.S., Naidu N., Choudhury B., Grishin A.V., Ford H.R., Bode L. The human milk oligosaccharide disialyllacto-N-tetraose prevents necrotising enterocolitis in neonatal rats. Gut. 2012;61:1417–1425. doi: 10.1136/gutjnl-2011-301404.
    1. Braga T.D., da Silva G.A.P., de Lira P.I.C., de Carvalho Lima M. Efficacy of Bifidobacterium breve and Lactobacillus casei oral supplementation on necrotizing enterocolitis in very-low-birth-weight preterm infants: A double-blind, randomized, controlled trial. Am. J. Clin. Nutr. 2011;93:81–86. doi: 10.3945/ajcn.2010.29799.
    1. Chowdhury T., Ali M.M., Hossain M.M., Singh J., Yousuf A., Yasmin F., Chowdhury F.R. Efficacy of probiotics versus placebo in the prevention of necrotizing enterocolitis in preterm very low birth weight infants: A double-blind randomized controlled trial. J. Coll. Physicians Surg. Pak. 2016;26:770–774.
    1. Dang S., Shook L., Garlitz K., Hanna M., Desai N. Nutritional outcomes with implementation of probiotics in preterm infants. J. Perinatol. 2015;35:447–450. doi: 10.1038/jp.2014.234.
    1. van den Akker C.H., van Goudoever J.B., Shamir R., Domellöf M., Embleton N.D., Hojsak I., Lapillonne A., Mihatsch W.A., Canani R.B., Bronsky J. Probiotics and preterm infants: A position paper by the European Society for Paediatric Gastroenterology Hepatology and Nutrition Committee on nutrition and the European Society for Paediatric Gastroenterology Hepatology and Nutrition Working Group for probiotics and prebiotics. J. Pediatr. Gastroenterol. Nutr. 2020;70:664–680.
    1. World Health Organization . Report of the Commission on Ending Childhood Obesity. World Health Organization; Geneva, Switzerland: 2016. p. 50.
    1. Korpela K., Zijlmans M., Kuitunen M., Kukkonen K., Savilahti E., Salonen A., De Weerth C., De Vos W. Childhood BMI in relation to microbiota in infancy and lifetime antibiotic use. Microbiome. 2017;5:26. doi: 10.1186/s40168-017-0245-y.
    1. Luoto R., Kalliomäki M., Laitinen K., Delzenne N.M., Cani P.D., Salminen S., Isolauri E. Initial dietary and microbiological environments deviate in normal-weight compared to overweight children at 10 years of age. J. Pediatr. Gastroenterol. Nutr. 2011;52:90–95. doi: 10.1097/MPG.0b013e3181f3457f.
    1. Chen L.-W., Xu J., Soh S.E., Aris I.M., Tint M.-T., Gluckman P.D., Tan K.H., Shek L.P.-C., Chong Y.-S., Yap F. Implication of gut microbiota in the association between infant antibiotic exposure and childhood obesity and adiposity accumulation. Int. J. Obes. 2020;44:1508–1520. doi: 10.1038/s41366-020-0572-0.
    1. Mueller N.T., Whyatt R., Hoepner L., Oberfield S., Dominguez-Bello M.G., Widen E., Hassoun A., Perera F., Rundle A. Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity. Int. J. Obes. 2015;39:665–670. doi: 10.1038/ijo.2014.180.
    1. Blustein J., Attina T., Liu M., Ryan A.M., Cox L.M., Blaser M.J., Trasande L. Association of caesarean delivery with child adiposity from age 6 weeks to 15 years. Int. J. Obes. 2013;37:900–906. doi: 10.1038/ijo.2013.49.
    1. Trasande L., Blustein J., Liu M., Corwin E., Cox L., Blaser M. Infant antibiotic exposures and early-life body mass. Int. J. Obes. 2013;37:16–23. doi: 10.1038/ijo.2012.132.
    1. Li D.-K., Chen H., Ferber J., Odouli R. Infection and antibiotic use in infancy and risk of childhood obesity: A longitudinal birth cohort study. Lancet Diabetes Endocrinol. 2017;5:18–25. doi: 10.1016/S2213-8587(16)30281-9.
    1. Wang L., Collins C., Ratliff M., Xie B., Wang Y. Breastfeeding reduces childhood obesity risks. Child. Obes. 2017;13:197–204. doi: 10.1089/chi.2016.0210.
    1. Scott J.A., Ng S.Y., Cobiac L. The relationship between breastfeeding and weight status in a national sample of Australian children and adolescents. BMC Public Health. 2012;12:107. doi: 10.1186/1471-2458-12-107.
