Expression Patterns of Muscle-Specific miR-133b and miR-206 Correlate with Nutritional Status and Sarcopenia

Francesca Iannone, Alberto Montesanto, Erika Cione, Paolina Crocco, Maria Cristina Caroleo, Serena Dato, Giuseppina Rose, Giuseppe Passarino, Francesca Iannone, Alberto Montesanto, Erika Cione, Paolina Crocco, Maria Cristina Caroleo, Serena Dato, Giuseppina Rose, Giuseppe Passarino

Abstract

Sarcopenia and malnutrition are commonly occurring conditions in the elderly that frequently coexist, leading to substantial effects on morbidity/mortality. Evidence established muscle-specific microRNAs (miRNAs) or myomiRs as essential regulators of skeletal muscle processes, from myogenesis to muscle homeostasis. This study aimed to evaluate the association between myomiRs and sarcopenia and explore the potential of nutrition in mediating this association. qPCR was employed to characterize the myomiR-1, -133a/b, -206, -208b, and -499 expression profiles of 109 non-sarcopenic and 109 sarcopenic subjects. In our sample, the proportion malnourished or at-risk subjects was higher in sarcopenia (p < 0.001). Among the detected myomiRs (miR-133a/b and miR-206), lower levels of miR-133b was significantly associated with the presence of sarcopenia (p = 0.006); however, this relationship was not independent from nutritional status in multivariate analysis, suggesting a mediating effect of nutrition on the relationship between miR-133b and sarcopenia. Correlation analyses showed that lower miR-133b levels were associated with poor nutritional status (Mini Nutritional Assessment Long Form (MNA-LF) score, p = 0.005); furthermore, correlations with albumin, ferritin, and iron were found. Similar results were obtained for miR-206. Statistically more significant correlations were observed in subjects with sarcopenia. In conclusion, our findings highlight a nutrient-miR-133b/miR-206 pathway having a potential role in the age-related muscle decline.

Keywords: aging; miR-133b; miR-206; muscle wasting; myomiRs; nutritional status; sarcopenia.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Relative miR-133b expression in plasma from sarcopenic and non-sarcopenic subjects. Data are reported as log 2−∆Ct normalized to U6 expression together with mean ± standard error of the mean (SEM) and p-value computed by t-test (p < 0.05).
Figure 2
Figure 2
Effect of nutritional status on plasma levels of (A) miR-133b and (B) miR-206 in sarcopenic and non-sarcopenic subjects. Data are reported as log 2−∆Ct normalized to U6 expression together with mean ± SEM and p-value computing by t-test (p < 0.05).
Figure 3
Figure 3
Correlations between plasma miR-133b levels and biochemical variables in sarcopenic and non-sarcopenic subjects. Scatter plots illustrate the relationship between plasma miR-133b levels and (A) albumin, (B) iron, (C) ferritin. Data are reported as log 2−∆Ct normalized to U6 expression.
Figure 4
Figure 4
Correlations between plasma miR-206 levels and biochemical variables in sarcopenic and non-sarcopenic subjects. Scatter plots illustrate the relationship between plasma miR-206 levels and (A) albumin, (B) ferritin. Data are reported as log 2−∆Ct normalized to U6 expression.

