Targeting Inflammation Driven by HMGB1

Huan Yang, Haichao Wang, Ulf Andersson, Huan Yang, Haichao Wang, Ulf Andersson

Abstract

High mobility group box 1 (HMGB1) is a highly conserved, nuclear protein present in all cell types. It is a multi-facet protein exerting functions both inside and outside of cells. Extracellular HMGB1 has been extensively studied for its prototypical alarmin functions activating innate immunity, after being actively released from cells or passively released upon cell death. TLR4 and RAGE operate as the main HMGB1 receptors. Disulfide HMGB1 activates the TLR4 complex by binding to MD-2. The binding site is separate from that of LPS and it is now feasible to specifically interrupt HMGB1/TLR4 activation without compromising protective LPS/TLR4-dependent functions. Another important therapeutic strategy is established on the administration of HMGB1 antagonists precluding RAGE-mediated endocytosis of HMGB1 and HMGB1-bound molecules capable of activating intracellular cognate receptors. Here we summarize the role of HMGB1 in inflammation, with a focus on recent findings on its mission as a damage-associated molecular pattern molecule and as a therapeutic target in inflammatory diseases. Recently generated HMGB1-specific inhibitors for treatment of inflammatory conditions are discussed.

Keywords: HMGB1; RAGE; TLR4; danger signal; drug target; inflammation.

Copyright © 2020 Yang, Wang and Andersson.

Figures

Figure 1
Figure 1
Inhibiting TLR4- or RAGE-mediated effects induced by HMGB1 or LPS-HMGB1 complexes. During endotoxemia, LPS and extracellular HMGB1 forms complexes that are endocytosed via the RAGE-dependent pathway. LPS and HMGB1 activate TLR4 system. The unique contribution by HMGB1 is disruption of the lysosomal membrane enabling LPS to reach and activate its cytosolic receptor caspase-11, which cleaves gasdermin D to form an active oligomer. Activated gasdermin D will subsequently start coagulation and cause cellular pyroptosis in murine macrophages. The HMGB1-specific inhibitors recombinant HMGB1 box A, anti-HMGB1 m2G7, and acetylcholine each inhibits the cellular internalization of LPS-HMGB1 complexes and resultant immune activation. Anti-HMGB1 m2G7 and acetylcholine also inhibit HMGB1/TLR4-mediated inflammation, whereas P5779 and resveratrol selectively block the HMGB1/TLR4 pathway only.

References

    1. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol. (1994) 12:991–1045. 10.1146/annurev.iy.12.040194.005015
    1. Yang H, Tracey KJ. Targeting HMGB1 in inflammation. Biochim Biophys Acta. (2010) 1799:149–56. 10.1016/j.bbagrm.2009.11.019
    1. Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Ann Rev Immunol. (2011) 29:139–62. 10.1146/annurev-immunol-030409-101323
    1. Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, et al. . HMGB1 in health and disease. Mol Aspects Med. (2014) 40:1–116. 10.1016/j.mam.2014.05.001
    1. Andersson U, Yang H, Harris H. Extracellular HMGB1 as a therapeutic target in inflammatory diseases. Expert Opin Ther Targets. (2018) 22:263–77. 10.1080/14728222.2018.1439924
    1. Venereau E, Casalgrandi M, Schiraldi M, Antoine DJ, Cattaneo A, De Marchis F, et al. Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med. (2012) 209:1519–28. 10.1084/jem.20120189
