Clinical Trials of Stem Cell Treatment for Spinal Cord Injury

Kazuyoshi Yamazaki, Masahito Kawabori, Toshitaka Seki, Kiyohiro Houkin, Kazuyoshi Yamazaki, Masahito Kawabori, Toshitaka Seki, Kiyohiro Houkin

Abstract

There are more than one million patients worldwide suffering paralysis caused by spinal cord injury (SCI). SCI causes severe socioeconomic problems not only to the patients and their caregivers but also to society; therefore, the development of innovative treatments is crucial. Many pharmacological therapies have been attempted in an effort to reduce SCI-related damage; however, no single therapy that could dramatically improve the serious long-term sequelae of SCI has emerged. Stem cell transplantation therapy, which can ameliorate damage or regenerate neurological networks, has been proposed as a promising candidate for SCI treatment, and many basic and clinical experiments using stem cells for SCI treatment have been launched, with promising results. However, the cell transplantation methods, including cell type, dose, transplantation route, and transplantation timing, vary widely between trials, and there is no consensus regarding the most effective treatment strategy. This study reviews the current knowledge on this issue, with a special focus on the clinical trials that have used stem cells for treating SCI, and highlights the problems that remain to be solved before the widespread clinical use of stem cells can be adopted.

Keywords: inflammation; neurogenesis; regenerative medicine; spinal cord injury; stem cell; transplantation.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Systemic medical problems after spinal cord injury (SCI). SCI can cause motor functional deficits of paralysis and increased spasticity. Sensory disturbance includes severe analgesia below the level of injury and allodynia. SCI can also affect sufferers mentally by causing depression and possible suicide. Circulatory, digestive, and urogenital impairments need to be treated, as well as skin problems.
Figure 2
Figure 2
Pathophysiology of spinal cord injury (SCI). Secondary injury can be divided into three phases, which are acute (within a few days), sub-acute (2 days to 6 months), and chronic (over 6 months). During the acute phase, both vascular and cell membrane damage takes place. Vascular damage can cause hemorrhage and blood spinal cord barrier (BSCB) disruption. The mass effect created by massive hemorrhage can additionally damage the surrounding viable tissues. The BSCB draws the rapid infiltration of inflammatory cells such as neutrophils, resulting in the release of various pro-inflammatory cytokines. Damaged and/or necrotic cells release ATP, potassium ions, and DNA into their microenvironment, which can activate microglia to release additional proinflammatory cytokines and induce the recruitment of more peripheral inflammatory cells. During the sub-acute phase, arterial vessel damage compromises the vascular supply, which can aggravate ischemic damage to the surviving neuronal cells; meanwhile, edema caused by the alteration of vascular membrane permeability leads to further neuronal and vascular damage. Inflammatory cytokines are released from resident and blood-derived cells, and glutamate is released from damaged neuronal cells. The failure of the astrocytic re-uptake of these damage-associated molecular-pattern molecules (DAMPs) can further compromise the neuronal network, resulting in a worsening of demyelination. Inflammatory cytokines can upregulate astrocytes into the active state of astrogliosis, causing them to migrate to the damaged area to isolate it from unaffected areas; this can be considered as a physiological rescue process. In the chronic phase of SCI, the loss of cell volume leads to the vacuo formation of cystic micro-cavitation which is also called as syringomyelia, and this coalesce and forms a barrier for cell migration and regeneration of axon regrowth. In reactive astrogliosis, astrocytes secrete inhibitory chondroitin sulfate proteoglycans, which are initially protective in blocking the DAMPs from spreading, but which eventually interfere with the regeneration and extension of the neuronal network. On the other hand, low-gear reorganization also commences in the chronic phase, including vascular remodeling, alterations in the extracellular matrix composition, regenerative cell migration, and re-organization of neural circuits.

References

    1. Jain N.B., Ayers G.D., Peterson E.N., Harris M.B., Morse L., O’Connor K.C., Garshick E. Traumatic spinal cord injury in the United States, 1993–2012. JAMA. 2015;313:2236–2243. doi: 10.1001/jama.2015.6250.
    1. Thompson C., Mutch J., Parent S., Mac-Thiong J.M. The changing demographics of traumatic spinal cord injury: An 11-year study of 831 patients. J. Spinal Cord Med. 2015;38:214–223. doi: 10.1179/2045772314Y.0000000233.
    1. Hagen E.M. Acute complications of spinal cord injuries. World J. Orthop. 2015;6:17–23. doi: 10.5312/wjo.v6.i1.17.
    1. DeVivo M.J. Causes and costs of spinal cord injury in the United States. Spinal Cord. 1997;35:809–813. doi: 10.1038/sj.sc.3100501.
    1. Fehlings M.G., Wilson J.R., O’Higgins M. Introduction: Spinal cord injury at the cutting edge of clinical translation: A focus issue collaboration between NACTN and AOSpine North America. J. Neurosurg. Spine. 2012;17:1–3. doi: 10.3171/2012.6.AOSPINE12632.