References

    1. Ahmed T., Haboubi N. Assessment and management of nutrition in older people and its importance to health. Clin. Interv. Aging. 2010;5:207–216.
    1. Dato S., Bellizzi D., Rose G., Passarino G. The impact of nutrients on the aging rate: A complex interaction of demographic, environmental and genetic factors. Mech. Ageing Dev. 2016;154:49–61.
    1. Agarwal E., Miller M., Yaxley A., Isenring E. Malnutrition in the elderly: A narrative review. Maturitas. 2013;76:296–302.
    1. Kaiser M.J., Bauer J.M., Rämsch C., Uter W., Guigoz Y., Cederholm T., Thomas D.R., Anthony P.S., Charlton K.E., Maggio M., et al. Mini Nutritional Assessment International Group. Frequency of malnutrition in older adults: A multinational perspective using the mini nutritional assessment. J. Am. Geriatr. Soc. 2010;58:1734–1738.
    1. Rasheed S., Woods R. Malnutrition and quality of life in older people: A systematic review and meta-analysis. Ageing Res. Rev. 2013;12:561–566.
    1. Covinsky K.E. Malnutrition and bad outcomes. J. Gen. Intern. Med. 2002;17:956–957.
    1. Harris D., Haboubi N. Malnutrition screening in the elderly population. J. R. Soc. Med. 2005;98:411–414.
    1. Meyer C., Dostou J.M., Welle S.L., Gerich J.E. Role of human liver, kidney, and skeletal muscle in postprandial glucose homeostasis. Am. J. Physiol. Endocrinol. Metab. 2002;84:475–482.
    1. Morley J.E. Sarcopenia: Diagnosis and treatment. J. Nutr. Heal. Aging. 2008;12:452–456.
    1. Gielen E., Verschueren S., O’Neill T.W., Pye S.R., O’Connell M.D.L., Lee D.M., Ravindrarajah R., Claessens F., Laurent M., Milisen K., et al. Musculoskeletal frailty: A geriatric syndrome at the core of fracture occurrence in older age. Calcif. Tissue Int. 2012;91:161–177.
    1. Santilli V., Bernetti A., Mangone M., Paoloni M. Clinical definition of sarcopenia. Clin. Cases Miner. Bone Metab. 2014;11:177–180. doi: 10.11138/ccmbm/2014.11.3.177.
    1. Liguori I., Russo G., Aran L. Sarcopenia: Assessment of disease burden and strategies to improve outcomes. Clin. Interv. Aging. 2018;13:913–927. doi: 10.2147/CIA.S149232.
    1. Shafiee G., Keshtkar A., Soltani A., Ahadi Z., Larijani B., Heshmat R. Prevalence of sarcopenia in the world: A systematic review and metaanalysis of general population studies. J. Diabetes Metab. Disord. 2017;16:21. doi: 10.1186/s40200-017-0302-x.
    1. Bianchi M., Renzini A., Adamo S., Moresi V. Coordinated actions of microRNAs with other epigenetic factors regulate skeletal muscle development and adaptation. Int. J. Mol. Sci. 2017;18:840. doi: 10.3390/ijms18040840.
    1. Pillai R.S. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science. 2005;309:1573–1576. doi: 10.1126/science.1115079.
    1. Zhang Y., Yu B., He J., Chen D. From nutrient to microRNA: A novel insight into cell signaling involved in skeletal muscle development and disease. Int. J. Biol. Sci. 2016;12:1247–1261. doi: 10.7150/ijbs.16463.
    1. Jung H.J., Lee K.P., Kwon K.S., Suh Y. MicroRNAs in skeletal muscle aging: Current issues and perspectives. J. Gerontol. A Biol. Sci. Med. Sci. 2019;74:1008–1074. doi: 10.1093/gerona/gly207.
    1. Drummond M.J., McCarthy J.J., Sinha M. Aging and microRNA expression in human skeletal muscle: A microarray and bioinformatics analysis. Physiol. Genom. 2011;43:595–603. doi: 10.1152/physiolgenomics.00148.2010.
    1. Rivas D.A., Lessard S.J., Rice N.P. Diminished skeletal muscle micro-RNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling. FASEB J. 2014;28:4133–4147. doi: 10.1096/fj.14-254490.
    1. Margolis L.M., Rivas D.A. Potential role of microRNA in the anabolic capacity of skeletal muscle with aging. Exerc. Sport Sci. Rev. 2018;46:86–91. doi: 10.1249/JES.0000000000000147.
