Muscular Atrophy and Sarcopenia in the Elderly: Is There a Role for Creatine Supplementation?

Eimear Dolan, Guilherme G Artioli, Rosa Maria R Pereira, Bruno Gualano, Eimear Dolan, Guilherme G Artioli, Rosa Maria R Pereira, Bruno Gualano

Abstract

Sarcopenia is characterized by a loss of muscle mass, quality, and function, and negatively impacts health, functionality, and quality of life for numerous populations, particularly older adults. Creatine is an endogenously produced metabolite, which has the theoretical potential to counteract many of the morphological and metabolic parameters underpinning sarcopenia. This can occur through a range of direct and indirect mechanisms, including temporal and spatial functions that accelerate ATP regeneration during times of high energy demand, direct anabolic and anti-catabolic functions, and enhanced muscle regenerating capacity through positively impacting muscle stem cell availability. Studies conducted in older adults show little benefit of creatine supplementation alone on muscle function or mass. In contrast, creatine supplementation as an adjunct to exercise training seems to augment the muscle adaptive response to the training stimulus, potentially through increasing capacity for higher intensity exercise, and/or by enhancing post-exercise recovery and adaptation. As such, creatine may be an effective dietary strategy to combat age-related muscle atrophy and sarcopenia when used to complement the benefits of exercise training.

Keywords: bioenergetics; dietary supplements; ergogenic aids; healthy ageing; metabolism; muscle; older adults; sarcopenia..

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Overview of the state of knowledge about the influence of creatine supplementation on muscle mass and function in older adults.

