Are AMPA receptor positive allosteric modulators potential pharmacotherapeutics for addiction?

Lucas R Watterson, M Foster Olive, Lucas R Watterson, M Foster Olive

Abstract

Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release of brain-derived neurotrophic factor (BDNF) in an activity-dependent manner. Through these mechanisms, AMPA PAMs have shown promise as broad spectrum pharmacotherapeutics in preclinical and clinical studies for various neurodegenerative and psychiatric disorders. In recent years, a small collection of preclinical animal studies has also shown that AMPA PAMs may have potential as pharmacotherapeutic adjuncts to extinction-based or cue-exposure therapies for the treatment of drug addiction. The present paper will review this preclinical literature, discuss novel data collected in our laboratory, and recommend future research directions for the possible development of AMPA PAMs as anti-addiction medications.

Figures

Figure 1
Figure 1
Male Sprague-Dawley rats were placed into 2 h daily methamphetamine IVSA-administration sessions for 10 days. Presses on an active lever produced methamphetamine infusions (0.05 mg/kg/infusion) on an FR1 schedule of reinforcement with a simultaneous 2 s light-tone stimulus complex. Following stable acquisition of methamphetamine IVSA, rats were placed into daily 2 h extinction sessions for 10 days during which active-lever presses no longer produced drug infusions or presentation of the stimulus complex. Twenty min prior to being placed into each extinction session, rats received intraperitoneal (i.p.) administration of either vehicle (Veh, 30% w/v 2-hydroxypropyl-β-cyclodextrin), CX1837 0.1 mg/kg (N = 6) CX1837 1 mg/kg (N = 12) CX1739 0.1 mg/kg (N = 7), 1 mg/kg (N = 7), or 10 mg/kg (N = 9). Vehicle treated rats (N = 20) were used for comparison for both CX1739 and CX1837. Data points represent the mean percent change (± SEM) from self-administration (mean of the final 2 days of self-administration procedures) for active lever presses. For CX1837, a mixed ANOVA analysis revealed a significant main effect of extinction session, F(9,306) = 5.78, p < 0.001, a significant extinction session x dose interaction, F(18, 306) = 2.77, p < 0.001, but no main effect of dose, F(2,34) = 1.32, p > 0.05. Post-hoc analyses revealed a significant reduction in responding on extinction day one by the 1 mg/kg dose of CX1837 versus vehicle, F(2,34) = 4.86, p < 0.05. No other measures were significantly different. For CX1739, a significant main effect of extinction session, F(9,351) = 15.180, p < 0.001, a significant extinction session X dose interaction, F(27,351) = 1.94, p < 0.004, but not a significant main effect of dose, F(3,39) = 2.60 p > 0.05. Post-hoc analyses revealed a significant reduction in responding on extinction day one by the 10 mg/kg dose of CX1739 vs. vehicle F(3,39) = 5.476, p < 0.003. No other measures were significantly different. All experimental procedures were conducted with the approval of the Institutional Animal Care and Use Committee at Arizona State University and according to the Guide for Care and Use of Laboratory Animals as adopted by the National Institutes of Health (NIH).
Figure 2
Figure 2
Following extinction sessions, rats were placed into cue-primed reinstatement procedures to assess the retention of extinction learning. Data points represent the mean percent change (±SEM) from self-administration (mean of the final 2 days of self-administration procedures) for active lever presses. A one-way ANOVA did not reveal significant differences between vehicle or any CX1837 doses (0.1 or 1 mg/kg, i.p.), F(3,39) = 0.161, p = 0.922, nor any significant differences between vehicle and of the doses of CX1739 tested (0.1, 1, or 10 mg/kg, i.p.), F(2,35) = 0.294, p = 0.747.

References

    1. Koob G.F., Sanna P.P., Bloom F.E. Neuroscience of addiction. Neuron. 1998;21:467–476. doi: 10.1016/S0896-6273(00)80557-7.
    1. Kalivas P.W., Volkow N., Seamans J. Unmanageable motivation in addiction: A pathology in prefrontal-accumbens glutamate transmission. Neuron. 2005;45:647–650. doi: 10.1016/j.neuron.2005.02.005.
    1. Ericson N. Substance Abuse : The Nation’s Number One Health Problem. [(accessed on 28 October 2013)]. Available online: .
