Long-term outcomes after critical illness: recent insights

Anne-Françoise Rousseau, Hallie C Prescott, Stephen J Brett, Björn Weiss, Elie Azoulay, Jacques Creteur, Nicola Latronico, Catherine L Hough, Steffen Weber-Carstens, Jean-Louis Vincent, Jean-Charles Preiser, Anne-Françoise Rousseau, Hallie C Prescott, Stephen J Brett, Björn Weiss, Elie Azoulay, Jacques Creteur, Nicola Latronico, Catherine L Hough, Steffen Weber-Carstens, Jean-Louis Vincent, Jean-Charles Preiser

Abstract

Intensive care survivors often experience post-intensive care sequelae, which are frequently gathered together under the term "post-intensive care syndrome" (PICS). The consequences of PICS on quality of life, health-related costs and hospital readmissions are real public health problems. In the present Viewpoint, we summarize current knowledge and gaps in our understanding of PICS and approaches to management.

Keywords: Core set; Critically ill; Follow-up; ICU-acquired weakness; Intensive care unit; Muscle weakness; Post-intensive care syndrome; Post-traumatic stress disorder; Quality of care.

Conflict of interest statement

AFR has no conflicts of interests to declare. HCP is an Associate Editor of Critical Care and a panel member of the Surviving Sepsis Campaign guidelines. She has no other conflicts of interests to declare. SJB is an Associate Editor of Critical Care. He has no other conflicts of interests to declare. BW has no conflicts of interests to declare. EA is an Associate Editor of Critical Care. He has no other conflicts of interests to declare. JC has no conflicts of interests to declare. NL has no conflicts of interests to declare. CLH has no conflicts of interests to declare. SWC has no conflicts of interests to declare. JLV is Editor-in-Chief of Critical Care. He has no other conflicts of interests to declare. JCP is an Associate Editor of Critical Care. He has no other conflicts of interests to declare.

Figures

Fig. 1
Fig. 1
A proposed expanded definition of the post-intensive care syndrome (PICS), including contributing factors (on the left side of the figure) and consequences (on the right side of the figure), current (gray circles) and potential new (white circles) components. ICU-AW; intensive care unit acquired weakness