    1. Furlan J.C., Noonan V., Cadotte D.W., Fehlings M.G. Timing of decompressive surgery of spinal cord after traumatic spinal cord injury: An evidence-based examination of pre-clinical and clinical studies. J. Neurotrauma. 2011;28:1371–1399. doi: 10.1089/neu.2009.1147.
    1. Van den Berg M.E., Castellote J.M., Mahillo-Fernandez I., de Pedro-Cuesta J. Incidence of spinal cord injury worldwide: A systematic review. Neuroepidemiology. 2010;34:184–192. doi: 10.1159/000279335.
    1. Wyndaele M., Wyndaele J.J. Incidence, prevalence and epidemiology of spinal cord injury: What learns a worldwide literature survey? Spinal Cord. 2006;44:523–529. doi: 10.1038/sj.sc.3101893.
    1. Bracken M.B., Shepard M.J., Collins W.F., Holford T.R., Baskin D.S., Eisenberg H.M., Flamm E., Leo-Summers L., Maroon J.C., Marshall L.F., et al. Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Results of the second National Acute Spinal Cord Injury Study. J. Neurosurg. 1992;76:23–31. doi: 10.3171/jns.1992.76.1.0023.
    1. Bracken M.B., Shepard M.J., Holford T.R., Leo-Summers L., Aldrich E.F., Fazl M., Fehlings M.G., Herr D.L., Hitchon P.W., Marshall L.F., et al. Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury: 1-year follow up. Results of the third National Acute Spinal Cord Injury randomized controlled trial. J. Neurosurg. 1988;89:699–706. doi: 10.3171/jns.1998.89.5.0699.
    1. Pointillart V., Petitjean M.E., Wiart L., Vital J.M., Lassie P., Thicoipe M., Dabadie P. Pharmacological therapy of spinal cord injury during the acute phase. Spinal Cord. 2000;38:71–76. doi: 10.1038/sj.sc.3100962.
    1. Xiao Z., Tang F., Zhao Y., Han G., Yin N., Li X., Chen B., Han S., Jiang X., Yun C., et al. Significant Improvement of Acute Complete Spinal Cord Injury Patients Diagnosed by a Combined Criteria Implanted with NeuroRegen Scaffolds and Mesenchymal Stem Cells. Cell Transpl. 2018;27:907–915. doi: 10.1177/0963689718766279.
    1. Sykova E., Homola A., Mazanec R., Lachmann H., Konradova S.L., Kobylka P., Padr R., Neuwirth J., Komrska V., Vavra V., et al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transpl. 2006;15:675–687. doi: 10.3727/000000006783464381.
    1. Pal R., Venkataramana N.K., Bansal A., Balaraju S., Jan M., Chandra R., Dixit A., Rauthan A., Murgod U., Totey S. Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: A pilot clinical study. Cytotherapy. 2009;11:897–911. doi: 10.3109/14653240903253857.
    1. Karamouzian S., Nematollahi-Mahani S.N., Nakhaee N., Eskandary H. Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients. Clin. Neurol. Neurosurg. 2012;114:935–939. doi: 10.1016/j.clineuro.2012.02.003.
    1. Satti H.S., Waheed A., Ahmed P., Ahmed K., Akram Z., Aziz T., Satti T.M., Shahbaz N., Khan M.A., Malik S.A. Autologous mesenchymal stromal cell transplantation for spinal cord injury: A Phase I pilot study. Cytotherapy. 2016;18:518–522. doi: 10.1016/j.jcyt.2016.01.004.
    1. Hur J.W., Cho T.H., Park D.H., Lee J.B., Park J.Y., Chung Y.G. Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells for treating spinal cord injury: A human trial. J. Spinal Cord Med. 2016;39:655–664. doi: 10.1179/2045772315Y.0000000048.
    1. Yoon S.H., Shim Y.S., Park Y.H., Chung J.K., Nam J.H., Kim M.O., Park H.C., Park S.R., Min B.H., Kim E.Y., et al. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial. Stem Cells. 2007;25:2066–2073. doi: 10.1634/stemcells.2006-0807.
    1. Shin J.C., Kim K.N., Yoo J., Kim I.S., Yun S., Lee H., Jung K., Hwang K., Kim M., Lee I.S., et al. Clinical Trial of Human Fetal Brain-Derived Neural Stem/Progenitor Cell Transplantation in Patients with Traumatic Cervical Spinal Cord Injury. Neural Plast. 2015;2015:630932. doi: 10.1155/2015/630932.
    1. Anderson K.D., Guest J.D., Dietrich W.D., Bartlett Bunge M., Curiel R., Dididze M., Green B.A., Khan A., Pearse D.D., Saraf-Lavi E., et al. Safety of Autologous Human Schwann Cell Transplantation in Subacute Thoracic Spinal Cord Injury. J. Neurotrauma. 2017;34:2950–2963. doi: 10.1089/neu.2016.4895.