    1. Yang H, Hreggvidsdottir HS, Palmblad K, Wang H, Ochani M, Li J, et al. . A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc Natl Acad Sci USA. (2010) 107:11942–7. 10.1073/pnas.1003893107
    1. Yang H, Lundback P, Ottosson L, Erlandsson-Harris H, Venereau E, Bianchi ME, et al. . Redox modification of cysteine residues regulates the cytokine activity of high mobility group box-1 (HMGB1). Mol Med. (2012) 18:250–9. 10.2119/molmed.2011.00389
    1. Yang H, Wang H, Ju Z, Ragab AA, Lundback P, Long W, et al. . MD-2 is required for disulfide HMGB1-dependent TLR4 signaling. J Exp Med. (2015) 212:5–14. 10.1084/jem.20141318
    1. Xu J, Jiang Y, Wang J, Shi X, Liu Q, Liu Z, et al. . Macrophage endocytosis of high-mobility group box 1 triggers pyroptosis. Cell Death Differ. (2014) 21:1229–39. 10.1038/cdd.2014.40
    1. Deng M, Tang Y, Li W, Wang X, Zhang R, Zhang X, et al. . The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis. Immunity. (2018) 49:740–53.e7. 10.1016/j.immuni.2018.08.016
    1. Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science. (2013) 341:1250–3. 10.1126/science.1240988
    1. Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi-Takamura S, et al. . Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science. (2013) 341:1246–9. 10.1126/science.1240248
    1. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, et al. . Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. (2014) 514:187–92. 10.1038/nature13683
    1. Yang X, Cheng X, Tang Y, Qiu X, Wang Y, Kang H, et al. . Bacterial endotoxin activates the coagulation cascade through gasdermin D-dependent phosphatidylserine exposure. Immunity. (2019) 51:983–96.e6. 10.1016/j.immuni.2019.11.005
    1. Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, et al. . Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol. (2007) 8:487–96. 10.1038/ni1457
    1. Andreeva L, Hiller B, Kostrewa D, Lassig C, de Oliveira Mann CC, Jan Drexler D, et al. . cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders. Nature. (2017) 549:394–8. 10.1038/nature23890
    1. Sun Q, Loughran P, Shapiro R, Shrivastava IH, Antoine DJ, Li T, et al. . Redox-dependent regulation of hepatocyte absent in melanoma 2 inflammasome activation in sterile liver injury in mice. Hepatology. (2017) 65:253–68. 10.1002/hep.28893
    1. Porat A, Giat E, Kowal C, He M, Son M, Latz E, et al. . DNA-mediated interferon signature induction by SLE serum occurs in monocytes through two pathways: a mechanism to inhibit both pathways. Front Immunol. (2018) 9:2824. 10.3389/fimmu.2018.02824
    1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. (2016) 315:801–10. 10.1001/jama.2016.0287
    1. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. (2003) 348:138–50. 10.1056/NEJMra021333
    1. Cohen J, Vincent JL, Adhikari NK, Machado FR, Angus DC, Calandra T, et al. . Sepsis: a roadmap for future research. Lancet Infect Dis. (2015) 15:581–614. 10.1016/S1473-3099(15)70112-X
    1. Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, et al. . HMG-1 as a late mediator of endotoxin lethality in mice. Science. (1999) 285:248–51. 10.1126/science.285.5425.248
    1. Aneja RK, Tsung A, Sjodin H, Gefter JV, Delude RL, Billiar TR, et al. . Preconditioning with high mobility group box 1 (HMGB1) induces lipopolysaccharide (LPS) tolerance. J Leukoc Biol. (2008) 84:1326–34. 10.1189/jlb.0108030
