Body Weight Variation Patterns as Predictors of Cognitive Decline over a 5 Year Follow-Up among Community-Dwelling Elderly (MAPT Study)

Kelly Virecoulon Giudici, Sophie Guyonnet, Yves Rolland, Bruno Vellas, Philipe de Souto Barreto, Fati Nourhashemi, MAPT/DSA Group, Kelly Virecoulon Giudici, Sophie Guyonnet, Yves Rolland, Bruno Vellas, Philipe de Souto Barreto, Fati Nourhashemi, MAPT/DSA Group

Abstract

This study aimed to analyze associations between weight variation patterns and changes in cognitive function and hippocampal volume among non-demented, community-dwelling elderly. Sample was formed of 1394 adults >70 years (63.9% female), all volunteers from the Multidomain Alzheimer Preventive Trial (MAPT). Weight loss was defined as ≥5% of body weight decrease in the first year of follow-up; weight gain as ≥5% of weight increase; and stability if <5% weight variation. Cognition was examined by a Z-score combining four tests. Measures were assessed at baseline, 6, 12, 24, 36, 48, and 60 months of follow-up. Hippocampal volume was evaluated with magnetic resonance imaging in 349 subjects in the first year and at 36 months. Mixed models were performed. From the 1394 participants, 5.5% (n = 76) presented weight loss, and 9.0% (n = 125) presented weight gain. Cognitive Z-score decreased among all groups after 5 years, but decline was more pronounced among those who presented weight loss (adjusted between-group mean difference vs. stable: -0.24, 95%CI: -0.41 to -0.07; p = 0.006). After 3 years, hippocampal atrophy was observed among all groups, but no between-group differences were found. In conclusion, weight loss ≥5% in the first year predicted higher cognitive decline over a 5 year follow-up among community-dwelling elderly, independently of body mass index.

Keywords: Alzheimer’s disease; aging; cognition; elderly; hippocampal atrophy; weight loss.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Guh D.P., Zhang W., Bansback N., Amarsi Z., Birmingham C.L., Anis A.H. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health. 2009;9:88. doi: 10.1186/1471-2458-9-88.
    1. Kivipelto M., Ngandu T., Fratiglioni L., Viitanen M., Kåreholt I., Winblad B., Helkala E.L., Tuomilehto J., Soininen H., Nissinen A. Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch. Neurol. 2005;62:1556–1560. doi: 10.1001/archneur.62.10.1556.
    1. Tolppanen A.-M., Ngandu T., Kåreholt I., Laatikainen T., Rusanen M., Soininen H., Kivipelto M. Midlife and late-life body mass index and late-life dementia: Results from a prospective population-based cohort. J. Alzheimer’s Dis. 2014;38:201–209. doi: 10.3233/JAD-130698.
    1. Dorrance A.M., Matin N., Pires P.W. The effects of obesity on the cerebral vasculature. Curr. Vasc. Pharmacol. 2014;12:462–472. doi: 10.2174/1570161112666140423222411.
    1. Arnoldussen I.A.C., Kiliaan A.J., Gustafson D.R. Obesity and dementia: Adipokines interact with the brain. Eur. Neuropsychopharmacol. 2014;24:1982–1999. doi: 10.1016/j.euroneuro.2014.03.002.
    1. Anjum I., Fayyaz M., Wajid A., Sohail W., Ali A. Does Obesity Increase the Risk of Dementia: A Literature Review. Cureus. 2018;10:e2660. doi: 10.7759/cureus.2660.
    1. Greenwood C.E., Winocur G. High-fat diets, insulin resistance and declining cognitive function. Neurobiol. Aging. 2005;26(Suppl. 1):42–45. doi: 10.1016/j.neurobiolaging.2005.08.017.
    1. Watson G.S., Craft S. The role of insulin resistance in the pathogenesis of Alzheimer’s disease: Implications for treatment. CNS Drugs. 2003;17:27–45. doi: 10.2165/00023210-200317010-00003.
    1. Bell S.P., Liu D., Samuels L.R., Shah A.S., Gifford K.A., Hohman T.J., Jefferson A.L. Late-Life Body Mass Index, Rapid Weight Loss, Apolipoprotein E ε4 and the Risk of Cognitive Decline and Incident Dementia. J. Nutr. Health Aging. 2017;21:1259–1267. doi: 10.1007/s12603-017-0906-3.