    1. Levi A.D., Okonkwo D.O., Park P., Jenkins A.L., 3rd, Kurpad S.N., Parr A.M., Ganju A., Aarabi B., Kim D., Casha S., et al. Emerging Safety of Intramedullary Transplantation of Human Neural Stem Cells in Chronic Cervical and Thoracic Spinal Cord Injury. Neurosurgery. 2018;82:562–575. doi: 10.1093/neuros/nyx250.
    1. Bhanot Y., Rao S., Ghosh D., Balaraju S., Radhika C.R., Satish Kumar K.V. Autologous mesenchymal stem cells in chronic spinal cord injury. Br. J. Neurosurg. 2011;25:516–522. doi: 10.3109/02688697.2010.550658.
    1. Geffner L.F., Santacruz P., Izurieta M., Flor L., Maldonado B., Auad A.H., Montenegro X., Gonzalez R., Silva F. Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: Comprehensive case studies. Cell Transpl. 2008;17:1277–1293. doi: 10.3727/096368908787648074.
    1. Moviglia G.A., Fernandez Vina R., Brizuela J.A., Saslavsky J., Vrsalovic F., Varela G., Bastos F., Farina P., Etchegaray G., Barbieri M., et al. Combined protocol of cell therapy for chronic spinal cord injury. Report on the electrical and functional recovery of two patients. Cytotherapy. 2006;8:202–209. doi: 10.1080/14653240600736048.
    1. Chernykh E.R., Stupak V.V., Muradov G.M., Sizikov M.Y., Shevela E.Y., Leplina O.Y., Tikhonova M.A., Kulagin A.D., Lisukov I.A., Ostanin A.A., et al. Application of autologous bone marrow stem cells in the therapy of spinal cord injury patients. Bull. Exp. Biol Med. 2007;143:543–547. doi: 10.1007/s10517-007-0175-y.
    1. Cristante A.F., Barros-Filho T.E., Tatsui N., Mendrone A., Caldas J.G., Camargo A., Alexandre A., Teixeira W.G., Oliveira R.P., Marcon R.M. Stem cells in the treatment of chronic spinal cord injury: Evaluation of somatosensitive evoked potentials in 39 patients. Spinal Cord. 2009;47:733–738. doi: 10.1038/sc.2009.24.
    1. Ra J.C., Shin I.S., Kim S.H., Kang S.K., Kang B.C., Lee H.Y., Kim Y.J., Jo J.Y., Yoon E.J., Choi H.J., et al. Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev. 2011;20:1297–1308. doi: 10.1089/scd.2010.0466.
    1. Kishk N.A., Gabr H., Hamdy S., Afifi L., Abokresha N., Mahmoud H., Wafaie A., Bilal D. Case control series of intrathecal autologous bone marrow mesenchymal stem cell therapy for chronic spinal cord injury. Neurorehabil. Neural. Repair. 2010;24:702–708. doi: 10.1177/1545968310369801.
    1. Frolov A.A., Bryukhovetskiy A.S. Effects of hematopoietic autologous stem cell transplantation to the chronically injured human spinal cord evaluated by motor and somatosensory evoked potentials methods. Cell Transpl. 2012;21:S49–S55. doi: 10.3727/096368912X633761.
    1. El-Kheir W.A., Gabr H., Awad M.R., Ghannam O., Barakat Y., Farghali H.A., El Maadawi Z.M., Ewes I., Sabaawy H.E. Autologous bone marrow-derived cell therapy combined with physical therapy induces functional improvement in chronic spinal cord injury patients. Cell Transpl. 2014;23:729–745. doi: 10.3727/096368913X664540.
    1. Vaquero J., Zurita M., Rico M.A., Bonilla C., Aguayo C., Fernandez C., Tapiador N., Sevilla M., Morejon C., Montilla J., et al. Repeated subarachnoid administrations of autologous mesenchymal stromal cells supported in autologous plasma improve quality of life in patients suffering incomplete spinal cord injury. Cytotherapy. 2017;19:349–359. doi: 10.1016/j.jcyt.2016.12.002.
    1. Vaquero J., Zurita M., Rico M.A., Aguayo C., Bonilla C., Marin E., Tapiador N., Sevilla M., Vazquez D., Carballido J., et al. Intrathecal administration of autologous mesenchymal stromal cells for spinal cord injury: Safety and efficacy of the 100/3 guideline. Cytotherapy. 2018;20:806–819. doi: 10.1016/j.jcyt.2018.03.032.
    1. Lima C., Pratas-Vital J., Escada P., Hasse-Ferreira A., Capucho C., Peduzzi J.D. Olfactory mucosa autografts in human spinal cord injury: A pilot clinical study. J. Spinal Cord Med. 2006;29:191–203. doi: 10.1080/10790268.2006.11753874.
    1. Mackay-Sim A., Feron F., Cochrane J., Bassingthwaighte L., Bayliss C., Davies W., Fronek P., Gray C., Kerr G., Licina P., et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: A 3-year clinical trial. Brain. 2008;131:2376–2386. doi: 10.1093/brain/awn173.