    1. Robert SM, Sjodin H, Fink MP, Aneja RK. Preconditioning with high mobility group box 1 (HMGB1) induces lipoteichoic acid (LTA) tolerance. J Immunother. (2010) 33:663–71. 10.1097/CJI.0b013e3181dcd111
    1. Gregoire M, Tadie JM, Uhel F, Gacouin A, Piau C, Bone N, et al. . Frontline science: HMGB1 induces neutrophil dysfunction in experimental sepsis and in patients who survive septic shock. J Leukoc Biol. (2017) 101:1281–7. 10.1189/jlb.5HI0316-128RR
    1. Wild CA, Bergmann C, Fritz G, Schuler P, Hoffmann TK, Lotfi R, et al. . HMGB1 conveys immunosuppressive characteristics on regulatory and conventional T cells. Int Immunol. (2012) 24:485–94. 10.1093/intimm/dxs051
    1. Patel VS, Sitapara RA, Gore A, Phan B, Sharma L, Sampat V, et al. . High mobility group box-1 mediates hyperoxia-induced impairment of Pseudomonas aeruginosa clearance and inflammatory lung injury in mice. Am J Respir Cell Mol Biol. (2013) 48:280–7. 10.1165/rcmb.2012-0279OC
    1. Liu R, Mori S, Wake H, Zhang J, Liu K, Izushi Y, et al. . Establishment of in vitro binding assay of high mobility group box-1 and S100A12 to receptor for advanced glycation endproducts: heparin's effect on binding. Acta Med Okayama. (2009) 63:203–11. 10.18926/AMO/31812
    1. Ling Y, Yang ZY, Yin T, Li L, Yuan WW, Wu HS, et al. . Heparin changes the conformation of high-mobility group protein 1 and decreases its affinity toward receptor for advanced glycation endproducts in vitro. Int Immunopharmacol. (2011) 11:187–93. 10.1016/j.intimp.2010.11.014
    1. Yu M, Wang H, Ding A, Golenbock DT, Latz E, Czura CJ, et al. . HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock. (2006) 26:174–9. 10.1097/01.shk.0000225404.51320.82
    1. Yang H, Liu H, Zeng Q, Imperato GH, Addorisio ME, Li J, et al. . Inhibition of HMGB1/RAGE-mediated endocytosis by HMGB1 antagonist box A, anti-HMGB1 antibodies, and cholinergic agonists suppresses inflammation. Mol Med. (2019) 25:13. 10.1186/s10020-019-0081-6
    1. Andersson U, Yang H, Harris H. High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells. Semin Immunol. (2018) 38:40–8. 10.1016/j.smim.2018.02.011
    1. Qin S, Wang H, Yuan R, Li H, Ochani M, Ochani K, et al. . Role of HMGB1 in apoptosis-mediated sepsis lethality. J Exp Med. (2006) 203:1637–42. 10.1084/jem.20052203
    1. Yang H, Ochani M, Li J, Qiang X, Tanovic M, Harris HE, et al. . Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci USA. (2004) 101:296–301. 10.1073/pnas.2434651100
    1. Huston JM, Ochani M, Rosas-Ballina M, Liao H, Ochani K, Pavlov VA, et al. . Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med. (2006) 203:1623–8. 10.1084/jem.20052362
    1. Rosas-Ballina M, Ochani M, Parrish WR, Ochani K, Harris YT, Huston JM, et al. . Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci USA. (2008) 105:11008–13. 10.1073/pnas.0803237105
    1. Christaki E, Opal SM, Keith JC, Jr, Kessimian N, Palardy JE, Parejo NA, et al. . A monoclonal antibody against RAGE alters gene expression and is protective in experimental models of sepsis and pneumococcal pneumonia. Shock. (2011) 35:492–8. 10.1097/SHK.0b013e31820b2e1c
    1. Kokkola R, Li J, Sundberg E, Aveberger AC, Palmblad K, Yang H, et al. . Successful treatment of collagen-induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity. Arthritis Rheumatism. (2003) 48:2052–8. 10.1002/art.11161