    1. Harwood H., Bouchery E. The Economic Costs of Drug Abuse in the United States, 1992-2002. 2004. [(accessed on 28 October 2013)]. Available online: .
    1. Fiscal Year 2008 Budget Request | National Institute on Drug Abuse [(accessed on 28 October 2013)]. Available online: .
    1. Substance Abuse and Mental Health Services Administration. US Department of Health and Human Services Results from the 2011 National Survey on Drug Use and Health: Summary of National Findings. [(accessed on 28 October 2013)]. Available online: .
    1. Sofuoglu M., DeVito E.E., Waters A.J., Carroll K.M. Cognitive enhancement as a treatment for drug addictions. Neuropharmacology. 2013;64:452–463. doi: 10.1016/j.neuropharm.2012.06.021.
    1. Sofuoglu M. Cognitive enhancement as a pharmacotherapy target for stimulant addiction. Addiction. 2010;105:38–48. doi: 10.1111/j.1360-0443.2009.02791.x.
    1. Hendershot C.S., Witkiewitz K., George W.H., Marlatt G.A. Relapse prevention for addictive behaviors. Subst. Abuse Treat. Prev. Policy. 2011;6:17. doi: 10.1186/1747-597X-6-17.
    1. Brandon T.H., Vidrine J.I., Litvin E.B. Relapse and relapse prevention. Annu. Rev. Clin. Psychol. 2007;3:257–284. doi: 10.1146/annurev.clinpsy.3.022806.091455.
    1. American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR. 4th ed. American Psychiatric Publishing; Washington, WA, USA: 2000.
    1. Maddux J.F., Desmond D.P. Addiction or dependence? Addiction. 2000;95:661–665. doi: 10.1046/j.1360-0443.2000.9556611.x.
    1. O’Brien C.P., Volkow N.D., Li T.-K. What’s in a word? Addiction versus dependence in DSM-V. Am. J. Psychiatry. 2006;163:2014.
    1. O’Brien C. Addiction and dependence in DSM-V. Addiction. 2011;106:866–867.
    1. Ahmed S.H. Validation crisis in animal models of drug addiction: beyond non-disordered drug use toward drug addiction. Neurosci. Biobehav. Rev. 2010;35:172–184. doi: 10.1016/j.neubiorev.2010.04.005.
    1. Ahmed S.H. The science of making drug-addicted animals. Neuroscience. 2012;211:107–125. doi: 10.1016/j.neuroscience.2011.08.014.
    1. Kalivas P., Volkow N.D.N. New medications for drug addiction hiding in glutamatergic neuroplasticity. Mol. Psychiatry. 2011;16:974–986. doi: 10.1038/mp.2011.46.
    1. American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders. 5th ed. American Psychiatric Publishing; Washington, WA, USA: 2013.
    1. Berridge K.C., Robinson T.E. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Brain Res. Rev. 1998;28:309–369. doi: 10.1016/S0165-0173(98)00019-8.
    1. Feltenstein M.W., See R.E. The neurocircuitry of addiction: An overview. Br. J. Pharmacol. 2008;154:261–274. doi: 10.1038/bjp.2008.51.
    1. Hyman S.E., Malenka R.C. Addiction and the brain: the neurobiology of compulsion and its persistence. Nat. Rev. Neurosci. 2001;2:695–703. doi: 10.1038/35094560.
    1. Spanagel R., Weiss F. The dopamine hypothesis of reward: past and current status. Trends Neurosci. 1999;22:521–527. doi: 10.1016/S0166-2236(99)01447-2.
    1. Graybiel A.M. Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci. 2008;31:359–387. doi: 10.1146/annurev.neuro.29.051605.112851.
    1. Kalivas P.W. Neurobiology of cocaine addiction: implications for new pharmacotherapy. Am. J. Addict. 2007;16:71–78. doi: 10.1080/10550490601184142.
    1. Gass J.T., Olive M.F. Glutamatergic substrates of drug addiction and alcoholism. Biochem. Pharmacol. 2008;75:218–265. doi: 10.1016/j.bcp.2007.06.039.
    1. Cleva R., Gass J. Neuroanatomical structures underlying the extinction of drug-seeking behavior. Open Addict. J. 2010;3:63–75. doi: 10.2174/1874941001003020063.