    1. Saberi H., Moshayedi P., Aghayan H.R., Arjmand B., Hosseini S.K., Emami-Razavi S.H., Rahimi-Movaghar V., Raza M., Firouzi M. Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: An interim report on safety considerations and possible outcomes. Neurosci. Lett. 2008;443:46–50. doi: 10.1016/j.neulet.2008.07.041.
    1. Deda H., Inci M.C., Kurekci A.E., Kayihan K., Ozgun E., Ustunsoy G.E., Kocabay S. Treatment of chronic spinal cord injured patients with autologous bone marrow-derived hematopoietic stem cell transplantation: 1-year follow-up. Cytotherapy. 2008;10:565–574. doi: 10.1080/14653240802241797.
    1. Lima C., Escada P., Pratas-Vital J., Branco C., Arcangeli C.A., Lazzeri G., Maia C.A., Capucho C., Hasse-Ferreira A., Peduzzi J.D. Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury. Neurorehabil. Neural. Repair. 2010;24:10–22. doi: 10.1177/1545968309347685.
    1. Dai G., Liu X., Zhang Z., Yang Z., Dai Y., Xu R. Transplantation of autologous bone marrow mesenchymal stem cells in the treatment of complete and chronic cervical spinal cord injury. Brain Res. 2013;1533:73–79. doi: 10.1016/j.brainres.2013.08.016.
    1. Mendonca M.V., Larocca T.F., de Freitas Souza B.S., Villarreal C.F., Silva L.F., Matos A.C., Novaes M.A., Bahia C.M., de Oliveira Melo Martinez A.C., Kaneto C.M., et al. Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury. Stem Cell Res. 2014;5:126. doi: 10.1186/scrt516.
    1. Cheng H., Liu X., Hua R., Dai G., Wang X., Gao J., An Y. Clinical observation of umbilical cord mesenchymal stem cell transplantation in treatment for sequelae of thoracolumbar spinal cord injury. J. Transl. Med. 2014;12:253. doi: 10.1186/s12967-014-0253-7.
    1. Vaquero J., Zurita M., Rico M.A., Aguayo C., Fernandez C., Rodriguez-Boto G., Marin E., Tapiador N., Sevilla M., Carballido J., et al. Cell therapy with autologous mesenchymal stromal cells in post-traumatic syringomyelia. Cytotherapy. 2018;20:796–805. doi: 10.1016/j.jcyt.2018.04.006.
    1. Curtis E., Martin J.R., Gabel B., Sidhu N., Rzesiewicz T.K., Mandeville R., Van Gorp S., Leerink M., Tadokoro T., Marsala S., et al. A First-in-Human, Phase I Study of Neural Stem Cell Transplantation for Chronic Spinal Cord Injury. Cell Stem Cell. 2018;22:941–950 e946. doi: 10.1016/j.stem.2018.05.014.
    1. Levi A.D., Anderson K.D., Okonkwo D.O., Park P., Bryce T.N., Kurpad S.N., Aarabi B., Hsieh J., Gant K. Clinical Outcomes from a Multi-Center Study of Human Neural Stem Cell Transplantation in Chronic Cervical Spinal Cord Injury. J. Neurotrauma. 2019;36:891–902. doi: 10.1089/neu.2018.5843.
    1. Al-Zoubi A., Jafar E., Jamous M., Al-Twal F., Al-Bakheet S., Zalloum M., Khalifeh F., Radi S.A., El-Khateeb M., Al-Zoubi Z. Transplantation of purified autologous leukapheresis-derived CD34+ and CD133+ stem cells for patients with chronic spinal cord injuries: Long-term evaluation of safety and efficacy. Cell Transpl. 2014;23:S25–S34. doi: 10.3727/096368914X684899.
    1. Park J.H., Kim D.Y., Sung I.Y., Choi G.H., Jeon M.H., Kim K.K., Jeon S.R. Long-term results of spinal cord injury therapy using mesenchymal stem cells derived from bone marrow in humans. Neurosurgery. 2012;70:1238–1247. doi: 10.1227/NEU.0b013e31824387f9.
    1. Oh S.K., Choi K.H., Yoo J.Y., Kim D.Y., Kim S.J., Jeon S.R. A Phase III Clinical Trial Showing Limited Efficacy of Autologous Mesenchymal Stem Cell Therapy for Spinal Cord Injury. Neurosurgery. 2016;78:436–447. doi: 10.1227/NEU.0000000000001056.
    1. Vaquero J., Zurita M., Rico M.A., Bonilla C., Aguayo C., Montilla J., Bustamante S., Carballido J., Marin E., Martinez F., et al. An approach to personalized cell therapy in chronic complete paraplegia: The Puerta de Hierro phase I/II clinical trial. Cytotherapy. 2016;18:1025–1036. doi: 10.1016/j.jcyt.2016.05.003.
    1. Kumar A.A., Kumar S.R., Narayanan R., Arul K., Baskaran M. Autologous bone marrow derived mononuclear cell therapy for spinal cord injury: A phase I/II clinical safety and primary efficacy data. Exp. Clin. Transpl. 2009;7:241–248.