    1. Huang Y, Yin H, Han J, Huang B, Xu J, Zheng F, et al. . Extracellular hmgb1 functions as an innate immune-mediator implicated in murine cardiac allograft acute rejection. Am J Transplant. (2007) 7:799–808. 10.1111/j.1600-6143.2007.01734.x
    1. Muhammad S, Barakat W, Stoyanov S, Murikinati S, Yang H, Tracey KJ, et al. . The HMGB1 receptor RAGE mediates ischemic brain damage. J Neurosci. (2008) 28:12023–31. 10.1523/JNEUROSCI.2435-08.2008
    1. Andrassy M, Volz HC, Igwe JC, Funke B, Eichberger SN, Kaya Z, et al. . High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation. (2008) 117:3216–26. 10.1161/CIRCULATIONAHA.108.769331
    1. Yuan H, Jin X, Sun J, Li F, Feng Q, Zhang C, et al. . Protective effect of HMGB1 a box on organ injury of acute pancreatitis in mice. Pancreas. (2009) 38:143–8. 10.1097/MPA.0b013e31818166b4
    1. Gong Q, Xu JF, Yin H, Liu SF, Duan LH, Bian ZL. Protective effect of antagonist of high-mobility group box 1 on lipopolysaccharide-induced acute lung injury in mice. Scand J Immunol. (2009) 69:29–35. 10.1111/j.1365-3083.2008.02194.x
    1. Shirey KA, Lai W, Patel MC, Pletneva LM, Pang C, Kurt-Jones E, et al. . Novel strategies for targeting innate immune responses to influenza. Mucosal Immunol. (2016) 9:1173–82. 10.1038/mi.2015.141
    1. Cai J, Yuan H, Wang Q, Yang H, Al-Abed Y, Hua Z, et al. . HMGB1-driven inflammation and intimal hyperplasia after arterial injury involves cell-specific actions mediated by TLR4. Arterioscler Thromb Vasc Biol. (2015) 35:2579–93. 10.1161/ATVBAHA.115.305789
    1. Goldenberg NM, Hu Y, Hu X, Volchuk A, Zhao YD, Kucherenko MM, et al. . Therapeutic targeting of high mobility group box-1 in pulmonary arterial hypertension. Am J Respir Crit Care Med. (2019) 199:1566–9. 10.1164/rccm.201808-1597LE
    1. Sun S, He M, Wang Y, Yang H, Al-Abed Y. Folic acid derived-P5779 mimetics regulate DAMP-mediated inflammation through disruption of HMGB1:TLR4:MD-2 axes. PLoS ONE. (2018) 13:e0193028. 10.1371/journal.pone.0193028
    1. Chavan SS, Huerta PT, Robbiati S, Valdes-Ferrer SI, Ochani M, Dancho M, et al. . HMGB1 mediates cognitive impairment in sepsis survivors. Mol Med. (2012) 18:930–7. 10.2119/molmed.2012.00195
    1. Valdes-Ferrer SI, Papoin J, Dancho ME, Olofsson PS, Li J, Lipton JM, et al. . HMGB1 mediates anemia of inflammation in murine sepsis survivors. Mol Med. (2016) 21:951–8. 10.2119/molmed.2015.00243
    1. Gao Q, Ma LL, Gao X, Yan W, Williams P, Yin DP. TLR4 mediates early graft failure after intraportal islet transplantation. Am J Transplant. (2010) 10:1588–96. 10.1111/j.1600-6143.2010.03151.x
    1. Schierbeck H, Lundback P, Palmblad K, Klevenvall L, Erlandsson-Harris H, Andersson U, et al. . Monoclonal anti-HMGB1 (high mobility group box chromosomal protein 1) antibody protection in two experimental arthritis models. Mol Med. (2011) 17:1039–44. 10.2119/molmed.2010.00264
    1. Agalave NM, Larsson M, Abdelmoaty S, Su J, Baharpoor A, Lundback P, et al. . Spinal HMGB1 induces TLR4-mediated long-lasting hypersensitivity and glial activation and regulates pain-like behavior in experimental arthritis. Pain. (2014) 155:1802–13. 10.1016/j.pain.2014.06.007