    1. Kalivas P.W., O’Brien C. Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology. 2008;33:166–180. doi: 10.1038/sj.npp.1301564.
    1. Kalivas P. Neurocircuitry of addiction. In: Davis K.L., Charney D., Coyle J.T., Nemeroff C., editors. Neuropsychopharmacology. Lippincott, Williams, & Wilkins; Philadelphia, PA, USA: 2002. pp. 1357–1366.
    1. Goldstein R.Z., Volkow N.D. Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 2011;12:652–669. doi: 10.1038/nrn3119.
    1. Kalivas P., Volkow N. The neural basis of addiction: A pathology of motivation and choice. Am. J. Psychiatry. 2005;162:1403–1413.
    1. Jentsch J.D., Taylor J.R. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology. 1999;146:373–390. doi: 10.1007/PL00005483.
    1. Miller E.K., Cohen J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 2001;24:167–202. doi: 10.1146/annurev.neuro.24.1.167.
    1. Koob G.F., Volkow N.D. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35:217–238. doi: 10.1038/npp.2009.110.
    1. Field M., Cox W.M. Attentional bias in addictive behaviors: a review of its development, causes, and consequences. Drug Alcohol Depend. 2008;97:1–20. doi: 10.1016/j.drugalcdep.2008.03.030.
    1. Kalivas P.W. Addiction as a pathology in prefrontal cortical regulation of corticostriatal habit circuitry. Neurotox. Res. 2008;14:185–189. doi: 10.1007/BF03033809.
    1. Tzschentke T.M., Schmidt W.J. Glutamatergic mechanisms in addiction. Mol. Psychiatry. 2003;8:373–382. doi: 10.1038/sj.mp.4001269.
    1. Kalivas P.W., Lalumiere R.T., Knackstedt L., Shen H. Glutamate transmission in addiction. Neuropharmacology. 2009;56:169–173. doi: 10.1016/j.neuropharm.2008.07.011.
    1. Gass J.T., Olive M.F.F. Positive allosteric modulation of mGluR5 receptors facilitates extinction of a cocaine contextual memory. Biol. Psychiatry. 2009;65:717–720. doi: 10.1016/j.biopsych.2008.11.001.
    1. Peters J., Kalivas P.W., Quirk G.J. Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn. Mem. 2009;16:279–288. doi: 10.1101/lm.1041309.
    1. LaLumiere R.T., Smith K.C., Kalivas P.W. Neural circuit competition in cocaine-seeking: Roles of the infralimbic cortex and nucleus accumbens shell. Eur. J. Neurosci. 2012;35:614–622. doi: 10.1111/j.1460-9568.2012.07991.x.
    1. Cleva R.M., Gass J.T., Widholm J.J., Olive M.F. Glutamatergic targets for enhancing extinction learning in drug addiction. Curr. Neuropharmacol. 2010;8:394–408. doi: 10.2174/157015910793358169.
    1. Olive M.F., Cleva R.M., Kalivas P.W., Malcolm R.J. Glutamatergic medications for the treatment of drug and behavioral addictions. Pharmacol. Biochem. Behav. 2012;100:801–810. doi: 10.1016/j.pbb.2011.04.015.
    1. Niciu M.J., Kelmendi B., Sanacora G. Overview of glutamatergic neurotransmission in the nervous system. Pharmacol. Biochem. Behav. 2012;100:656–664. doi: 10.1016/j.pbb.2011.08.008.
    1. Lisman J., Yasuda R., Raghavachari S. Mechanisms of CaMKII action in long-term potentiation. Nat. Rev. Neurosci. 2012;13:169–182.
    1. Nicoll R.A., Roche K.W. Long-term potentiation: Peeling the onion. Neuropharmacology. 2013;74:18–22. doi: 10.1016/j.neuropharm.2013.02.010.
    1. Lamprecht R., LeDoux J. Structural plasticity and memory. Nat. Rev. Neurosci. 2004;5:45–54. doi: 10.1038/nrn1301.
    1. Chang P.K.-Y., Verbich D., McKinney R.A. AMPA receptors as drug targets in neurological disease—Advantages, caveats, and future outlook. Eur. J. Neurosci. 2012;35:1908–1916. doi: 10.1111/j.1460-9568.2012.08165.x.