    1. Choo A.M., Liu J., Lam C.K., Dvorak M., Tetzlaff W., Oxland T.R. Contusion, dislocation, and distraction: Primary hemorrhage and membrane permeability in distinct mechanisms of spinal cord injury. J. Neurosurg. Spine. 2007;6:255–266. doi: 10.3171/spi.2007.6.3.255.
    1. LaPlaca M.C., Simon C.M., Prado G.R., Cullen D.K. CNS injury biomechanics and experimental models. Prog Brain Res. 2007;161:13–26. doi: 10.1016/S0079-6123(06)61002-9.
    1. Ahuja C.S., Martin A.R., Fehlings M. Recent advances in managing a spinal cord injury secondary to trauma. F1000Res. 2016:5. doi: 10.12688/f1000research.7586.1.
    1. Wilson J.R., Forgione N., Fehlings M.G. Emerging therapies for acute traumatic spinal cord injury. CMAJ. 2013;185:485–492. doi: 10.1503/cmaj.121206.
    1. Pineau I., Lacroix S. Proinflammatory cytokine synthesis in the injured mouse spinal cord: Multiphasic expression pattern and identification of the cell types involved. J. Comp. Neurol. 2007;500:267–285. doi: 10.1002/cne.21149.
    1. Teng Y.D. Functional Multipotency of Stem Cells and Recovery Neurobiology of Injured Spinal Cords. Cell Transpl. 2019;28:451–459. doi: 10.1177/0963689719850088.
    1. Liu M., Wu W., Li H., Li S., Huang L.T., Yang Y.Q., Sun Q., Wang C.X., Yu Z., Hang C.H. Necroptosis, a novel type of programmed cell death, contributes to early neural cells damage after spinal cord injury in adult mice. J. Spinal Cord Med. 2015;38:745–753. doi: 10.1179/2045772314Y.0000000224.
    1. Wang Y., Wang H., Tao Y., Zhang S., Wang J., Feng X. Necroptosis inhibitor necrostatin-1 promotes cell protection and physiological function in traumatic spinal cord injury. Neuroscience. 2014;266:91–101. doi: 10.1016/j.neuroscience.2014.02.007.
    1. Morita T., Sasaki M., Kataoka-Sasaki Y., Nakazaki M., Nagahama H., Oka S., Oshigiri T., Takebayashi T., Yamashita T., Kocsis J.D., et al. Intravenous infusion of mesenchymal stem cells promotes functional recovery in a model of chronic spinal cord injury. Neuroscience. 2016;335:221–231. doi: 10.1016/j.neuroscience.2016.08.037.
    1. Kwon B.K., Tetzlaff W., Grauer J.N., Beiner J., Vaccaro A.R. Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J. 2004;4:451–464. doi: 10.1016/j.spinee.2003.07.007.
    1. Milhorat T.H., Capocelli A.L., Jr., Anzil A.P., Kotzen R.M., Milhorat R.H. Pathological basis of spinal cord cavitation in syringomyelia: Analysis of 105 autopsy cases. J. Neurosurg. 1995;82:802–812. doi: 10.3171/jns.1995.82.5.0802.
    1. Nori S., Ahuja C.S., Fehlings M.G. Translational Advances in the Management of Acute Spinal Cord Injury: What is New? What is Hot? Neurosurgery. 2017;64:119–128. doi: 10.1093/neuros/nyx217.
    1. Assinck P., Duncan G.J., Hilton B.J., Plemel J.R., Tetzlaff W. Cell transplantation therapy for spinal cord injury. Nat. Neurosci. 2017;20:637–647. doi: 10.1038/nn.4541.
    1. Badhiwala J.H., Ahuja C.S., Fehlings M.G. Time is spine: A review of translational advances in spinal cord injury. J. Neurosurg. Spine. 2018;30:1–18. doi: 10.3171/2018.9.SPINE18682.
    1. Lee J., Kuroda S., Shichinohe H., Ikeda J., Seki T., Hida K., Tada M., Sawada K., Iwasaki Y. Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice. Neuropathology. 2003;23:169–180. doi: 10.1046/j.1440-1789.2003.00496.x.
    1. Novikova L.N., Brohlin M., Kingham P.J., Novikov L.N., Wiberg M. Neuroprotective and growth-promoting effects of bone marrow stromal cells after cervical spinal cord injury in adult rats. Cytotherapy. 2011;13:873–887. doi: 10.3109/14653249.2011.574116.
    1. Gao S., Guo X., Zhao S., Jin Y., Zhou F., Yuan P., Cao L., Wang J., Qiu Y., Sun C., et al. Differentiation of human adipose-derived stem cells into neuron/motoneuron-like cells for cell replacement therapy of spinal cord injury. Cell Death Dis. 2019;10:597. doi: 10.1038/s41419-019-1772-1.