    1. Cronk B.B., Johnson D.K., Burns J.M. Alzheimer’s Disease Neuroimaging Initiative. Body mass index and cognitive decline in mild cognitive impairment. Alzheimer Dis. Assoc. Disord. 2010;24:126–130. doi: 10.1097/WAD.0b013e3181a6bf3f.
    1. Gustafson D.R., Bäckman K., Joas E., Waern M., Östling S., Guo X., Skoog I. 37 years of body mass index and dementia: Observations from the prospective population study of women in Gothenburg, Sweden. J. Alzheimer’s Dis. 2012;28:163–171. doi: 10.3233/JAD-2011-110917.
    1. Chang K.-V., Hsu T.-H., Wu W.-T., Huang K.-C., Han D.-S. Association between Sarcopenia and Cognitive Impairment: A Systematic Review and Meta-Analysis. J. Am. Med. Dir. Assoc. 2016;17:1164.e7–1164.e15. doi: 10.1016/j.jamda.2016.09.013.
    1. Memel M., Bourassa K., Woolverton C., Sbarra D.A. Body Mass and Physical Activity Uniquely Predict Change in Cognition for Aging Adults. Ann. Behav. Med. 2016;50:397–408. doi: 10.1007/s12160-015-9768-2.
    1. Strandberg T.E., Stenholm S., Strandberg A.Y., Salomaa V.V., Pitkälä K.H., Tilvis R.S. The “obesity paradox” frailty, disability, and mortality in older men: A prospective, longitudinal cohort study. Am. J. Epidemiol. 2013;178:1452–1460. doi: 10.1093/aje/kwt157.
    1. Driscoll I., Espeland M.A., Wassertheil-Smoller S., Gaussoin S.A., Ding J., Granek I., Ockene J.K., Phillips L.S., Yaffe K., Resnick S.M., et al. Weight Change and Cognitive Function: Findings from the Women’s Health Initiative Study of Cognitive Aging. Obesity. 2011;19:1595–1600. doi: 10.1038/oby.2011.23.
    1. Cova I., Clerici F., Rossi A., Cucumo V., Ghiretti R., Maggiore L., Pomati S., Galimberti D., Scarpini E., Mariani C., et al. Weight Loss Predicts Progression of Mild Cognitive Impairment to Alzheimer’s Disease. PLoS ONE. 2016;11:e0151710. doi: 10.1371/journal.pone.0151710.
    1. Jimenez A., Pegueroles J., Carmona-Iragui M., Vilaplana E., Montal V., Alcolea D., Videla L., Illán-Gala I., Pané A., Casajoana A., et al. Weight loss in the healthy elderly might be a non-cognitive sign of preclinical Alzheimer’s disease. Oncotarget. 2017;8:104706–104716. doi: 10.18632/oncotarget.22218.
    1. Gauthier S., Gélinas I., Gauthier L. Functional disability in Alzheimer’s disease. Int. Psychogeriatr. 1997;9(Suppl. 1):163–165. doi: 10.1017/S1041610297004857.
    1. Vellas B., Carrie I., Gillette-Guyonnet S., Touchon J., Dantoine T., Dartigues J.F., Cuffi M.N., Bordes S., Gasnier Y., Robert P., et al. MAPT STUDY: A multidomain approach for preventing alzheimer’s disease: Design and baseline data. J. Prev. Alzheimer’s Dis. 2014;1:13–22.
    1. Andrieu S., Guyonnet S., Coley N., Cantet C., Bonnefoy M., Bordes S., Bories L., Cufi M.N., Dantoine T., Dartigues J.F., et al. Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): A randomised, placebo-controlled trial. Lancet Neurol. 2017;16:377–389. doi: 10.1016/S1474-4422(17)30040-6.
    1. Folstein M.F., Folstein S.E., McHugh P.R. “Mini-mental state”—A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975;12:189–198. doi: 10.1016/0022-3956(75)90026-6.
    1. Galasko D., Bennett D.A., Sano M., Marson D., Kaye J., Edland S.D. ADCS Prevention Instrument Project: Assessment of instrumental activities of daily living for community-dwelling elderly individuals in dementia prevention clinical trials. Alzheimer Dis. Assoc. Disord. 2006;20(Suppl. 3):S152–S169. doi: 10.1097/01.wad.0000213873.25053.2b.
    1. World Health Organization (WHO) World Report on Ageing and Health. World Health Organization; Geneva, Switzerland: 2015.
    1. Lankisch P., Gerzmann M., Gerzmann J.F., Lehnick D. Unintentional weight loss: Diagnosis and prognosis. The first prospective follow-up study from a secondary referral centre. J. Intern. Med. 2001;249:41–46. doi: 10.1046/j.1365-2796.2001.00771.x.
