Effect of dexmedetomidine on intraoperative Surgical Pleth Index in patients undergoing video-assisted thoracoscopic lung lobectomy

Yu-Lan Wang, Xiao-Qi Kong, Fu-Hai Ji, Yu-Lan Wang, Xiao-Qi Kong, Fu-Hai Ji

Abstract

Background: The Surgical Pleth Index (SPI) is a monitoring method that reflects painful stimuli during general anesthesia, and dexmedetomidine is an analgesic adjuvant with an opioid-sparing effect. But up to now, it is still unclear whether dexmedetomidine has any influence on SPI. To investigate whether dexmedetomidine has an effect on SPI during video-assisted thoracoscopic surgery.

Methods: We enrolled 94 patients who underwent video-assisted thoracoscopic lung lobectomy. Patients were randomly assigned to a dexmedetomidine group (dexmedetomidine: 0.8 μg/kg administered for 10 min before anesthesia) or normal saline group (equal volume of normal saline). SPI and vital signs were recorded. The number rating scale (NRS) pain score was also evaluated.

Results: SPI values were significantly lower in the dexmedetomidine group than in the normal saline group at intubation and at discharge from the postanesthesia care unit. Compared with the normal saline group, mean arterial pressure and heart rate were both significantly lower in the dexmedetomidine group at intubation. Heart rate was lower at skin incision in the dexmedetomidine group. The NRS score in the normal saline group was noticeably higher vs. the dexmedetomidine group at discharge from the postanesthesia care unit.

Conclusions: Dexmedetomidine decreased intraoperative SPI and NRS scores. Our results showed that dexmedetomidine attenuated noxious stimuli.

Trial registration: Chinese Clinical Trial Registry (ChiCTR): ChiCTR-OOC-16009450 , Registered 16 October, 2016.

Keywords: Dexmedetomidine; Number rating scale; Surgical Pleth index; Thoracoscopic lung lobectomy.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Comparison of SPI values between the two groups undergoing video-assisted thoracoscopic lung lobectomy from the time patients entered the operating room to when they left the recovery room. SPI: Surgical Pleth Index, PACU: post anesthesia care unit, *P < 0.05
Fig. 2
Fig. 2
Hemodynamic changes in both groups. a Mean blood pressure at different time points, b Heart rate at different time points. PACU: post anesthesia care unit, *P < 0.05
Fig. 3
Fig. 3
Comparison of postoperative NRS pain scores between the two groups from when they left the recovery room to 48 h after surgery. NRS: number rating scale, PACU: post anesthesia care unit, *P < 0.05