    1. Hofstetter C.P., Schwarz E.J., Hess D., Widenfalk J., El Manira A., Prockop D.J., Olson L. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc. Natl. Acad. Sci. USA. 2002;99:2199–2204. doi: 10.1073/pnas.042678299.
    1. Shu Y. Neuronal signaling in central nervous system. Sheng Li Xue Bao. 2011;63:1–8.
    1. Neirinckx V., Cantinieaux D., Coste C., Rogister B., Franzen R., Wislet-Gendebien S. Concise review: Spinal cord injuries: How could adult mesenchymal and neural crest stem cells take up the challenge? Stem Cells. 2014;32:829–843. doi: 10.1002/stem.1579.
    1. Ceci M., Mariano V., Romano N. Zebrafish as a translational regeneration model to study the activation of neural stem cells and role of their environment. Rev. Neurosci. 2018;30:45–66. doi: 10.1515/revneuro-2018-0020.
    1. Sharma A., Gokulchandran N., Chopra G., Kulkarni P., Lohia M., Badhe P., Jacob V.C. Administration of autologous bone marrow-derived mononuclear cells in children with incurable neurological disorders and injury is safe and improves their quality of life. Cell Transpl. 2012;21:S79–S90. doi: 10.3727/096368912X633798. Suppl 1.
    1. Feron F., Perry C., Cochrane J., Licina P., Nowitzke A., Urquhart S., Geraghty T., Mackay-Sim A. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain. 2005;128:2951–2960. doi: 10.1093/brain/awh657.
    1. Oh S.K., Jeon S.R. Current Concept of Stem Cell Therapy for Spinal Cord Injury: A Review. Korean J. Neurotrauma. 2016;12:40–46. doi: 10.13004/kjnt.2016.12.2.40.
    1. Ruzicka J., Machova-Urdzikova L., Gillick J., Amemori T., Romanyuk N., Karova K., Zaviskova K., Dubisova J., Kubinova S., Murali R., et al. A Comparative Study of Three Different Types of Stem Cells for Treatment of Rat Spinal Cord Injury. Cell Transpl. 2017;26:585–603. doi: 10.3727/096368916X693671.
    1. Gazdic M., Volarevic V., Harrell C.R., Fellabaum C., Jovicic N., Arsenijevic N., Stojkovic M. Stem Cells Therapy for Spinal Cord Injury. Int. J. Mol. Sci. 2018:19. doi: 10.3390/ijms19041039.
    1. Horwitz E.M., Le Blanc K., Dominici M., Mueller I., Slaper-Cortenbach I., Marini F.C., Deans R.J., Krause D.S., Keating A., International Society for Cellular T. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy. 2005;7:393–395. doi: 10.1080/14653240500319234.
    1. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905.
    1. Bellagamba B.C., Grudzinski P.B., Ely P.B., Nader P.J.H., Nardi N.B., da Silva Meirelles L. Induction of Expression of CD271 and CD34 in Mesenchymal Stromal Cells Cultured as Spheroids. Stem Cells Int. 2018;2018:7357213. doi: 10.1155/2018/7357213.
    1. Stagg J., Pommey S., Eliopoulos N., Galipeau J. Interferon-gamma-stimulated marrow stromal cells: A new type of nonhematopoietic antigen-presenting cell. Blood. 2006;107:2570–2577. doi: 10.1182/blood-2005-07-2793.
    1. Romieu-Mourez R., Francois M., Boivin M.N., Stagg J., Galipeau J. Regulation of MHC class II expression and antigen processing in murine and human mesenchymal stromal cells by IFN-gamma, TGF-beta, and cell density. J. Immunol. 2007;179:1549–1558. doi: 10.4049/jimmunol.179.3.1549.
    1. Viswanathan S., Shi Y., Galipeau J., Krampera M., Leblanc K., Martin I., Nolta J., Phinney D.G., Sensebe L. Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT(R)) Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy. 2019;21:1019–1024. doi: 10.1016/j.jcyt.2019.08.002.
    1. Chiba Y., Kuroda S., Maruichi K., Osanai T., Hokari M., Yano S., Shichinohe H., Hida K., Iwasaki Y. Transplanted bone marrow stromal cells promote axonal regeneration and improve motor function in a rat spinal cord injury model. Neurosurgery. 2009;64:991–999. doi: 10.1227/01.NEU.0000341905.57162.1D.
    1. Himes B.T., Neuhuber B., Coleman C., Kushner R., Swanger S.A., Kopen G.C., Wagner J., Shumsky J.S., Fischer I. Recovery of function following grafting of human bone marrow-derived stromal cells into the injured spinal cord. Neurorehabil. Neural Repair. 2006;20:278–296. doi: 10.1177/1545968306286976.
    1. Kim M., Kim K.H., Song S.U., Yi T.G., Yoon S.H., Park S.R., Choi B.H. Transplantation of human bone marrow-derived clonal mesenchymal stem cells reduces fibrotic scar formation in a rat spinal cord injury model. J. Tissue Eng. Regen. Med. 2018;12:e1034–e1045. doi: 10.1002/term.2425.