    1. Newman A.B., Yanez D., Harris T., Duxbury A., Enright P.L., Fried L.P., Cardiovascular Study Research Group Weight change in old age and its association with mortality. J. Am. Geriatr. Soc. 2001;49:1309–1318. doi: 10.1046/j.1532-5415.2001.49258.x.
    1. McMinn J., Steel C., Bowman A. Investigation and management of unintentional weight loss in older adults. BMJ. 2011;342:d1732. doi: 10.1136/bmj.d1732.
    1. Chupin M., Hammers A., Liu R.S.N., Colliot O., Burdett J., Bardinet E., Duncan J.S., Garnero L., Lemieux L. Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: Method and validation. NeuroImage. 2009;46:749–761. doi: 10.1016/j.neuroimage.2009.02.013.
    1. Ganguli M., Belle S., Ratcliff G., Seaberg E., Huff F.J., von der Porten K., Kuller L.H. Sensitivity and specificity for dementia of population-based criteria for cognitive impairment: The MoVIES project. J. Gerontol. 1993;48:M152–M161. doi: 10.1093/geronj/48.4.M152.
    1. Sobów T., Fendler W., Magierski R. Body mass index and mild cognitive impairment-to-dementia progression in 24 months: A prospective study. Eur. J. Clin. Nutr. 2014;68:1216–1219. doi: 10.1038/ejcn.2014.167.
    1. Albanese E., Taylor C., Siervo M., Stewart R., Prince M.J., Acosta D. Dementia severity and weight loss: A comparison across eight cohorts. The 10/66 study. Alzheimer’s Dement. 2013;9:649–656. doi: 10.1016/j.jalz.2012.11.014.
    1. Park S., Jeon S.-M., Jung S.-Y., Hwang J., Kwon J.-W. Effect of late-life weight change on dementia incidence: A 10-year cohort study using claim data in Korea. BMJ Open. 2019;9:e021739. doi: 10.1136/bmjopen-2018-021739.
    1. Witte A.V., Fobker M., Gellner R., Knecht S., Flöel A. Caloric restriction improves memory in elderly humans. Proc. Natl. Acad. Sci. USA. 2009;106:1255–1260. doi: 10.1073/pnas.0808587106.
    1. Siervo M., Nasti G., Stephan B.C.M., Papa A., Muscariello E., Wells J.C.K., Prado C.M., Colantuoni A. Effects of intentional weight loss on physical and cognitive function in middle-aged and older obese participants: A pilot study. J. Am. Coll. Nutr. 2012;31:79–86. doi: 10.1080/07315724.2012.10720012.
    1. Horie N.C., Serrao V.T., Simon S.S., Gascon M.R.P., dos Santos A.X., Zambone M.A., del Bigio de Freitas M.M., Cunha-Neto E., Marques E.L., Halpern A., et al. Cognitive Effects of Intentional Weight Loss in Elderly Obese Individuals With Mild Cognitive Impairment. J. Clin. Endocrinol. Metab. 2016;101:1104–1112. doi: 10.1210/jc.2015-2315.
    1. Bales C.W., Ritchie C.S. Sarcopenia, weight loss, and nutritional frailty in the elderly. Annu. Rev. Nutr. 2002;22:309–323. doi: 10.1146/annurev.nutr.22.010402.102715.
    1. Locher J.L., Roth D.L., Ritchie C.S., Cox K., Sawyer P., Bodner E.V., Allman R.M. Body mass index, weight loss, and mortality in community-dwelling older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2007;62:1389–1392. doi: 10.1093/gerona/62.12.1389.
    1. Ensrud K.E., Ewing S.K., Taylor B.C., Fink H.A., Cawthon P.M., Stone K.L., Hillier T.A., Cauley J.A., Hochberg M.C., Rodondi N., et al. Comparison of 2 frailty indexes for prediction of falls, disability, fractures, and death in older women. Arch. Int. Med. 2008;168:382–389. doi: 10.1001/archinternmed.2007.113.
    1. Wilson D., Jackson T., Sapey E., Lord J.M. Frailty and sarcopenia: The potential role of an aged immune system. Ageing Res. Rev. 2017;36:1–10. doi: 10.1016/j.arr.2017.01.006.
    1. Rolland Y., Kim M.-J., Gammack J.K., Wilson M.-M.G., Thomas D.R., Morley J.E. Office management of weight loss in older persons. Am. J. Med. 2006;119:1019–1026. doi: 10.1016/j.amjmed.2006.02.039.