References

    1. Kaplowitz J, Papadakos PJ. Acute pain management for video-assisted thoracoscopic surgery: an update. J Cardiothorac Vasc Anesth. 2012;26:312–321. doi: 10.1053/j.jvca.2011.04.010.
    1. Bendixen M, Jørgensen OD, Kronborg C, Andersen C, Licht PB. Postoperative pain and quality of life after lobectomy via video-assisted thoracoscopic surgery or anterolateral thoracotomy for early stage lung cancer: a randomized controlled trial. Lancet Oncol. 2016;17:836–844. doi: 10.1016/S1470-2045(16)00173-X.
    1. Ledowski T, Burke J, Hruby J. Surgical pleth index: prediction of postoperative pain and influence of arousal. Br J Anaesth. 2016;117:371–374. doi: 10.1093/bja/aew226.
    1. Huiku M, Uutela K, van Gils M, Korhonen I, Kymäläinen M, et al. Assessment of surgical stress during general anaesthesia. Br J Anaesth. 2007;98:447–455. doi: 10.1093/bja/aem004.
    1. Hamunen K, Kontinen V, Hakala E, Talke P, Paloheimo M, et al. Effect of pain on autonomic nervous system indices derived from photoplethysmography in healthy volunteers. Br J Anaesth. 2012;108:838–844. doi: 10.1093/bja/aes001.
    1. Wennervirta J, Hynynen M, Koivusalo AM, Uutela K, Huiku M, et al. Surgical stress index as a measure of nociception/antinociception balance during general anesthesia. Acta Anaesthesiol Scand. 2008;52:1038–1045. doi: 10.1111/j.1399-6576.2008.01687.x.
    1. Ledowski T, Sommerfield D, Slevin L, Conrad J, von Ungern-Sternberg BS. Surgical pleth index: prediction of postoperative pain in children? Br J Anaesth. 2017;119:979–983. doi: 10.1093/bja/aex300.
    1. Carollo DS, Nossaman BD, Ramadhyani U. Dexmedetomidine: a review of clinical applications. Curr Opin Anaesthesiol. 2008;21:457–461. doi: 10.1097/ACO.0b013e328305e3ef.
    1. Venn RM, Bradshaw CJ, Spencer R, Brealey D, Caudwell E, et al. Preliminary UK experience of dexmedetomidine, a novel agent for postoperative sedation in the intensive care unit. Anaesthesia. 1999;54:1136–1142. doi: 10.1046/j.1365-2044.1999.01114.x.
    1. Kim MH, Lee KY, Bae SJ, Jo M, Cho JS. Intraoperative dexmedetomidine attenuates stress responses in patients undergoing major spine surgery. Minerva Anestesiol. 2019;85:468–477.
    1. Shamin R, Srivastava S, Rastogi A, Kishore K, Srivastava A. Effect of two different doses of Dexmedetomidine on stress response in laparoscopic Pyeloplasty: a randomized prospective controlled study. Anesth Essays Res. 2017;11:1030–1034. doi: 10.4103/aer.AER_153_17.
    1. Steinthorsdottir KJ, Wildgaard L, Hansen HJ, et al. Regional analgesia for video-assisted thoracic surgery: a systematic review. Eur J Cardiothorac Surg. 2014;45:959–966. doi: 10.1093/ejcts/ezt525.
    1. Falcoz PE, Puyraveau M, Thomas PA, et al. Video-assisted thoracoscopic surgery versus open lobectomy for primary non-small-cell lung cancer: a propensity-matched analysis of outcome from the European Society of Thoracic Surgeon database. Eur J Cardiothorac Surg. 2016;49:602–609. doi: 10.1093/ejcts/ezv154.
    1. Clarke H, Soneji N, Ko DT, et al. Rates and risk factors for prolonged opioid use after major surgery: population based cohort study. BMJ. 2014;348:g1251. doi: 10.1136/bmj.g1251.
    1. Fletcher D, Martinez V. Opioid-induced hyperalgesia in patients after surgery: a systematic review and a meta-analysis. Br J Anaesth. 2014;112:991–1004. doi: 10.1093/bja/aeu137.
    1. Grape S, Kirkham KR, Frauenknecht J, Albrecht E. Intra-operative analgesia with remifentanil vs. dexmedetomidine: a systematic review and meta-analysis with trial sequential analysis. Anaesthesia. 2019;74:793–800. doi: 10.1111/anae.14657.
    1. Ranganathan P, Ritchie MK, Ellison MB, Petrone A, Heiraty P, Tabone LE. A randomized control trial using intraoperative dexmedetomidine during roux-en-Y gastric bypass surgery to reduce postoperative pain and narcotic use. Surg Obes Relat Dis. 2019;15:588–594. doi: 10.1016/j.soard.2019.01.021.
    1. Beder EI, Baz MM, Farahat TEM. Intraperitoneal Levobupivacaine alone or with Dexmedetomidine for postoperative analgesia after laparoscopic cholecystectomy. Anesth Essays Res. 2018;12:355–358. doi: 10.4103/aer.AER_205_17.
    1. Kim HC, Lee YH, Jeon YT, Hwang JW, Lim YJ, et al. The effect of intraoperative dexmedetomidine on postoperative catheter-related bladder discomfort in patients undergoing transurethral bladder tumour resection: a double-blind randomised study. Eur J Anaesthesiol. 2015;32:596–601. doi: 10.1097/EJA.0000000000000196.
    1. Shorrock P, Heaton T, Cochrane N, Jackson M, Lund K, et al. The effects of dexmedetomidine on postoperative pain. Anaesthesia. 2015;70:372. doi: 10.1111/anae.13033.
    1. Peng K, Liu HY, Wu SR, Cheng H, Ji FH. Effects of combining Dexmedetomidine and opioids postoperative intravenous patient-controlled analgesia: a systematic review and meta-analysis. Clin J Pain. 2015;31:1087–1104. doi: 10.1097/AJP.0000000000000145.
    1. Bergmann I, Göhner A, Crozier TA, Hesjedal B, Wiese CH. Surgical pleth index-guided remifentanil administration reduces remifentanil and propofol consumption and shortens recovery times in outpatient anaesthesia. Br J Anaesth. 2013;110:622–628. doi: 10.1093/bja/aes426.
    1. Won YJ, Lim BG, Lee SH, Park S, Kim H, et al. Comparison of relative oxycodone consumption in surgical pleth index-guided analgesia versus conventional analgesia during sevoflurane anesthesia: a randomized controlled trial. Medicine (Baltimore) 2016;95:e4743. doi: 10.1097/MD.0000000000004743.
    1. Gruenewald M, Herz J, Schoenherr T, Thee C, Steinfath M, et al. Measurement of the nociceptive balance by analgesia nociception index and surgical Pleth index during sevoflurane-remifentanil anesthesia. Minerva Anestesiol. 2015;81:480–489.
    1. Colombo R, Raimondi F, Corona A, Rivetti I, Pagani F, et al. Comparison of the surgical Pleth index with autonomic nervous system modulation on cardiac activity during general anaesthesia: a randomised cross-over study. Eur J Anaesthesiol. 2014;31:76–84. doi: 10.1097/01.EJA.0000436116.06728.b3.
    1. Thee C, Ilies C, Gruenewald M, Kleinschmidt A, Steinfath M, et al. Reliability of the surgical Pleth index for assessment of postoperative pain: a pilot study. Eur J Anaesthesiol. 2015;32:44–48. doi: 10.1097/EJA.0000000000000095.
    1. Ahonen J, Jokela R, Uutela K, Huiku M. Surgical stress index reflects surgical stress in gynaecological laparoscopic day-case surgery. Br J Anaesth. 2007;98:456–461. doi: 10.1093/bja/aem035.
    1. Ledowski T, Ang B, Schmarbeck T, Rhodes J. Monitoring of sympathetic tone to assess postoperative pain: skin conductance vs surgical stress index. Anaesthesia. 2009;64:727–731. doi: 10.1111/j.1365-2044.2008.05834.x.

Source: PubMed

3
Abonner