    1. Lynch G., Gall C.M. Ampakines and the threefold path to cognitive enhancement. Trends Neurosci. 2006;29:554–562. doi: 10.1016/j.tins.2006.07.007.
    1. Jog M.S. Building neural representations of habits. Science. 1999;286:1745–1749. doi: 10.1126/science.286.5445.1745.
    1. Everitt B.J., Robbins T.W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 2005;8:1481–1489. doi: 10.1038/nn1579.
    1. Marlatt G.A. Cue exposure and relapse prevention in the treatment of addictive behaviors. Addict. Behav. 1990;15:395–399. doi: 10.1016/0306-4603(90)90048-3.
    1. Conklin C.A., Tiffany S.T. Applying extinction research and theory to cue-exposure addiction treatments. Addiction. 2002;97:155–167. doi: 10.1046/j.1360-0443.2002.00014.x.
    1. Havermans R.C., Jansen A.T.M. Increasing the efficacy of cue exposure treatment in preventing relapse of addictive behavior. Addict. Behav. 2003;28:989–994. doi: 10.1016/S0306-4603(01)00289-1.
    1. Epstein D.H., Preston K.L., Stewart J., Shaham Y. Toward a model of drug relapse: an assessment of the validity of the reinstatement procedure. Psychopharmacology. 2006;189:1–16. doi: 10.1007/s00213-006-0529-6.
    1. Bouton M.E. Context and behavioral processes in extinction. Learn. Mem. 2004;11:485–494. doi: 10.1101/lm.78804.
    1. Bouton M. Context, ambiguity, and unlearning: Sources of relapse after behavioral extinction. Biol. Psychiatry. 2002;52:976–986. doi: 10.1016/S0006-3223(02)01546-9.
    1. Crombag H.S., Bossert J.M., Koya E., Shaham Y. Context-induced relapse to drug seeking: A review. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008;363:3233–3243. doi: 10.1098/rstb.2008.0090.
    1. Rescorla R. A Spontaneous recovery. Learn. Mem. 2004;11:501–509. doi: 10.1101/lm.77504.
    1. Taylor J.R., Olausson P., Quinn J.J., Torregrossa M.M. Targeting extinction and reconsolidation mechanisms to combat the impact of drug cues on addiction. Neuropharmacology. 2009;56:186–195. doi: 10.1016/j.neuropharm.2008.07.027.
    1. Sutton M.A., Schmidt E.F., Choi K.-H., Schad C.A., Whisler K., Simmons D., Karaian D.A., Monteggia L.M., Neve R.L., Self D.W. Extinction-induced upregulation in AMPA receptors reduces cocaine- seeking behaviour. Nature. 2003;421:70–75. doi: 10.1038/nature01249.
    1. Fuchs R.A., Branham R.K., See R.E. Different neural substrates mediate cocaine seeking after abstinence versus extinction training: A critical role for the dorsolateral caudate-putamen. J. Neurosci. 2006;26:3584–3588. doi: 10.1523/JNEUROSCI.5146-05.2006.
    1. Di Ciano P., Robbins T.W., Everitt B.J. Differential effects of nucleus accumbens core, shell, or dorsal striatal inactivations on the persistence, reacquisition, or reinstatement of responding for a drug-paired conditioned reinforcer. Neuropsychopharmacology. 2008;33:1413–1425. doi: 10.1038/sj.npp.1301522.
    1. Peters J., LaLumiere R.T., Kalivas P.W. Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J. Neurosci. 2008;28:6046–6053. doi: 10.1523/JNEUROSCI.1045-08.2008.
    1. LaLumiere R.T., Kalivas P.W. Glutamate release in the nucleus accumbens core is necessary for heroin seeking. J. Neurosci. 2008;28:3170–3177. doi: 10.1523/JNEUROSCI.5129-07.2008.
    1. Knackstedt L.A., Moussawi K., LaLumiere R.T., Schwendt M., Klugmann M., Kalivas P.W. Extinction training after cocaine self-administration induces glutamatergic plasticity to inhibit cocaine seeking. J. Neurosci. 2010;30:7984–7992.
    1. Childress A., Mozley P. Limbic activation during cue-induced cocaine craving. Am. J. Psychiatry. 1999;156:1–15.
    1. Ongür D., Price J.L. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb. Cortex. 2000;10:206–219. doi: 10.1093/cercor/10.3.206.