References

    1. Kreider R., Kalman D., Antonio J., Ziegenfuss T., Wildman R., Collins R., Candow D.G., Kleiner S.M., Almada A.L., Lopez H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr. 2017;14:18. doi: 10.1186/s12970-017-0173-z.
    1. Gualano B., Rawson E., Candow D., Chilibeck P. Creatine supplementation in the aging population: Effects on skeletal muscle, bone and brain. Amino Acids. 2016;48:1793–1805. doi: 10.1007/s00726-016-2239-7.
    1. Dolan E., Gualano B., Rawson E. Beyond muscle: The effects of creatine supplementation on brain creatine, cognitive processing, and traumatic brain injury. Eur. J. Sport Sci. 2019;19:1–14. doi: 10.1080/17461391.2018.1500644.
    1. Maughan R.J., Burke L.M., Dvorak J., Larson-Meyer D.E., Peeling P., Phillips S.M., Rawson E.S., Walsh N.P., Garthe I., Geyer H., et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Br. J. Sports Med. 2018;52:439–455. doi: 10.1136/bjsports-2018-099027.
    1. Gualano B., Artioli G.G., Poortmans J.R., Lancha Junior A.H. Exploring the therapeutic role of creatine supplementation. Amino Acids. 2010;38:31–44. doi: 10.1007/s00726-009-0263-6.
    1. Cruz-Jentoft A.J., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm T., Cooper C., Landi F., Rolland Y., Sayer A.A., et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31. doi: 10.1093/ageing/afy169.
    1. De Santana F., Domiciano D., Goncalves M., Machado L., Figueiredo C., Lopes J., Caparbo V.F., Takayama L., Menezes P.R., Pereira R.M. Association of appendicular lean mass, and subcutaneous and visceral adipose tissue with mortality in older Brazilians: The São Paulo Ageing & Health Study. J. Bone Miner Res. 2019;34:1264–1274.
    1. Shafiee G., Keshtkar A., Soltani A., Ahadi Z., Larijani B., Heshmat R. Prevalence of sarcopenia in the world: A systematic review and meta- analysis of general population studies. J. Diabetes Metab. Disord. 2017;16:1–10. doi: 10.1186/s40200-017-0302-x.
    1. Han A., Bokshan S., Marcaccio S., DePasse J., Daniels A. Diagnostic Criteria and Clinical Outcomes in Sarcopenia Research: A Literature Review. J. Clin. Med. 2018;7:70. doi: 10.3390/jcm7040070.
    1. Riuzzi F., Sorci G., Arcuri C., Giambanco I., Bellezza I., Minelli A., Donato R. Cellular and molecular mechanisms of sarcopenia: The S100B perspective. J. Cachexia Sarcopenia Muscle. 2018;9:1255–1268. doi: 10.1002/jcsm.12363.
    1. Landi F., Mazetti E., Martone A., Bernebei R., Onder G. Exercise as a remedy for sarcopenia. Curr. Opin. Clin. Nutr. Medab. Care. 2014;17:25–31. doi: 10.1097/MCO.0000000000000018.
    1. Landi F., Sieber C., Fielding R., Rolland Y., Guralnik J. Nutritional intervention in sarcopenia: Report from the International Conference on Frailty and Sarcopenia Research Task Force. J. Frailty Aging. 2018;7:247–252.
    1. McLeod J.C., Stokes T., Phillips S.M., Phillips S.M. Resistance exercise training as a primary countermeasure to age-related chronic disease. Front Physiol. 2019 doi: 10.3389/fphys.2019.00645.
    1. Ebert S., Al-Zoughbi A., Bodine S., Adams C. Skeletal muscle atrophy: Discovery of mechanisms and potential therapies. Physiology. 2019;34:232–239. doi: 10.1152/physiol.00003.2019.
    1. Narici M.V., Maffulli N. Sarcopenia: Characteristics, mechanisms and functional significance. Br. Med. Bull. 2010;95:139–159. doi: 10.1093/bmb/ldq008.
    1. Greenhaff P.L. The creatine-phosphocreatine system: There’s more than one song in its repertoire. J. Physiol. 2001;537:657. doi: 10.1113/jphysiol.2001.013478.
    1. Wallimann T., Wyss M., Brdiczka D., Nicolay K., Eppenberger H. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: The “phosphocreatine circuit” for cellular energy homeostasis. Biochem. J. 1992;281:21–40. doi: 10.1042/bj2810021.
    1. Sahlin K., Harris R. The creatine kinase reaction: A simple reaction with functional complexity. Amino Acids. 2011;40:1363–1367. doi: 10.1007/s00726-011-0856-8.
    1. Van Loon L., Murphy R., Oosterlaar A., Cameron-Smith D., Hargreaves M., Wagenmakers A., Snow R. Creatine supplementation increases glycogen storage but not GLUT-4 expression in human skeletal muscle. Clin. Sci. 2004;106:99–106. doi: 10.1042/CS20030116.
    1. Candow D.G., Forbes S.C., Chilibeck P.D., Cornish S.M., Antonio J., Kreider R.B. Effectiveness of creatine supplementation on aging muscle and bone: Focus on falls prevention and inflammation. J. Clin. Med. 2019;8:488. doi: 10.3390/jcm8040488.