    1. Brown D.M., Goljanek-Whysall K. MicroRNAs: Modulators of the underlying pathophysiology of sarcopenia? Ageing Res. Rev. 2015;24:263–273. doi: 10.1016/j.arr.2015.08.007.
    1. Güller I., Russell A.P. MicroRNAs in skeletal muscle: Their role and regulation in development, disease and function. J. Physiol. 2010;588:4075–4087. doi: 10.1113/jphysiol.2010.194175.
    1. McCarthy J.J. The MyomiR network in skeletal muscle plasticity. Exerc. Sport Sci. Rev. 2011;39:150–154. doi: 10.1097/JES.0b013e31821c01e1.
    1. Wang X.H. MicroRNA in myogenesis and muscle atrophy. Curr. Opin. Clin. Nutr. Metab. Care. 2013;16:258–266. doi: 10.1097/MCO.0b013e32835f81b9.
    1. Sharma M., Juvvuna P.K., Kukreti H., McFarlane C. Mega roles of microRNAs in regulation of skeletal muscle health and disease. Front. Physiol. 2014;5:239. doi: 10.3389/fphys.2014.00239.
    1. Horak M., Novak J., Bienertova-Vasku J. Muscle-specific microRNAs in skeletal muscle development. Dev. Biol. 2016;1:1–13. doi: 10.1016/j.ydbio.2015.12.013.
    1. Schiaffino S., Mammucari C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: Insights from genetic models. Skelet. Muscle. 2011;1:4. doi: 10.1186/2044-5040-1-4.
    1. Nielsen S., Scheele C., Yfanti C., Åkerström T., Nielsen A.R., Pedersen B.K., Laye M. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J. Physiol. 2010;588:4029–4037. doi: 10.1113/jphysiol.2010.189860.
    1. Russell A.P., Lamon S., Boon H., Wada S., Güller I., Brown E.L., Chibalin A.V., Zierath J.R., Snow R.J., Stepto N., et al. Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training. J. Physiol. 2013;591:4637–4653. doi: 10.1113/jphysiol.2013.255695.
    1. Drummond M.J., McCarthy J.J., Fry C.S., Esser K.A., Rasmussen B.B. Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. Am. J. Physiol. Endocrinol. Metab. 2008;295:E1333–E1340. doi: 10.1152/ajpendo.90562.2008.
    1. Margolis L.M., McClung H.L., Murphy N.E., Carrigan C.T., Pasiakos S.M. Skeletal muscle myomiR are differentially expressed by endurance exercise mode and combined essential amino acid and carbohydrate supplementation. Front. Physiol. 2017;23:182. doi: 10.3389/fphys.2017.00182.
    1. Camera D.M., Ong J.N., Coffey V.G., Hawley J.A. Selective modulation of microRNA expression with protein ingestion following concurrent resistance and endurance exercise in human skeletal muscle. Front. Physiol. 2016;7:87. doi: 10.3389/fphys.2016.00087.
    1. Haran P.H., Rivas D.A., Fielding R.A. Role and potential mechanisms of anabolic resistance in sarcopenia. J. Cachexia Sarcopenia Muscle. 2012;3:157–162. doi: 10.1007/s13539-012-0068-4.
    1. Nielsen S., Hvid T., Kelly M., Lindegaard B., Dethlefsen C., Winding K., Mathur N., Scheele C., Pedersen B.K., Laye L.J. Muscle specific miRNAs are induced by testosterone and independently upregulated by age. Front. Physiol. 2014;4:394. doi: 10.3389/fphys.2013.00394.
    1. Janssen I., Heymsfield S.B., Baumgartner R.N., Ross R. Estimation of skeletal muscle mass by bioelectrical impedance analysis. J. Appl. Physiol. 2000;89:465–471. doi: 10.1152/jappl.2000.89.2.465.
    1. Katz S., Downs T.D., Cash H.R., Grotz R.C. Progress in development of the index of ADL. Gerontologist. 1970;10:20–30. doi: 10.1093/geront/10.1_Part_1.20.
    1. Vellas B., Guigoz Y., Garry P.J., Nourhashemi F., Bennahum D., Lauque S., Albarede J.L. The Mini Nutritional Assessment (MNA) and its use in grading the nutritional state of elderly patients. Nutrition. 1999;15:116–122. doi: 10.1016/S0899-9007(98)00171-3.
    1. Cruz-Jentoft A.J., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm T., Cooper C., Landi F., Rolland Y., Sayer A.A., et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31. doi: 10.1093/ageing/afy169.
    1. Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73.