    1. Lundback P, Lea JD, Sowinska A, Ottosson L, Furst CM, Steen J, et al. . A novel high mobility group box 1 neutralizing chimeric antibody attenuates drug-induced liver injury and postinjury inflammation in mice. Hepatology. (2016) 64:1699–710. 10.1002/hep.28736
    1. Bangert A, Andrassy M, Muller AM, Bockstahler M, Fischer A, Volz CH, et al. . Critical role of RAGE and HMGB1 in inflammatory heart disease. Proc Natl Acad Sci USA. (2016) 113:E155–64. 10.1073/pnas.1522288113
    1. Sunden-Cullberg J, Norrby-Teglund A, Rouhiainen A, Rauvala H, Herman G, Tracey KJ, et al. . Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Crit Care Med. (2005) 33:564–73. 10.1097/01.CCM.0000155991.88802.4D
    1. Angus DC, Yang L, Kong L, Kellum JA, Delude RL, Tracey KJ, et al. . Circulating high-mobility group box 1 (HMGB1) concentrations are elevated in both uncomplicated pneumonia and pneumonia with severe sepsis. Crit Care Med. (2007) 35:1061–7. 10.1097/01.CCM.0000259534.68873.2A
    1. Karakike E, Adami ME, Lada M, Gkavogianni T, Koutelidakis IM, Bauer M, et al. . Late peaks of HMGB1 and sepsis outcome: evidence for synergy with chronic inflammatory disorders. Shock. (2019) 52:334–9. 10.1097/SHK.0000000000001265
    1. Lee JD, Liu N, Levin SC, Ottosson L, Andersson U, Harris HE, et al. Therapeutic blockade of HMGB1 reduces early motor deficits, but not survival in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. J Neuroinflammation. (2019) 16:45 10.1186/s12974-019-1435-2
    1. Schaper F, van Timmeren MM, Petersen A, Horst G, Bijl M, Limburg PC, et al. Treatment with Anti-HMGB1 monoclonal antibody does not affect lupus nephritis in MRL/lpr mice. Mol Med. (2016) 22:12–21. 10.2119/molmed.2015.00176
    1. Zhang C, Li C, Jia S, Yao P, Yang Q, Zhang Y. High-mobility group box 1 inhibition alleviates lupus-like disease in BXSB mice. Scand J Immunol. (2014) 79:333–7. 10.1111/sji.12165
    1. Yang Y, Li S, Yang Q, Shi Y, Zheng M, Liu Y, et al. . Resveratrol reduces the proinflammatory effects and lipopolysaccharide- induced expression of HMGB1 and TLR4 in RAW264.7 cells. Cell Physiol Biochem. (2014) 33:1283–92. 10.1159/000358696
    1. Zhang XS, Li W, Wu Q, Wu LY, Ye ZN, Liu JP, et al. . Resveratrol attenuates acute inflammatory injury in experimental subarachnoid hemorrhage in rats via inhibition of TLR4 pathway. Int J Mol Sci. (2016). 17:1331. 10.3390/ijms17081331
    1. Le K, Chibaatar Daliv E, Wu S, Qian F, Ali AI, Yu D, et al. . SIRT1-regulated HMGB1 release is partially involved in TLR4 signal transduction: a possible anti-neuroinflammatory mechanism of resveratrol in neonatal hypoxic-ischemic brain injury. Int Immunopharmacol. (2019) 75:105779. 10.1016/j.intimp.2019.105779
    1. Jiang H, Duan J, Xu K, Zhang W. Resveratrol protects against asthma-induced airway inflammation and remodeling by inhibiting the HMGB1/TLR4/NF-κB pathway. Exp Ther Med. (2019) 18:459–66. 10.3892/etm.2019.7594
    1. Xiang H, Hu B, Li Z, Li J. Dexmedetomidine controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Inflammation. (2014) 37:1763–70. 10.1007/s10753-014-9906-1
    1. Zi SF, Li JH, Liu L, Deng C, Ao X, Chen DD, et al. . Dexmedetomidine-mediated protection against septic liver injury depends on TLR4/MyD88/NF-κB signaling downregulation partly via cholinergic anti-inflammatory mechanisms. Int Immunopharmacol. (2019) 76:105898. 10.1016/j.intimp.2019.105898