    1. Guimbal C., Kilimann M. A Na(+)-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression. J. Biol. Chem. 1993;268:8418–8421.
    1. Berneis K., Ninnis R., Haussinger D., Keller U. Effects of hyper- and hypoosmolality on whole body protein and glucose kinetics in humans. Am. J. Physiol. 1999;276:E188–E195. doi: 10.1152/ajpendo.1999.276.1.E188.
    1. Safdar A., Yardley N., Snow R., Melov S., Tarnapolsky M. Global and targeted gene expression and protein content in skeletal muscle of young men following short-term creatine monohydrate supplementation. Physiol. Genomics. 2008;32:219–228. doi: 10.1152/physiolgenomics.00157.2007.
    1. Deldicque L., Louis M., Theisen D., Nielens H., Dehoux M., Thissen J., Rennie M.J., Francaux M. Increased IGF mRNA in human skeletal muscle after creatine supplementation. Med. Sci. Sports Exerc. 2005;37:731–736. doi: 10.1249/01.MSS.0000162690.39830.27.
    1. Burke D., Candow D., Chilibeck P., MacNeil L., Roy B., Tarnapolsky M., Ziegenfuss T. Effect of creatine supplementation and resistance-exercise training on muscle insulin-like growth factor in young adults. Int. J. Sport Nutr. Exerc. Metab. 2008;18:389–398. doi: 10.1123/ijsnem.18.4.389.
    1. Parise G., Mihic S., MacLennan D., Yarasheski K., Tarnapolsky M. Effects of acute creatine monohydrate supplementation on leucine kinetics and mixed-muscle protein synthesis. J. Appl. Physiol. 2001;91:1041–1047. doi: 10.1152/jappl.2001.91.3.1041.
    1. Candow D., Little J., Chilibeck P., Abeysekara S., Zello G., Kazachokov M., Cornish S.M., Yu P.H. Low-dose creatine combined with protein during resistance training in older men. Med. Sci. Sport Exerc. 2008;40:1645–1652. doi: 10.1249/MSS.0b013e318176b310.
    1. Johannsmeyer S., Candow D.G., Brahms C.M., Michel D., Zello G.A. Effect of creatine supplementation and drop-set resistance training in untrained aging adults. Exp. Gerontol. 2016;83:112–119. doi: 10.1016/j.exger.2016.08.005.
    1. Figueira T., Barros M., Camargo A., Castilho R., Ferreira J., Kowaltowski A., Sluse F.E., Souza-Pinto N.C., Vercesi A.E. Mitochondria as a source of reactive oxygen and nitrogen species: From molecular mechanisms to human health. Antioxidants Redox Signal. 2013;18:2029–2074. doi: 10.1089/ars.2012.4729.
    1. Brieger K., Schiavone S., Miller F.J., Krause K. Reactive oxygen species: From health to disease. Swiss Med. Wkly. 2012;142:w13659. doi: 10.4414/smw.2012.13659.
    1. Scicchitano B., Pelosi L., Sica G., Musaro A. The physiopathologic role of oxidative stress in skeletal muscle. Mech. Ageing Dev. 2018;170:37–44. doi: 10.1016/j.mad.2017.08.009.
    1. Wei Y., Lee H. Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp. Biol. Med. 2002;227:671–682. doi: 10.1177/153537020222700901.
    1. Sestili P., Martinelli C., Colombo E., Barbieri E., Potenza L., Sartini S., Fimognari C. Creatine as an antioxidant. Amino Acids. 2011;40:1385–1396. doi: 10.1007/s00726-011-0875-5.
    1. Yin H., Price F., Rudnicki M. Satellite cells and the muscle stem cell niche. Physiol. Rev. 2013;93:23–67. doi: 10.1152/physrev.00043.2011.
    1. Brack A.S., Muñoz-cánoves P. The ins and outs of muscle stem cell aging. Skelet. Muscle. 2016;6:1–9. doi: 10.1186/s13395-016-0072-z.
    1. Vierck J., Icenoggle D., Bucci L., Dodson M. The effects of ergogenic compounds on myogenic satellite cells. Med. Sci. Sport. Exerc. 2003;35:769–776. doi: 10.1249/01.MSS.0000065005.96298.01.
    1. Dangott B., Schultz E., Mozdziak P.E. Dietary creatine monohydrate supplementation increases satellite cell mitotic activity during compensatory hypertrophy. Int. J. Sports Med. 2000;21:13–16. doi: 10.1055/s-2000-8848.
    1. Olsen S., Aagaard P., Kadi F., Tufekovic G., Verney J., Olesen J., Suetta C., Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. J. Physiol. 2006;573:525–534. doi: 10.1113/jphysiol.2006.107359.
    1. Harris R., Soderlund K., Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin. Sci. 1992;83:367–374. doi: 10.1042/cs0830367.
    1. Forsberg A., Nilsson E., Werneman J., Bergstrom J., Hultman E. Muscle composition in relation to age and sex. Clin. Sci. 1991;81:249–256. doi: 10.1042/cs0810249.
    1. Moller P., Bergstrom J., Furst P., Hellstrom K. Effect of aging on energy-rich phosphagens in human skeletal muscles. Clin. Sci. 1980;58:553–555. doi: 10.1042/cs0580553.