References

    1. Krumholz HM. Post-hospital syndrome—an acquired, transient condition of generalized risk. N Engl J Med. 2013;368:100–102. doi: 10.1056/NEJMp1212324.
    1. Needham DM, Davidson J, Cohen H, Hopkins RO, Weinert C, Wunsch H, et al. Improving long-term outcomes after discharge from intensive care unit: report from a stakeholders' conference. Crit Care Med. 2012;40:502–509. doi: 10.1097/CCM.0b013e318232da75.
    1. Cuthbertson BH, Roughton S, Jenkinson D, Maclennan G, Vale L. Quality of life in the five years after intensive care: a cohort study. Crit Care. 2010;14:R6. doi: 10.1186/cc8848.
    1. Hirshberg EL, Wilson EL, Stanfield V, Kuttler KG, Majercik S, Beesley SJ, et al. Impact of critical illness on resource utilization: A comparison of use in the year before and after ICU admission. Crit Care Med. 2019;47:1497–1504. doi: 10.1097/CCM.0000000000003970.
    1. Langhans C, Weber-Carstens S, Schmidt F, Hamati J, Kny M, Zhu X, et al. Inflammation-induced acute phase response in skeletal muscle and critical illness myopathy. PLoS ONE. 2014;9:e92048. doi: 10.1371/journal.pone.0092048.
    1. Latronico N, Bolton CF. Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis. Lancet Neurol. 2011;10:931–941. doi: 10.1016/S1474-4422(11)70178-8.
    1. Latronico N, Shehu I, Seghelini E. Neuromuscular sequelae of critical illness. Curr Opin Crit Care. 2005;11:381–390. doi: 10.1097/01.ccx.0000168530.30702.3e.
    1. Dos Santos C, Hussain SN, Mathur S, Picard M, Herridge M, Correa J, et al. Mechanisms of chronic muscle wasting and dysfunction after an intensive care unit stay. A pilot study. Am J Respir Crit Care Med. 2016;194:821–830. doi: 10.1164/rccm.201512-2344OC.
    1. Nikayin S, Rabiee A, Hashem MD, Huang M, Bienvenu OJ, Turnbull AE, et al. Anxiety symptoms in survivors of critical illness: a systematic review and meta-analysis. Gen Hosp Psychiatry. 2016;43:23–29. doi: 10.1016/j.genhosppsych.2016.08.005.
    1. Rabiee A, Nikayin S, Hashem MD, Huang M, Dinglas VD, Bienvenu OJ, et al. Depressive symptoms after critical illness: a systematic review and meta-analysis. Crit Care Med. 2016;44:1744–1753. doi: 10.1097/CCM.0000000000001811.
    1. Parker AM, Sricharoenchai T, Raparla S, Schneck KW, Bienvenu OJ, Needham DM. Posttraumatic stress disorder in critical illness survivors: a metaanalysis. Crit Care Med. 2015;43:1121–1129. doi: 10.1097/CCM.0000000000000882.
    1. Patel MB, Jackson JC, Morandi A, Girard TD, Hughes CG, Thompson JL, et al. Incidence and risk factors for intensive care unit-related post-traumatic stress disorder in veterans and civilians. Am J Respir Crit Care Med. 2016;193:1373–1381. doi: 10.1164/rccm.201506-1158OC.
    1. Jackson JC, Hart RP, Gordon SM, Hopkins RO, Girard TD, Ely EW. Post-traumatic stress disorder and post-traumatic stress symptoms following critical illness in medical intensive care unit patients: assessing the magnitude of the problem. Crit Care. 2007;11:R27. doi: 10.1186/cc5707.
    1. Honarmand K, Lalli RS, Priestap F, Chen JL, McIntyre CW, Owen AM, et al. Natural history of cognitive impairment in critical illness survivors. A systematic review. Am J Respir Crit Care Med. 2020;202:193–201. doi: 10.1164/rccm.201904-0816CI.
    1. Sasannejad C, Ely EW, Lahiri S. Long-term cognitive impairment after acute respiratory distress syndrome: a review of clinical impact and pathophysiological mechanisms. Crit Care. 2019;23:352. doi: 10.1186/s13054-019-2626-z.
    1. Rousseau AF, Kerschan-Schindl K, Scherkl M, Amrein K. Bone metabolism and fracture risk during and after critical illness. Curr Opin Crit Care. 2020;26:379–385.
    1. Wu CP, Xu YJ, Wang TG, Ku SC, Chan DC, Lee JJ, et al. Effects of a swallowing and oral care intervention for patients following endotracheal extubation: a pre- and post-intervention study. Crit Care. 2019;23:350. doi: 10.1186/s13054-019-2623-2.