    1. Zhai Y, Zhu Y, Liu J, Xie K, Yu J, Yu L, et al. . Dexmedetomidine post-conditioning alleviates cerebral ischemia-reperfusion injury in rats by inhibiting high mobility group protein B1 group (HMGB1)/toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway. Med Sci Monit. (2020) 26:e918617. 10.12659/MSM.918617
    1. Nishibori M, Mori S, Takahashi HK. Anti-HMGB1 monoclonal antibody therapy for a wide range of CNS and PNS diseases. J Pharmacol Sci. (2019) 140:94–101. 10.1016/j.jphs.2019.04.006
    1. Liu K, Mori S, Takahashi HK, Tomono Y, Wake H, Kanke T, et al. . Anti-high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats. FASEB J. (2007) 21:3904–16. 10.1096/fj.07-8770com
    1. Okuma Y, Liu K, Wake H, Zhang J, Maruo T, Date I, et al. . Anti-high mobility group box-1 antibody therapy for traumatic brain injury. Ann Neurol. (2012) 72:373–84. 10.1002/ana.23602
    1. Okuma Y, Wake H, Teshigawara K, Takahashi Y, Hishikawa T, Yasuhara T, et al. . Anti-High mobility group box 1 antibody therapy may prevent cognitive dysfunction after traumatic brain injury. World Neurosurg. (2019) 122:e864–71. 10.1016/j.wneu.2018.10.164
    1. Nakajo M, Uezono N, Nakashima H, Wake H, Komiya S, Nishibori M, et al. . Therapeutic time window of anti-high mobility group box-1 antibody administration in mouse model of spinal cord injury. Neurosci Res. (2019) 141:63–70. 10.1016/j.neures.2018.03.004
    1. Fu L, Liu K, Wake H, Teshigawara K, Yoshino T, Takahashi H, et al. Therapeutic effects of anti-HMGB1 monoclonal antibody on pilocarpine-induced status epilepticus in mice. Sci Rep. (2017) 7:1179 10.1038/s41598-017-01325-y
    1. Zhao J, Wang Y, Xu C, Liu K, Wang Y, Chen L, et al. . Therapeutic potential of an anti-high mobility group box-1 monoclonal antibody in epilepsy. Brain Behav Immun. (2017) 64:308–19. 10.1016/j.bbi.2017.02.002
    1. Zhang J, Takahashi HK, Liu K, Wake H, Liu R, Maruo T, et al. . Anti-high mobility group box-1 monoclonal antibody protects the blood-brain barrier from ischemia-induced disruption in rats. Stroke. (2011) 42:1420–8. 10.1161/STROKEAHA.110.598334
    1. Wang D, Liu K, Wake H, Teshigawara K, Mori S, Nishibori M. Anti-high mobility group box-1 (HMGB1) antibody inhibits hemorrhage-induced brain injury and improved neurological deficits in rats. Sci Rep. (2017) 7:46243. 10.1038/srep46243
    1. Otoshi K, Kikuchi S, Kato K, Sekiguchi M, Konno S. Anti-HMGB1 neutralization antibody improves pain-related behavior induced by application of autologous nucleus pulposus onto nerve roots in rats. Spine. (2011) 36:E692–8. 10.1097/BRS.0b013e3181ecd675
    1. Feldman P, Due MR, Ripsch MS, Khanna R, White FA. The persistent release of HMGB1 contributes to tactile hyperalgesia in a rodent model of neuropathic pain. J Neuroinflammation. (2012) 9:180. 10.1186/1742-2094-9-180
    1. Nakamura Y, Morioka N, Abe H, Zhang FF, Hisaoka-Nakashima K, Liu K, et al. . Neuropathic pain in rats with a partial sciatic nerve ligation is alleviated by intravenous injection of monoclonal antibody to high mobility group box-1. PLoS ONE. (2013) 8:e73640. 10.1371/journal.pone.0073640
    1. Nishida T, Tsubota M, Kawaishi Y, Yamanishi H, Kamitani N, Sekiguchi F, et al. . Involvement of high mobility group box 1 in the development and maintenance of chemotherapy-induced peripheral neuropathy in rats. Toxicology. (2016) 365:48–58. 10.1016/j.tox.2016.07.016