    1. Kent-Braun J., Ng A. Skeletal muscle oxidative capacity in young and older women and men. J. Appl. Physiol. 2000;89:1072–1078. doi: 10.1152/jappl.2000.89.3.1072.
    1. Rawson E., Clarkson P., Price T., Miles M. Differential response of muscle phosphocreatine to creatine supplementation in young and old subjects. Acta Physiol. Scand. 2002;174:57–65. doi: 10.1046/j.1365-201x.2002.00924.x.
    1. Jin K. Modern biological theories of aging. Aging Dis. 2010;1:72–74.
    1. McCormick R., Vasikali A. Age-related changes in skeletal muscle: Changes to life-style as a therapy. Biogerontology. 2018;19:519–536. doi: 10.1007/s10522-018-9775-3.
    1. Tesch P., Thorsson A., Fujitsuka N. Creatine phosphate in fiber types of skeletal muscle before and after exhaustive exercise. J. Appl. Physiol. 1989;66:1756–1759. doi: 10.1152/jappl.1989.66.4.1756.
    1. Brose A., Parise G., Tarnapolsky M. Creatine supplementation enhances isometric strength and body composition improvements following strength exercise training in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2003;58:11–19. doi: 10.1093/gerona/58.1.B11.
    1. Eijnde B., Leemputte M., Goris M., Labarque V., Taes Y., Verbessem P., Vanhees L., Ramaekers M., Vanden Eynde B., Van Schuylenbergh R., et al. Effects of creatine supplementation and exercise training on fitness in men 55–75 yr old. J. Appl. Physiol. 2003;95:818–828. doi: 10.1152/japplphysiol.00891.2002.
    1. Smith S., Montain S., Matott R., Zientara G., Joesz F., Fielding R. Creatine supplementation and age influence muscle metabolism during exercise. J. Appl. Physiol. 1998;85:1349–1356. doi: 10.1152/jappl.1998.85.4.1349.
    1. Tarnapolsky M., Parise G., Fu M., Brose A., Parshad A., Speer O., Wallimann T. Acute and moderate-term creatine monohydrate supplementation does not affect creatine transporter mRNA or protein content in either young or elderly humans. Mol. Cell. Biochem. 2003;244:159–166. doi: 10.1023/A:1022447604792.
    1. Stout J., Graves B., Cramer J., Goldstein E., Costa P., Smith A., Walter A.A. Effects of creatine supplementation on the onset of neuromuscular fatigue threshold and muscle strength in elderly men and women (64–86 years) J. Nutr. Heal Aging. 2007;11:459–464.
    1. Canete S., San Juan A., Perez M., Gomez-Gallego F., Lopez-Mojares L., Earnest C., Fleck S.J., Lucia A. Does creatine supplementation improve functional capacity in elderly women? J. Strength Cond. Res. 2006;20:22–28.
    1. Gotshalk L., Volek J., Staron R., Denegar C., Hagerman F., Kraemer W. Creatine supplementation improves muscular performance in older men. Med. Sci. Sport Exerc. 2002;34:537–543. doi: 10.1097/00005768-200203000-00023.
    1. Fairmana C., Kendall K., Hartab N., Taafe D., Galvao D., Newton R. The potential therapeutic effects of creatine supplementation on body composition and muscle function in cancer. Crit. Rev. Oncol. Hematol. 2019;133:46–57. doi: 10.1016/j.critrevonc.2018.11.003.
    1. Gualano B., Macedo A., Alves C., Roschel H., Benatti F., Takayama L., de Sa Pinto A.L., Lima F.R., Pereira R.M. Creatine supplementation and resistance training in vulnerable older women: A randomized double-blind placebo-controlled clinical trial. Exp. Gerontol. 2014;53:7–15. doi: 10.1016/j.exger.2014.02.003.
    1. Sales L., Pinto A., Rodrigues S., Alvarenga J., Goncalves N., Sampaio-Barros M., Benatti F.B., Gualano B., Pereira R.M. Creatine supplementation (3 g/day) and bone health in older women: A 2-year, randomized, placebo-controlled trial. J. Gerontol. A Biol. Sci. Med. Sci. 2019 doi: 10.1093/gerona/glz162.
    1. Lobo D., Tritto A., da Silva L., de Oliveira P., Benatti F., Roschel H., Nieb B., Gualano B., Pereira R.M. Effects of long-term low-dose dietary creatine supplementation in older women. Exp. Gerontol. 2015;70:97–104. doi: 10.1016/j.exger.2015.07.012.
    1. Bermon S., Venembre P., Sachet C., Valour S., Dolisi C. Effects of creatine monohydrate ingestion in sedentary and weight-trained older adults. Acta Physiol. Scand. 1998;164:147–155. doi: 10.1046/j.1365-201X.1998.00427.x.
    1. Rawson E., Wehnert M., Clarkson P. Effects of 30 days of creatine ingestion in older men. Eur. J. Appl. Physiol. 1999;80:139–144. doi: 10.1007/s004210050570.
    1. Louis M., Poortmans J., Francaux M., Berre J., Boisseau N., Brassine E., Cuthbertson D.J., Smith K., Babraj J.A., Waddell T., et al. No effect of creatine supplementation on human myofibrillar and sarcoplasmic protein synthesis after resistance exercise. Am. J. Physiol. Endocrinol. Metab. 2003;285:1089–1094. doi: 10.1152/ajpendo.00195.2003.