    1. Nakano N., Nakai Y., Seo T.B., Homma T., Yamada Y., Ohta M., Suzuki Y., Nakatani T., Fukushima M., Hayashibe M., et al. Effects of bone marrow stromal cell transplantation through CSF on the subacute and chronic spinal cord injury in rats. PLoS ONE. 2013;8:e73494. doi: 10.1371/journal.pone.0073494.
    1. Otero L., Zurita M., Bonilla C., Aguayo C., Vela A., Rico M.A., Vaquero J. Late transplantation of allogeneic bone marrow stromal cells improves neurologic deficits subsequent to intracerebral hemorrhage. Cytotherapy. 2011;13:562–571. doi: 10.3109/14653249.2010.544720.
    1. Paradisi M., Alviano F., Pirondi S., Lanzoni G., Fernandez M., Lizzo G., Giardino L., Giuliani A., Costa R., Marchionni C., et al. Human mesenchymal stem cells produce bioactive neurotrophic factors: Source, individual variability and differentiation issues. Int. J. Immunopathol. Pharm. 2014;27:391–402. doi: 10.1177/039463201402700309.
    1. Wang L.J., Zhang R.P., Li J.D. Transplantation of neurotrophin-3-expressing bone mesenchymal stem cells improves recovery in a rat model of spinal cord injury. Acta Neurochir. (Wien.) 2014;156:1409–1418. doi: 10.1007/s00701-014-2089-6.
    1. Watanabe S., Uchida K., Nakajima H., Matsuo H., Sugita D., Yoshida A., Honjoh K., Johnson W.E., Baba H. Early transplantation of mesenchymal stem cells after spinal cord injury relieves pain hypersensitivity through suppression of pain-related signaling cascades and reduced inflammatory cell recruitment. Stem Cells. 2015;33:1902–1914. doi: 10.1002/stem.2006.
    1. Wu S., Suzuki Y., Ejiri Y., Noda T., Bai H., Kitada M., Kataoka K., Ohta M., Chou H., Ide C. Bone marrow stromal cells enhance differentiation of cocultured neurosphere cells and promote regeneration of injured spinal cord. J. Neurosci. Res. 2003;72:343–351. doi: 10.1002/jnr.10587.
    1. Ye Y., Feng T.T., Peng Y.R., Hu S.Q., Xu T. The treatment of spinal cord injury in rats using bone marrow-derived neural-like cells induced by cerebrospinal fluid. Neurosci. Lett. 2018;666:85–91. doi: 10.1016/j.neulet.2017.12.043.
    1. Zhao T., Yan W., Xu K., Qi Y., Dai X., Shi Z. Combined treatment with platelet-rich plasma and brain-derived neurotrophic factor-overexpressing bone marrow stromal cells supports axonal remyelination in a rat spinal cord hemi-section model. Cytotherapy. 2013;15:792–804. doi: 10.1016/j.jcyt.2013.04.004.
    1. Abrams M.B., Dominguez C., Pernold K., Reger R., Wiesenfeld-Hallin Z., Olson L., Prockop D. Multipotent mesenchymal stromal cells attenuate chronic inflammation and injury-induced sensitivity to mechanical stimuli in experimental spinal cord injury. Restor. Neurol. Neurosci. 2009;27:307–321. doi: 10.3233/RNN-2009-0480.
    1. Neuhuber B., Timothy Himes B., Shumsky J.S., Gallo G., Fischer I. Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Res. 2005;1035:73–85. doi: 10.1016/j.brainres.2004.11.055.
    1. Suh H.I., Min J., Choi K.H., Kim S.W., Kim K.S., Jeon S.R. Axonal regeneration effects of Wnt3a-secreting fibroblast transplantation in spinal cord-injured rats. Acta Neurochir. (Wien.) 2011;153:1003–1010. doi: 10.1007/s00701-011-0945-1.
    1. Bydon M., Dietz A.B., Goncalves S., Moinuddin F.M., Alvi M.A., Goyal A., Yolcu Y., Hunt C.L., Garlanger K.L., Del Fabro A.S., et al. CELLTOP Clinical Trial: First Report From a Phase 1 Trial of Autologous Adipose Tissue-Derived Mesenchymal Stem Cells in the Treatment of Paralysis Due to Traumatic Spinal Cord Injury. Mayo Clin. Proc. 2020;95:406–414. doi: 10.1016/j.mayocp.2019.10.008.
    1. Boyd J.G., Doucette R., Kawaja M.D. Defining the role of olfactory ensheathing cells in facilitating axon remyelination following damage to the spinal cord. Faseb J. 2005;19:694–703. doi: 10.1096/fj.04-2833rev.
    1. Li L., Adnan H., Xu B., Wang J., Wang C., Li F., Tang K. Effects of transplantation of olfactory ensheathing cells in chronic spinal cord injury: A systematic review and meta-analysis. Eur. Spine J. 2015;24:919–930. doi: 10.1007/s00586-014-3416-6.