    1. Zhang FF, Morioka N, Harano S, Nakamura Y, Liu K, Nishibori M, et al. . Perineural expression of high-mobility group box-1 contributes to long-lasting mechanical hypersensitivity via matrix metalloprotease-9 up-regulation in mice with painful peripheral neuropathy. J Neurochem. (2016) 136:837–50. 10.1111/jnc.13434
    1. Sekiguchi F, Domoto R, Nakashima K, Yamasoba D, Yamanishi H, Tsubota M, et al. . Paclitaxel-induced HMGB1 release from macrophages and its implication for peripheral neuropathy in mice: Evidence for a neuroimmune crosstalk. Neuropharmacology. (2018) 141:201–13. 10.1016/j.neuropharm.2018.08.040
    1. Hisaoka-Nakashima K, Tomimura Y, Yoshii T, Ohata K, Takada N, Zhang FF, et al. . High-mobility group box 1-mediated microglial activation induces anxiodepressive-like behaviors in mice with neuropathic pain. Prog Neuropsychopharmacol Biol Psychiatry. (2019) 92:347–62. 10.1016/j.pnpbp.2019.02.005
    1. Nosaka N, Yashiro M, Yamada M, Fujii Y, Tsukahara H, Liu K, et al. . Anti-high mobility group box-1 monoclonal antibody treatment provides protection against influenza A virus (H1N1)-induced pneumonia in mice. Crit Care. (2015) 19:249. 10.1186/s13054-015-0983-9
    1. Hatayama K, Nosaka N, Yamada M, Yashiro M, Fujii Y, Tsukahara H, et al. . Combined effect of anti-high-mobility group box-1 monoclonal antibody and peramivir against influenza A virus-induced pneumonia in mice. J Med Virol. (2019) 91:361–9. 10.1002/jmv.25330
    1. Ito T, Kawahara K, Okamoto K, Yamada S, Yasuda M, Imaizumi H, et al. . Proteolytic cleavage of high mobility group box 1 protein by thrombin-thrombomodulin complexes. Arterioscler Thromb Vasc Biol. (2008) 28:1825–30. 10.1161/ATVBAHA.107.150631
    1. Okamoto K, Tamura T, Sawatsubashi Y. Sepsis and disseminated intravascular coagulation. J Intensive Care. (2016) 4:23. 10.1186/s40560-016-0149-0
    1. Yang H, Wang H, Levine YA, Gunasekaran MK, Wang Y, Addorisio M, et al. . Identification of CD163 as an antiinflammatory receptor for HMGB1-haptoglobin complexes. JCI Insight. (2016) 1:e85375. 10.1172/jci.insight.85375
    1. Remy KE, Cortes-Puch I, Solomon SB, Sun J, Pockros BM, Feng J, et al. . Haptoglobin improves shock, lung injury, and survival in canine pneumonia. JCI Insight. (2018) 3:e123013. 10.1172/jci.insight.123013
    1. Han Y, Yuan F, Deng C, He F, Zhang Y, Shen H, et al. . Metformin decreases LPS-induced inflammatory response in rabbit annulus fibrosus stem/progenitor cells by blocking HMGB1 release. Aging. (2019) 11:10252–65. 10.18632/aging.102453
    1. Horiuchi T, Sakata N, Narumi Y, Kimura T, Hayashi T, Nagano K, et al. . Metformin directly binds the alarmin HMGB1 and inhibits its proinflammatory activity. J Biol Chem. (2017) 292:8436–46. 10.1074/jbc.M116.769380
    1. Tsoyi K, Jang HJ, Nizamutdinova IT, Kim YM, Lee YS, Kim HJ, et al. . Metformin inhibits HMGB1 release in LPS-treated RAW 264.7 cells and increases survival rate of endotoxaemic mice. Br J Pharmacol. (2011) 162:1498–508. 10.1111/j.1476-5381.2010.01126.x
    1. Ju Z, Chavan SS, Antoine DJ, Dancho M, Tsaava T, Li J, et al. . Sequestering HMGB1 via DNA-conjugated beads ameliorates murine colitis. PLoS ONE. (2014) 9:e103992. 10.1371/journal.pone.0103992

Source: PubMed

3
Abonner