    1. Louis M., Poortmans J., Francaus M., Hultman E., Berre J., Boisseau N., Young V.R., Smith K., Meier-Augenstein W., Babraj J.A., et al. Creatine supplementation has no effect on human muscle protein turnover at rest in the postabsorptive or fed states. Am. J. Physiol. Endocrinol. Metab. 2003;284:764–770. doi: 10.1152/ajpendo.00338.2002.
    1. Rawson E., Clarkson P. Acute creatine supplementation in older men. Int. J. Sports Med. 2000;21:71–75. doi: 10.1055/s-2000-8859.
    1. Wiroth J., Bermon S., Andrei S., Dalloz E., Hebuterne X., Dolisi C. Effects of oral creatine supplementation on maximal pedalling performance in older adults. Eur. J. Appl. Physiol. 2001;84:533–539. doi: 10.1007/s004210000370.
    1. Dent E., Morley J., Cruz-Jentoft A., Arai H., Kritchevsky S., Guralnic J., Bauer J.M., Pahor M., Clark B.C., Cesari M., et al. International clinical practice guidelines for sarcopenia (ICFSR): Screening, diagnosis and management. J. Nutr. Health Aging. 2018;22:1148–1161. doi: 10.1007/s12603-018-1139-9.
    1. Branch J. Effect of creatine supplementation on body composition and performance: A meta-analysis. Int. J. Sport Nutr. Exerc. Metab. 2003;13:198–226. doi: 10.1123/ijsnem.13.2.198.
    1. Knapnik J., Steelman R., Hoedebecke S., Austin K., Farina E., Lieberman H. Prevalence of dietary supplement use by athletes: Systematic review and meta-analysis. Sport Med. 2016;46:103–123. doi: 10.1007/s40279-015-0387-7.
    1. Devries M., Phillips S. Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: A meta-analysis. Med. Sci. Sports Exerc. 2014;46:1194–1203. doi: 10.1249/MSS.0000000000000220.
    1. Candow D., Chilibeck P., Forbes S. Creatine supplementation and aging musculoskeletal health. Endocrine. 2014;45:354–361. doi: 10.1007/s12020-013-0070-4.
    1. Chilibeck P., Kaviani M., Candow D., Zello G. Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: A meta-analysis. J. Sport Med. 2017;8:213–226. doi: 10.2147/OAJSM.S123529.
    1. Syrotuik D.G., Bell G.J., Burnham R., Sim L.L., Calvert R.A. Lean IANMMAC. Resistance Training. 2000;14:182–190.
    1. Kumar V., Selby A., Rankin D., Patel R., Atherton P., Hildebrandt W., Williams J., Smith K., Seynnes O., Hiscock N., et al. Age-related differences in the dose–response relationship of muscle protein synthesis to resistance exercise in young and old men. J. Physiol. 2009;587:211–217. doi: 10.1113/jphysiol.2008.164483.
    1. Durham W., Casperson S., Dillon E., Keske M., Paddon-Jones D., Sanford A., Hickner R.C., Grady J.J., Sheffield-Moore M. Age-related anabolic resistance after endurance-type exercise in healthy humans. FASEB J. 2010;24:4117–4127. doi: 10.1096/fj.09-150177.
    1. Deutz N., Bauer J., Barazzoni R., Biolo G., Boirie Y., Bosy-Westphal A., Cederholm T., Cruz-Jentoft A., Krznaric Z., Nair K.S., et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014;33:929–936. doi: 10.1016/j.clnu.2014.04.007.
    1. Morton R., Traylor D., Weijs P., Phillips S. Defining anabolic resistance: Implications for delivery of clinical care nutrition. Curr. Opin. Crit. Care. 2018;24:124–130. doi: 10.1097/MCC.0000000000000488.
    1. Solis M.Y., Artioli G.G., Otaduy M.C., Da Costa Leite C., Arruda A., Veiga R.R., Veiga R.R., Gualano B. Effect of age, diet and tissue type on PCr response to creatine supplementation. J. Appl. Physiol. 2017;123:407–414. doi: 10.1152/japplphysiol.00248.2017.
    1. Collins J., Longhurst G., Roschel H., Gualano B. Resistance training and co-supplementation with creatine and protein in older subjects with frailty. J. Frailty Aging. 2016;5:126–134.
    1. Eliot K., Knehans A., Bemben D., Witten M., Carter J., Bemben M. The effects of creatine and whey protein supplementation on body composition in men aged 48 to 72 years during resistance training. J. Nutr. Health Aging. 2008;12:208–212. doi: 10.1007/BF02982622.
    1. Guescini M., Tiano L., Genova M., Polidori E., Silvestri S., Orlando P., Fimognari C., Calcabrini C., Stocchi V., Sestili P. The combination of physical exercise with muscle-directed antioxidants to counteract sarcopenia: A biomedical rationale for pleiotropic treatment with creatine and coenzyme Q10. Oxid. Med. Cell Longev. 2017 doi: 10.1155/2017/7083049.

Source: PubMed

3
Abonner