    1. Bunge M.B., Wood P.M. Realizing the maximum potential of Schwann cells to promote recovery from spinal cord injury. Handb. Clin. Neurol. 2012;109:523–540. doi: 10.1016/B978-0-444-52137-8.00032-2.
    1. Duncan I.D., Aguayo A.J., Bunge R.P., Wood P.M. Transplantation of rat Schwann cells grown in tissue culture into the mouse spinal cord. J. Neurol. Sci. 1981;49:241–252. doi: 10.1016/0022-510X(81)90082-4.
    1. Saberi H., Firouzi M., Habibi Z., Moshayedi P., Aghayan H.R., Arjmand B., Hosseini K., Razavi H.E., Yekaninejad M.S. Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases. J. Neurosurg. Spine. 2011;15:515–525. doi: 10.3171/2011.6.SPINE10917.
    1. Zhu T., Tang Q., Gao H., Shen Y., Chen L., Zhu J. Current status of cell-mediated regenerative therapies for human spinal cord injury. Neurosci. Bull. 2014;30:671–682. doi: 10.1007/s12264-013-1438-4.
    1. Karimi-Abdolrezaee S., Eftekharpour E., Wang J., Morshead C.M., Fehlings M.G. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J. Neurosci. 2006;26:3377–3389. doi: 10.1523/JNEUROSCI.4184-05.2006.
    1. Parr A.M., Kulbatski I., Zahir T., Wang X., Yue C., Keating A., Tator C.H. Transplanted adult spinal cord-derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury. Neuroscience. 2008;155:760–770. doi: 10.1016/j.neuroscience.2008.05.042.
    1. Sharp J., Frame J., Siegenthaler M., Nistor G., Keirstead H.S. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells. 2010;28:152–163. doi: 10.1002/stem.245.
    1. Keirstead H.S., Nistor G., Bernal G., Totoiu M., Cloutier F., Sharp K., Steward O. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J. Neurosci. 2005;25:4694–4705. doi: 10.1523/JNEUROSCI.0311-05.2005.
    1. Li J.Y., Christophersen N.S., Hall V., Soulet D., Brundin P. Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends Neurosci. 2008;31:146–153. doi: 10.1016/j.tins.2007.12.001.
    1. Nori S., Okada Y., Nishimura S., Sasaki T., Itakura G., Kobayashi Y., Renault-Mihara F., Shimizu A., Koya I., Yoshida R., et al. Long-term safety issues of iPSC-based cell therapy in a spinal cord injury model: Oncogenic transformation with epithelial-mesenchymal transition. Stem Cell Rep. 2015;4:360–373. doi: 10.1016/j.stemcr.2015.01.006.
    1. Tsuji O., Miura K., Okada Y., Fujiyoshi K., Mukaino M., Nagoshi N., Kitamura K., Kumagai G., Nishino M., Tomisato S., et al. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc. Natl. Acad. Sci. USA. 2010;107:12704–12709. doi: 10.1073/pnas.0910106107.
    1. Suzuki H., Ahuja C.S., Salewski R.P., Li L., Satkunendrarajah K., Nagoshi N., Shibata S., Fehlings M.G. Neural stem cell mediated recovery is enhanced by Chondroitinase ABC pretreatment in chronic cervical spinal cord injury. PLoS ONE. 2017;12:e0182339. doi: 10.1371/journal.pone.0182339.
    1. Bakshi A., Hunter C., Swanger S., Lepore A., Fischer I. Minimally invasive delivery of stem cells for spinal cord injury: Advantages of the lumbar puncture technique. J. Neurosurg. Spine. 2004;1:330–337. doi: 10.3171/spi.2004.1.3.0330.
    1. Vaquero J., Zurita M., Oya S., Santos M. Cell therapy using bone marrow stromal cells in chronic paraplegic rats: Systemic or local administration? Neurosci. Lett. 2006;398:129–134. doi: 10.1016/j.neulet.2005.12.072.
    1. Paul C., Samdani A.F., Betz R.R., Fischer I., Neuhuber B. Grafting of human bone marrow stromal cells into spinal cord injury: A comparison of delivery methods. Spine (Phila Pa 1976) 2009;34:328–334. doi: 10.1097/BRS.0b013e31819403ce.
    1. Shin D.A., Kim J.M., Kim H.I., Yi S., Ha Y., Yoon D.H., Kim K.N. Comparison of functional and histological outcomes after intralesional, intracisternal, and intravenous transplantation of human bone marrow-derived mesenchymal stromal cells in a rat model of spinal cord injury. Acta Neurochir. (Wien.) 2013;155:1943–1950. doi: 10.1007/s00701-013-1799-5.
    1. Amemori T., Ruzicka J., Romanyuk N., Jhanwar-Uniyal M., Sykova E., Jendelova P. Comparison of intraspinal and intrathecal implantation of induced pluripotent stem cell-derived neural precursors for the treatment of spinal cord injury in rats. Stem Cell Res. 2015;6:257. doi: 10.1186/s13287-015-0255-2.

Source: PubMed

3
Abonner