    1. Wilkins C.H., Roe C.M., Morris J.C., Galvin J.E. Mild physical impairment predicts future diagnosis of dementia of the Alzheimer’s type. J. Am. Geriatr. Soc. 2013;61:1055–1059. doi: 10.1111/jgs.12255.
    1. Tolea M.I., Galvin J.E. Sarcopenia and impairment in cognitive and physical performance. Clin. Interv. Aging. 2015;10:663–671. doi: 10.2147/CIA.S76275.
    1. Waters D.L., Ward A.L., Villareal D.T. Weight loss in obese adults 65 years and older: A review of the controversy. Exp. Gerontol. 2013;48:1054–1061. doi: 10.1016/j.exger.2013.02.005.
    1. Veronese N., Facchini S., Stubbs B., Luchini C., Solmi M., Manzato E., Sergi G., Maggi S., Cosco T., Fontana L. Weight loss is associated with improvements in cognitive function among overweight and obese people: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2017;72:87–94. doi: 10.1016/j.neubiorev.2016.11.017.
    1. Napoli N., Shah K., Waters D.L., Sinacore D.R., Qualls C., Villareal D.T. Effect of weight loss, exercise, or both on cognition and quality of life in obese older adults. Am. J. Clin. Nutr. 2014;100:189–198. doi: 10.3945/ajcn.113.082883.
    1. Handley J.D., Williams D.M., Caplin S., Stephens J.W., Barry J. Changes in Cognitive Function Following Bariatric Surgery: A Systematic Review. Obes. Surg. 2016;26:2530–2537. doi: 10.1007/s11695-016-2312-z.
    1. Thiara G., Cigliobianco M., Muravsky A., Paoli R.A., Mansur R., Hawa R., McIntyre R.S., Sockalingam S. Evidence for Neurocognitive Improvement After Bariatric Surgery: A Systematic Review. Psychosomatics. 2017;58:217–227. doi: 10.1016/j.psym.2017.02.004.
    1. Kelaiditi E., Cesari M., Canevelli M., van Kan G.A., Ousset P.-J., Gillette-Guyonnet S., Ritz P., Duveau F., Soto M.E., Provencher V., et al. Cognitive frailty: Rational and definition from an (I.A.N.A./I.A.G.G.) international consensus group. J. Nutr. Health Aging. 2013;17:726–734. doi: 10.1007/s12603-013-0367-2.
    1. Bobb J.F., Schwartz B.S., Davatzikos C., Caffo B. Cross-sectional and longitudinal association of body mass index and brain volume. Hum. Brain Mapp. 2014;35:75–88. doi: 10.1002/hbm.22159.
    1. Driscoll I., Gaussoin S.A., Wassertheil-Smoller S., Limacher M., Casanova R., Yaffe K., Resnick S.M., Espeland M.A. Obesity and Structural Brain Integrity in Older Women: The Women’s Health Initiative Magnetic Resonance Imaging Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2016;71:1216–1222. doi: 10.1093/gerona/glw023.
    1. Prehn K., Jumpertz von Schwartzenberg R., Mai K., Zeitz U., Witte A.V., Hampel D., Szela A.M., Fabian S., Grittner U., Spranger J., et al. Caloric Restriction in Older Adults-Differential Effects of Weight Loss and Reduced Weight on Brain Structure and Function. Cereb. Cortex. 2017;27:1765–1778. doi: 10.1093/cercor/bhw008.
    1. Haigis M.C., Guarente L.P. Mammalian sirtuins—Emerging roles in physiology, aging, and calorie restriction. Genes Dev. 2006;20:2913–2921. doi: 10.1101/gad.1467506.
    1. Wang F., Nguyen M., Qin F.X.-F., Tong Q. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell. 2007;6:505–514. doi: 10.1111/j.1474-9726.2007.00304.x.
    1. Chang Y.-T., Chang W.-N., Tsai N.-W., Huang C.-C., Kung C.-T., Su Y.-J., Lin W.C., Cheng B.C., Su C.M., Chiang Y.F., et al. The roles of biomarkers of oxidative stress and antioxidant in Alzheimer’s disease: A systematic review. BioMed Res. Int. 2014;2014:182303. doi: 10.1155/2014/182303.
    1. Herranz D., Muñoz-Martin M., Cañamero M., Mulero F., Martinez-Pastor B., Fernandez-Capetillo O., Serrano M. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun. 2010;1:3. doi: 10.1038/ncomms1001.

Source: PubMed

3
Abonner