    1. Ali Abdelhamid Y, Kar P, Finnis ME, Phillips LK, Plummer MP, Shaw JE, et al. Stress hyperglycaemia in critically ill patients and the subsequent risk of diabetes: a systematic review and meta-analysis. Crit Care. 2016;20:301. doi: 10.1186/s13054-016-1471-6.
    1. van den Berghe G. On the neuroendocrinopathy of critical illness. Perspectives for feeding and novel treatments. Am J Respir Crit Care Med. 2016;194:1337–48.
    1. Altman MT, Knauert MP, Pisani MA. Sleep disturbance after hospitalization and critical illness: a systematic review. Ann Am Thorac Soc. 2017;14:1457–1468. doi: 10.1513/AnnalsATS.201702-148SR.
    1. Piva S, Fagoni N, Latronico N. Intensive care unit-acquired weakness: unanswered questions and targets for future research. F1000Res. 2019;8:508. doi: 10.12688/f1000research.17376.1.
    1. Stamenkovic DM, Laycock H, Karanikolas M, Ladjevic NG, Neskovic V, Bantel C. Chronic pain and chronic opioid use after intensive care discharge—is it time to change practice? Front Pharmacol. 2019;10:23. doi: 10.3389/fphar.2019.00023.
    1. Kemp HI, Laycock H, Costello A, Brett SJ. Chronic pain in critical care survivors: a narrative review. Br J Anaesth. 2019;123:e372–e384. doi: 10.1016/j.bja.2019.03.025.
    1. Heyland DK, Stelfox HT, Garland A, Cook D, Dodek P, Kutsogiannis J, et al. Predicting performance status 1 year after critical illness in patients 80 years or older: DEVELOPMENT of a multivariable clinical prediction model. Crit Care Med. 2016;44:1718–1726. doi: 10.1097/CCM.0000000000001762.
    1. Needham DM, Sepulveda KA, Dinglas VD, Chessare CM, Friedman LA, Bingham CO, III, et al. Core outcome measures for clinical research in acute respiratory failure survivors. An international modified Delphi consensus study. Am J Respir Crit Care Med. 2017;196:1122–1130. doi: 10.1164/rccm.201702-0372OC.
    1. Williamson PR, Altman DG, Blazeby JM, Clarke M, Devane D, Gargon E, et al. Developing core outcome sets for clinical trials: issues to consider. Trials. 2012;13:132. doi: 10.1186/1745-6215-13-132.
    1. Olsen HT, Nedergaard HK, Strom T, Oxlund J, Wian KA, Ytrebo LM, et al. Nonsedation or light sedation in critically ill, mechanically ventilated patients. N Engl J Med. 2020;382:1103–1111. doi: 10.1056/NEJMoa1906759.
    1. Kress JP, Gehlbach B, Lacy M, Pliskin N, Pohlman AS, Hall JB. The long-term psychological effects of daily sedative interruption on critically ill patients. Am J Respir Crit Care Med. 2003;168:1457–1461. doi: 10.1164/rccm.200303-455OC.
    1. Vincent JL, Shehabi Y, Walsh TS, Pandharipande PP, Ball JA, Spronk P, et al. Comfort and patient-centred care without excessive sedation: the eCASH concept. Intensive Care Med. 2016;42:962–971. doi: 10.1007/s00134-016-4297-4.
    1. Azoulay E, Vincent JL, Angus DC, Arabi YM, Brochard L, Brett SJ, et al. Recovery after critical illness: putting the puzzle together-a consensus of 29. Crit Care. 2017;21:296. doi: 10.1186/s13054-017-1887-7.
    1. Preiser JC, Ichai C, Orban JC, Groeneveld AB. Metabolic response to the stress of critical illness. Br J Anaesth. 2014;113:945–954. doi: 10.1093/bja/aeu187.
    1. Rousseau AF, Foidart-Desalle M, Ledoux D, Remy C, Croisier JL, Damas P, et al. Effects of cholecalciferol supplementation and optimized calcium intakes on vitamin D status, muscle strength and bone health: a one-year pilot randomized controlled trial in adults with severe burns. Burns. 2015;41:317–325. doi: 10.1016/j.burns.2014.07.005.
    1. Heyland DK, Stapleton RD, Mourtzakis M, Hough CL, Morris P, Deutz NE, et al. Combining nutrition and exercise to optimize survival and recovery from critical illness: Conceptual and methodological issues. Clin Nutr. 2016;35:1196–1206. doi: 10.1016/j.clnu.2015.07.003.
    1. Arias-Fernandez P, Romero-Martin M, Gomez-Salgado J, Fernandez-Garcia D. Rehabilitation and early mobilization in the critical patient: systematic review. J Phys Ther Sci. 2018;30:1193–1201. doi: 10.1589/jpts.30.1193.
    1. Patel BK, Pohlman AS, Hall JB, Kress JP. Impact of early mobilization on glycemic control and ICU-acquired weakness in critically ill patients who are mechanically ventilated. Chest. 2014;146:583–589. doi: 10.1378/chest.13-2046.