    1. Cereda E., Pedrolli C., Klersy C. Nutritional status in older persons according to healthcare setting: A systematic review and meta-analysis of prevalence data using MNA((R)) Clin. Nutr. 2016;35:1282–1290. doi: 10.1016/j.clnu.2016.03.008.
    1. Lu Y., Karagounis L.G., Ng T.P., Carre C., Narang V., Wong G., Ying Tan C.T., Zin Nyunt M.S., Gao Q., Abel B., et al. Systemic and metabolic signature of sarcopenia in community-dwelling older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2019;8 doi: 10.1093/gerona/glz001.
    1. Verlaan S., Aspray T.J., Bauer J.M., Cederholm T., Hemsworth J., Hill T.R., McPhee J.S., Piasecki M., Seal C., Sieber C.C., et al. Nutritional status, body composition, and quality of life in community-dwelling sarcopenic and non-sarcopenic older adults: A case-control study. Clin. Nutr. 2017;36:267–274. doi: 10.1016/j.clnu.2015.11.013.
    1. Vandewoude M.F., Alish C.J., Sauer A.C., Hegazi R.A. Malnutrition-sarcopenia syndrome: Is this the future of nutrition screening and assessment for older adults? J. Aging Res. 2012 doi: 10.1155/2012/651570.
    1. Cui S., Li L., Mubarokah S.N., Meech R. Wnt/β-catenin signaling induces the myomiRs miR-133b and miR-206 to suppress Pax7 and induce the myogenic differentiation program. J. Cell Biochem. 2019;120:12740–12751. doi: 10.1002/jcb.28542.
    1. Feng Y., Niu L.-L., Wei W., Zhang W.-Y., Li X.-Y., Cao J.-H., Zhao S.-H. A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation Cell. Death Dis. 2013;4:934. doi: 10.1038/cddis.2013.462.
    1. Alway S.E. Regulation of satellite cell function in sarcopenia. Front. Aging Neurosci. 2014;6:246. doi: 10.3389/fnagi.2014.00246.
    1. Sousa-Victor P., Muñoz-Cánoves P. Regenerative decline of stem cells in sarcopenia. Mol. Asp. Med. 2016;50:109–117. doi: 10.1016/j.mam.2016.02.002.
    1. Ross S.A., Davis C.D. The emerging role of microRNAs and nutrition in modulating health and disease. Annu. Rev. Nutr. 2014;34:305–336. doi: 10.1146/annurev-nutr-071813-105729.
    1. Ge Y., Chen J. Mammalian target of rapamycin (mTOR) signaling network in skeletal myogenesis. J. Biol. Chem. 2012;287:43928–43935. doi: 10.1074/jbc.R112.406942.
    1. Mitchelson K.R., Qin W.Y. Roles of the canonical myomiRs miR-1, -133 and -206 in cell development and disease. World J. Biol. Chem. 2015;6:162–208. doi: 10.4331/wjbc.v6.i3.162.
    1. Dalle S., Rossmeislova L., Koppo K. The role of inflammation in age-related sarcopenia. Front. Physiol. 2017;8:1045. doi: 10.3389/fphys.2017.01045.
    1. Aly G.S., Shaalan A.H., Mattar M.K. Oxidative stress status in nutritionally stunted children. Gaz. Egypt. Paediatr. Assoc. 2014;62:28–33. doi: 10.1016/j.epag.2014.02.003.
    1. Mueller C. Inflammation and malnutrition. Top. Clin. Nutr. 2011;26:3–9. doi: 10.1097/TIN.0b013e318209e38b.
    1. Georgantas R.W., Streicher K., Greenberg S.A., Greenlees L.M., Zhu W., Brohawn P.Z., Higgs B.W., Czapiga M., Morehouse C.A., Amato A., et al. Inhibition of myogenic microRNAs 1, 133 and 206 by inflammatory cytokines links inflammation and muscle degeneration in adult inflammatory myopathies. Arthritis Rheumatol. 2014;66:1022–1033. doi: 10.1002/art.38292.
    1. Razak A.M., Khor S.C., Jaafar F., Karim N.A., Makpol S. Targeting myomiRs by tocotrienol-rich fraction to promote myoblast differentiation. Genes Nutr. 2018;13 doi: 10.1186/s12263-018-0618-2.
    1. Keller U. Nutritional laboratory markers in malnutrition. J. Clin. Med. 2019;8:775. doi: 10.3390/jcm8060775.
    1. Soeters P.B., Wolfe R.R., Shenkin A. Hypoalbuminemia: Pathogenesis and clinical significance. J. Parenter. Enter. Nutr. 2018;43:181–193. doi: 10.1002/jpen.1451.
    1. Moen I.W., Bergholdt H.K.M., Mandrup-Poulsen T. Increased plasma ferritin concentration and low-grade inflammation. A mendelian randomization study. Clin. Chem. 2018;64 doi: 10.1373/clinchem.2017.276055.

Source: PubMed

3
Abonner