    1. McFarland K., Kalivas P.W. The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J. Neurosci. 2001;21:8655–8663.
    1. Kalivas P.W., McFarland K. Brain circuitry and the reinstatement of cocaine-seeking behavior. Psychopharmacology. 2003;168:44–56. doi: 10.1007/s00213-003-1393-2.
    1. McFarland K., Lapish C.C., Kalivas P.W. Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J. Neurosci. 2003;23:3531–7353.
    1. LaLumiere R.T., Niehoff K.E., Kalivas P.W. The infralimbic cortex regulates the consolidation of extinction after cocaine self-administration. Learn. Mem. 2010;17:168–175. doi: 10.1101/lm.1576810.
    1. Kalivas P.W. The glutamate homeostasis hypothesis of addiction. Nat. Rev. Neurosci. 2009;10:561–572. doi: 10.1038/nrn2515.
    1. Ghasemzadeh M.B., Vasudevan P., Mueller C., Seubert C., Mantsch J.R. Region specific alterations in glutamate receptor expression and subcellular distribution following extinction of cocaine self-administration. Brain Res. 2009;1267:89–102.
    1. Bachtell R.K., Choi K.-H., Simmons D.L., Falcon E., Monteggia L.M., Neve R.L., Self D.W. Role of GluR1 expression in nucleus accumbens neurons in cocaine sensitization and cocaine-seeking behavior. Eur. J. Neurosci. 2008;27:2229–2240. doi: 10.1111/j.1460-9568.2008.06199.x.
    1. Lynch G. Memory enhancement: the search for mechanism-based drugs. Nat. Neurosci. 2002;5:S1035–S1038. doi: 10.1038/nn935.
    1. Lynch G. Glutamate-based therapeutic approaches: ampakines. Curr. Opin. Pharmacol. 2006;6:82–88. doi: 10.1016/j.coph.2005.09.005.
    1. Arai A.C., Kessler M. Pharmacology of ampakine modulators: from AMPA receptors to synapses and behavior. Curr. Drug Targets. 2007;8:583–602. doi: 10.2174/138945007780618490.
    1. Lynch G., Palmer L.C., Gall C.M. The likelihood of cognitive enhancement. Pharmacol. Biochem. Behav. 2011;99:116–129.
    1. Swanson G. Targeting AMPA and kainate receptors in neurological disease: therapies on the horizon? Neuropsychopharmacology. 2009;34:249–250. doi: 10.1038/npp.2008.158.
    1. Black M.D. Therapeutic potential of positive AMPA modulators and their relationship to AMPA receptor subunits. A review of preclinical data. Psychopharmacology. 2005;179:154–163. doi: 10.1007/s00213-004-2065-6.
    1. Marenco S., Weinberger D.R. Therapeutic potential of positive AMPA receptor modulators in the treatment of neuropsychiatric disorders. CNS Drugs. 2006;20:173–185. doi: 10.2165/00023210-200620030-00001.
    1. Jin R., Clark S., Weeks A.M., Dudman J.T., Gouaux E., Partin K.M. Mechanism of positive allosteric modulators acting on AMPA receptors. J. Neurosci. 2005;25:9027–9036. doi: 10.1523/JNEUROSCI.2567-05.2005.
    1. ONeill M., Bleakman D. AMPA receptor potentiators for the treatment of CNS disorders. CNS Neurol. Disord. 2004;3:181–194.
    1. Christopoulos A. Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nat. Rev. Drug Discov. 2002;1:198–210. doi: 10.1038/nrd746.
    1. Olney J.W. Excitatory transmitter neurotoxicity. Neurobiol. Aging. 1994;15:259–260. doi: 10.1016/0197-4580(94)90127-9.
    1. Staubli U., Rogers G., Lynch G. Facilitation of glutamate receptors enhances memory. Proc. Natl. Acad. Sci. USA. 1994;91:777–781. doi: 10.1073/pnas.91.2.777.
    1. Mattson M. Excitotoxic and excitoprotective mechanisms. Neuromol. Med. 2003;3:65–94. doi: 10.1385/NMM:3:2:65.
    1. Mehta A., Prabhakar M., Kumar P., Deshmukh R., Sharma P.L. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur. J. Pharmacol. 2013;698:6–18. doi: 10.1016/j.ejphar.2012.10.032.