    1. Wollersheim T, Grunow JJ, Carbon NM, Haas K, Malleike J, Ramme SF, et al. Muscle wasting and function after muscle activation and early protocol-based physiotherapy: an explorative trial. J Cachexia Sarcopenia Muscle. 2019;10:734–747. doi: 10.1002/jcsm.12428.
    1. Aas V, Torbla S, Andersen MH, Jensen J, Rustan AC. Electrical stimulation improves insulin responses in a human skeletal muscle cell model of hyperglycemia. Ann N Y Acad Sci. 2002;967:506–515. doi: 10.1111/j.1749-6632.2002.tb04309.x.
    1. Guo BS, Cheung KK, Yeung SS, Zhang BT, Yeung EW. Electrical stimulation influences satellite cell proliferation and apoptosis in unloading-induced muscle atrophy in mice. PLoS ONE. 2012;7:e30348. doi: 10.1371/journal.pone.0030348.
    1. Grunow JJ, Goll M, Carbon NM, Liebl ME, Weber-Carstens S, Wollersheim T. Differential contractile response of critically ill patients to neuromuscular electrical stimulation. Crit Care. 2019;23:308. doi: 10.1186/s13054-019-2540-4.
    1. Wollersheim T, Haas K, Wolf S, Mai K, Spies C, Steinhagen-Thiessen E, et al. Whole-body vibration to prevent intensive care unit-acquired weakness: safety, feasibility, and metabolic response. Crit Care. 2017;21:9. doi: 10.1186/s13054-016-1576-y.
    1. Nassar Junior AP, Besen BAMP, Robinson CC, Falavigna M, Teixeira C, Rosa RG. Flexible versus restrictive visiting policies in ICUs: A systematic review and meta-analysis. Crit Care Med. 2018;46:1175–1180. doi: 10.1097/CCM.0000000000003155.
    1. Taylor SP, Chou SH, Sierra MF, Shuman TP, McWilliams AD, Taylor BT, et al. Association between adherence to recommended care and outcomes for adult survivors of sepsis. Ann Am Thorac Soc. 2020;17:89–97. doi: 10.1513/AnnalsATS.201907-514OC.
    1. Rosa RG, Ferreira GE, Viola TW, Robinson CC, Kochhann R, Berto PP, et al. Effects of post-ICU follow-up on subject outcomes: A systematic review and meta-analysis. J Crit Care. 2019;52:115–125. doi: 10.1016/j.jcrc.2019.04.014.
    1. Cuthbertson BH, Rattray J, Campbell MK, Gager M, Roughton S, Smith A, et al. The PRaCTICaL study of nurse led, intensive care follow-up programmes for improving long term outcomes from critical illness: a pragmatic randomised controlled trial. BMJ. 2009;339:b3723. doi: 10.1136/bmj.b3723.
    1. Walsh TS, Salisbury LG, Merriweather JL, Boyd JA, Griffith DM, Huby G, et al. Increased hospital-based physical rehabilitation and information provision after intensive care unit discharge: The RECOVER Randomized Clinical Trial. JAMA Intern Med. 2015;175:901–910. doi: 10.1001/jamainternmed.2015.0822.
    1. McPeake JM, Henderson P, Darroch G, Iwashyna TJ, Mactavish P, Robinson C, et al. Social and economic problems of ICU survivors identified by a structured social welfare consultation. Crit Care. 2019;23:153. doi: 10.1186/s13054-019-2442-5.
    1. Govindan S, Iwashyna TJ, Watson SR, Hyzy RC, Miller MA. Issues of survivorship are rarely addressed during intensive care unit stays. Baseline results from a statewide quality improvement collaborative. Ann Am Thorac Soc. 2014;11:587–591. doi: 10.1513/AnnalsATS.201401-007BC.
    1. Zilahi G, O'Connor E. Information sharing between intensive care and primary care after an episode of critical illness; a mixed methods analysis. PLoS ONE. 2019;14:e0212438. doi: 10.1371/journal.pone.0212438.
    1. Cox CE, Hough CL, Carson SS, White DB, Kahn JM, Olsen MK, et al. Effects of a telephone- and web-based coping skills training program compared with an education program for survivors of critical illness and their family members. A randomized clinical trial. Am J Respir Crit Care Med. 2018;197:66–78. doi: 10.1164/rccm.201704-0720OC.
    1. Prescott HC, Langa KM, Iwashyna TJ. Readmission diagnoses after hospitalization for severe sepsis and other acute medical conditions. JAMA. 2015;313:1055–1057. doi: 10.1001/jama.2015.1410.

Source: PubMed

3
Abonner