    1. Lee J.W., Lee M., Lee J., Kim Y.J., Ha E., Kim H.S. The protective effect of exclusive breastfeeding on overweight/obesity in children with high birth weight. J. Korean Med. Sci. 2019;34:e85. doi: 10.3346/jkms.2019.34.e85.
    1. McCrory C., Layte R. Breastfeeding and risk of overweight and obesity at nine-years of age. Soc. Sci. Med. 2012;75:323–330. doi: 10.1016/j.socscimed.2012.02.048.
    1. Zhao Y.-L., Ma R.-M., Huang Y.-K., Liang K., Ding Z.-B. Effect of breastfeeding on childhood overweight in the offspring of mothers with gestational diabetes mellitus. Zhongguo Dang Dai Er Ke Za Zhi Chin. J. Contemp. Pediatrics. 2013;15:56–61.
    1. Zheng J.-S., Liu H., Li J., Chen Y., Wei C., Shen G., Zhu S., Chen H., Zhao Y.-M., Huang T. Exclusive breastfeeding is inversely associated with risk of childhood overweight in a large Chinese cohort. J. Nutr. 2014;144:1454–1459. doi: 10.3945/jn.114.193664.
    1. Novaes J.F., Lamounier J.A., Colosimo E.A., Franceschini S.C., Priore S.E. Breastfeeding and obesity in Brazilian children. Eur. J. Public Health. 2012;22:383–389. doi: 10.1093/eurpub/ckr067.
    1. Martin R.M., Patel R., Kramer M.S., Guthrie L., Vilchuck K., Bogdanovich N., Sergeichick N., Gusina N., Foo Y., Palmer T., et al. Effects of promoting longer-term and exclusive breastfeeding on adiposity and insulin-like growth factor-I at age 11.5 years: A randomized trial. JAMA. 2013;309:1005–1013. doi: 10.1001/jama.2013.167.
    1. Weber M., Grote V., Closa-Monasterolo R., Escribano J., Langhendries J.-P., Dain E., Giovannini M., Verduci E., Gruszfeld D., Socha P. Lower protein content in infant formula reduces BMI and obesity risk at school age: Follow-up of a randomized trial. Am. J. Clin. Nutr. 2014;99:1041–1051. doi: 10.3945/ajcn.113.064071.
    1. Escribano J., Luque V., Ferre N., Mendez-Riera G., Koletzko B., Grote V., Demmelmair H., Bluck L., Wright A., Closa-Monasterolo R. Effect of protein intake and weight gain velocity on body fat mass at 6 months of age: The EU Childhood Obesity Programme. Int. J. Obes. 2012;36:548–553. doi: 10.1038/ijo.2011.276.
    1. Mennella J.A., Inamdar L., Pressman N., Schall J.I., Papas M.A., Schoeller D., Stallings V.A., Trabulsi J.C. Type of infant formula increases early weight gain and impacts energy balance: A randomized controlled trial. Am. J. Clin. Nutr. 2018;108:1015–1025. doi: 10.1093/ajcn/nqy188.
    1. Salgin B., Norris S.A., Prentice P., Pettifor J.M., Richter L.M., Ong K.K., Dunger D.B. Even transient rapid infancy weight gain is associated with higher BMI in young adults and earlier menarche. Int. J. Obes. 2015;39:939–944. doi: 10.1038/ijo.2015.25.
    1. Vaillant A.A.J., Modi P., Jan A. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2020. Atopy.
    1. Abrahamsson T.R., Jakobsson H.E., Andersson A.F., Björkstén B., Engstrand L., Jenmalm M.C. Low diversity of the gut microbiota in infants with atopic eczema. J. Allergy Clin. Immunol. 2012;129:434–440.e432. doi: 10.1016/j.jaci.2011.10.025.
    1. Bisgaard H., Li N., Bonnelykke K., Chawes B.L.K., Skov T., Paludan-Müller G., Stokholm J., Smith B., Krogfelt K.A. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J. Allergy Clin. Immunol. 2011;128:646–652.e645. doi: 10.1016/j.jaci.2011.04.060.
    1. Abrahamsson T., Jakobsson H., Andersson A.F., Björkstén B., Engstrand L., Jenmalm M. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin. Exp. Allergy. 2014;44:842–850. doi: 10.1111/cea.12253.
    1. Ta L.D.H., Chan J.C.Y., Yap G.C., Purbojati R.W., Drautz-Moses D.I., Koh Y.M., Tay C.J.X., Huang C.-H., Kioh D.Y.Q., Woon J.Y. A compromised developmental trajectory of the infant gut microbiome and metabolome in atopic eczema. Gut Microbes. 2020;12:1801964. doi: 10.1080/19490976.2020.1801964.