    1. Shaffer C.L., Hurst R.S., Scialis R.J., Osgood S.M., Bryce D.K., Hoffmann W.E., Lazzaro J.T., Hanks A.N., Lotarski S., Weber M.L., et al. Positive allosteric modulation of AMPA receptors from efficacy to toxicity: The interspecies exposure-response continuum of the novel potentiator PF-4778574. J. Pharmacol. Exp. Ther. 2013;347:212–224. doi: 10.1124/jpet.113.204735.
    1. Sekiguchi M., Nishikawa K., Aoki S., Wada K. A desensitization-selective potentiator of AMPA-type glutamate receptors. Br. J. Pharmacol. 2002;136:1033–1041. doi: 10.1038/sj.bjp.0704804.
    1. Bramham C.R., Messaoudi E. BDNF function in adult synaptic plasticity: The synaptic consolidation hypothesis. Prog. Neurobiol. 2005;76:99–125. doi: 10.1016/j.pneurobio.2005.06.003.
    1. Clarkson A.N., Overman J.J., Zhong S., Mueller R., Lynch G., Carmichael S.T. AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke. J. Neurosci. 2011;31:3766–3775. doi: 10.1523/JNEUROSCI.5780-10.2011.
    1. Silverman J.L., Oliver C.F., Karras M.N., Gastrell P.T., Crawley J.N. AMPAKINE enhancement of social interaction in the BTBR mouse model of autism. Neuropharmacology. 2013;64:268–282. doi: 10.1016/j.neuropharm.2012.07.013.
    1. Bowers M.S., Chen B.T., Bonci A. AMPA receptor synaptic plasticity induced by psychostimulants: the past, present, and therapeutic future. Neuron. 2010;67:11–24. doi: 10.1016/j.neuron.2010.06.004.
    1. Ghitza U.E., Zhai H., Wu P., Airavaara M., Shaham Y., Lu L. Role of BDNF and GDNF in drug reward and relapse: A review. Neurosci. Biobehav. Rev. 2010;35:157–171. doi: 10.1016/j.neubiorev.2009.11.009.
    1. Willcocks A.L., McNally G.P. The role of medial prefrontal cortex in extinction and reinstatement of alcohol-seeking in rats. Eur. J. Neurosci. 2013;37:259–268. doi: 10.1111/ejn.12031.
    1. Xue Y.-X., Luo Y.-X., Wu P., Shi H.-S., Xue L.-F., Chen C., Zhu W.-L., Ding Z.-B., Bao Y.-P., Shi J., et al. A memory retrieval-extinction procedure to prevent drug craving and relapse. Science. 2012;336:241–245. doi: 10.1126/science.1215070.
    1. Zayra Millan E., Milligan-Saville J., McNally G.P. Memory retrieval, extinction, and reinstatement of alcohol seeking. Neurobiol. Learn. Mem. 2013;101:26–32. doi: 10.1016/j.nlm.2012.12.010.
    1. Sacktor T. How does PKMζ maintain long-term memory? Nat. Rev. Neurosci. 2010;12:9–15. doi: 10.1038/nrn2949.
    1. Volk L.J., Bachman J.L., Johnson R., Yu Y., Huganir R.L. PKM-ζ is not required for hippocampal synaptic plasticity, learning and memory. Nature. 2013;493:420–423. doi: 10.1038/nature11802.
    1. Lee A.M., Kanter B.R., Wang D., Lim J.P., Zou M.E., Qiu C., McMahon T., Dadgar J., Fischbach-Weiss S.C., Messing R.O. Prkcz null mice show normal learning and memory. Nature. 2013;493:416–419. doi: 10.1038/nature11803.
    1. Lauterborn J.C., Pineda E., Chen L.Y., Ramirez E.A., Lynch G., Gall C.M. Ampakines cause sustained increases in brain-derived neurotrophic factor signaling at excitatory synapses without changes in AMPA receptor subunit expression. Neuroscience. 2009;159:283–295. doi: 10.1016/j.neuroscience.2008.12.018.
    1. Lynch G. Memory and the brain: unexpected chemistries and a new pharmacology. Neurobiol. Learn. Mem. 1998;70:82–100. doi: 10.1006/nlme.1998.3840.

Source: PubMed

3
Abonner