    1. Arrieta M.-C., Stiemsma L.T., Dimitriu P.A., Thorson L., Russell S., Yurist-Doutsch S., Kuzeljevic B., Gold M.J., Britton H.M., Lefebvre D.L. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci. Transl. Med. 2015;7:307ra152. doi: 10.1126/scitranslmed.aab2271.
    1. Klopp A., Vehling L., Becker A.B., Subbarao P., Mandhane P.J., Turvey S.E., Lefebvre D.L., Sears M.R., Daley D., Silverman F. Modes of infant feeding and the risk of childhood asthma: A prospective birth cohort study. J. Pediatrics. 2017;190:192–199.e192. doi: 10.1016/j.jpeds.2017.07.012.
    1. Chu S., Chen Q., Chen Y., Bao Y., Wu M., Zhang J. Cesarean section without medical indication and risk of childhood asthma, and attenuation by breastfeeding. PLoS ONE. 2017;12:e0184920. doi: 10.1371/journal.pone.0184920.
    1. Greer F.R., Sicherer S.H., Burks A.W. The effects of early nutritional interventions on the development of atopic disease in infants and children: The role of maternal dietary restriction, breastfeeding, hydrolyzed formulas, and timing of introduction of allergenic complementary foods. Pediatrics. 2019;143:e20190281. doi: 10.1542/peds.2019-0281.
    1. von Berg A., Filipiak-Pittroff B., Krämer U., Hoffmann B., Link E., Beckmann C., Hoffmann U., Reinhardt D., Grübl A., Heinrich J. Allergies in high-risk schoolchildren after early intervention with cow’s milk protein hydrolysates: 10-year results from the German Infant Nutritional Intervention (GINI) study. J. Allergy Clin. Immunol. 2013;131:1565–1573.e1565. doi: 10.1016/j.jaci.2013.01.006.
    1. Lowe A.J., Hosking C.S., Bennett C.M., Allen K.J., Axelrad C., Carlin J.B., Abramson M.J., Dharmage S.C., Hill D.J. Effect of a partially hydrolyzed whey infant formula at weaning on risk of allergic disease in high-risk children: A randomized controlled trial. J. Allergy Clin. Immunol. 2011;128:360–365.e364. doi: 10.1016/j.jaci.2010.05.006.
    1. Von Berg A., Filipiak-Pittroff B., Schulz H., Hoffmann U., Link E., Sußmann M., Schnappinger M., Brüske I., Standl M., Krämer U. Allergic manifestation 15 years after early intervention with hydrolyzed formulas–the GINI Study. Allergy. 2016;71:210–219. doi: 10.1111/all.12790.
    1. Wopereis H., Sim K., Shaw A., Warner J.O., Knol J., Kroll J.S. Intestinal microbiota in infants at high risk for allergy: Effects of prebiotics and role in eczema development. J. Allergy Clin. Immunol. 2018;141:1334–1342.e1335. doi: 10.1016/j.jaci.2017.05.054.
    1. Boyle R., Tang M.K., Chiang W., Chua M., Ismail I., Nauta A., Hourihane J.O.B., Smith P., Gold M., Ziegler J. Prebiotic-supplemented partially hydrolysed cow’s milk formula for the prevention of eczema in high-risk infants: A randomized controlled trial. Allergy. 2016;71:701–710. doi: 10.1111/all.12848.
    1. Allen S.J., Jordan S., Storey M., Thornton C.A., Gravenor M.B., Garaiova I., Plummer S.F., Wang D., Morgan G. Probiotics in the prevention of eczema: A randomised controlled trial. Arch. Dis. Child. 2014;99:1014–1019. doi: 10.1136/archdischild-2013-305799.
    1. Loo E.X., Llanora G.V., Lu Q., Aw M.M., Lee B.W., Shek L.P. Supplementation with probiotics in the first 6 months of life did not protect against eczema and allergy in at-risk Asian infants: A 5-year follow-up. Int. Arch. Allergy Immunol. 2014;163:25–28. doi: 10.1159/000356338.
    1. Cabana M.D., McKean M., Caughey A.B., Fong L., Lynch S., Wong A., Leong R., Boushey H.A., Hilton J.F. Early probiotic supplementation for eczema and asthma prevention: A randomized controlled trial. Pediatrics. 2017;140:e20163000. doi: 10.1542/peds.2016-3000.

Source: PubMed

3
Abonner