Mushroom-Derived Medicine? Preclinical Studies Suggest Potential Benefits of Ergothioneine for Cardiometabolic Health

Daniel Lam-Sidun, Kia M Peters, Nica M Borradaile, Daniel Lam-Sidun, Kia M Peters, Nica M Borradaile

Abstract

Medicinal use of mushrooms has been documented since ancient times, and in the modern world, mushrooms have a longstanding history of use in Eastern medicine. Recent interest in plant-based diets in Westernized countries has brought increasing attention to the use of mushrooms and mushroom-derived compounds in the prevention and treatment of chronic diseases. Edible mushrooms are the most abundant food sources of the modified amino acid, ergothioneine. This compound has been shown to accumulate in almost all cells and tissues, but preferentially in those exposed to oxidative stress and injury. The demonstrated cytoprotectant effect of ergothioneine has led many to suggest a potential therapeutic role for this compound in chronic conditions that involve ongoing oxidative stress and inflammation, including cardiovascular and metabolic diseases. However, the in vivo effects of ergothioneine and its underlying therapeutic mechanisms in the whole organism are not as clear. Moreover, there are no well-defined, clinical prevention and intervention trials of ergothioneine in chronic disease. This review highlights the cellular and molecular mechanisms of action of ergothioneine and its potential as a Traditional, Complementary and Alternative Medicine for the promotion of cardiometabolic health and the management of the most common manifestations of cardiometabolic disease.

Keywords: anti-inflammatory; antioxidant; cardiovascular disease; ergothioneine; metabolic syndrome; mushrooms; type 2 diabetes.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Potential cardiometabolic benefits of ergothioneine (EGT) consumption, supplementation, or treatment. Increased dietary consumption, supplementation, or experimental treatments with EGT have been associated with potentially beneficial effects in cell culture, small animal, and retrospective studies in human subjects. ROS, reactive oxygen species; EC, endothelial cells; IL-6, interleukin-6; SIRT, sirtuin; TBARS, thiobarbituric acid reactive substances; HSP70; heat shock protein 70.

References

    1. Cheah I.K., Halliwell B. Ergothioneine; Antioxidant Potential, Physiological Function and Role in Disease. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2012;1822:784–793. doi: 10.1016/j.bbadis.2011.09.017.
    1. Servillo L., D’Onofrio N., Balestrieri M.L. Ergothioneine Antioxidant Function: From Chemistry to Cardiovascular Therapeutic Potential. J. Cardiovasc. Pharmacol. 2017;69:183–191. doi: 10.1097/FJC.0000000000000464.
    1. Halliwell B., Cheah I.K., Tang R.M.Y. Ergothioneine—A Diet-Derived Antioxidant with Therapeutic Potential. FEBS Lett. 2018;592:3357–3366. doi: 10.1002/1873-3468.13123.
    1. Borodina I., Kenny L.C., McCarthy C.M., Paramasivan K., Pretorius E., Roberts T.J., Van Der Hoek S.A., Kell D.B. The Biology of Ergothioneine, an Antioxidant Nutraceutical. Nutr. Res. Rev. 2020;33:190–217. doi: 10.1017/S0954422419000301.
    1. Tanret C. Sur Une Base Nouvelle Retiree du Seigle Ergote, L’Ergothioneine. Compt. Rend. 1909;149:222–224.
    1. Melville D.B., Genghof D.S., Inamine E., Kovalenko V. Ergothioneine in Microorganisms. J. Biol. Chem. 1956;223:9–17. doi: 10.1016/S0021-9258(18)65113-0.
    1. Pfeiffer C., Bauer T., Surek B., Schömig E., Gründemann D. Cyanobacteria Produce High Levels of Ergothioneine. Food Chem. 2011;129:1766–1769. doi: 10.1016/j.foodchem.2011.06.047.
    1. Pan L., Yu J., Ren D., Yao C., Chen Y., Menghe B. Metabolomic Analysis of Significant Changes in Lactobacillus Casei Zhang during Culturing to Generation 4,000 under Conditions of Glucose Restriction. J. Dairy Sci. 2019;102:3851–3867. doi: 10.3168/jds.2018-15702.
    1. Matsuda Y., Ozawa N., Shinozaki T., Wakabayashi K.-I., Suzuki K., Kawano Y., Ohtsu I., Tatebayashi Y. Ergothioneine, a Metabolite of the Gut Bacterium Lactobacillus Reuteri, Protects against Stress-Induced Sleep Disturbances. Transl. Psychiatry. 2020;10:1–11. doi: 10.1038/s41398-020-0855-1.
    1. Ey J., Schömig E., Taubert D. Dietary Sources and Antioxidant Effects of Ergothioneine. J. Agric. Food Chem. 2007;55:6466–6474. doi: 10.1021/jf071328f.
    1. Smith J.E., Rowan N.J., Sullivan R. Medicinal Mushrooms: A Rapidly Developing Area of Biotechnology for Cancer Therapy and Other Bioactivities. Biotechnol. Lett. 2002;24:1839–1845. doi: 10.1023/A:1020994628109.
    1. Roupas P., Keogh J., Noakes M., Margetts C., Taylor P. The Role of Edible Mushrooms in Health: Evaluation of the Evidence. J. Funct. Foods. 2012;4:687–709. doi: 10.1016/j.jff.2012.05.003.
    1. Rathore H., Prasad S., Sharma S. Mushroom Nutraceuticals for Improved Nutrition and Better Human Health: A Review. PharmaNutrition. 2017;5:35–46. doi: 10.1016/j.phanu.2017.02.001.
    1. Ma G., Yang W., Zhao L., Pei F., Fang D., Hu Q. A Critical Review on the Health Promoting Effects of Mushrooms Nutraceuticals. Food Sci. Hum. Wellness. 2018;7:125–133. doi: 10.1016/j.fshw.2018.05.002.
    1. Eagles B.A., Vars H.M. The Physiology of Ergothioneine. J. Biol. Chem. 1928;80:615–622. doi: 10.1016/S0021-9258(18)83882-0.
    1. Dubost N., Ou B., Beelman R. Quantification of Polyphenols and Ergothioneine in Cultivated Mushrooms and Correlation to Total Antioxidant Capacity. Food Chem. 2007;105:727–735. doi: 10.1016/j.foodchem.2007.01.030.
    1. Ramirez-Martinez A., Wesolek N., Yadan J.-C., Moutet M., Roudot A.-C. Intake Assessment of L-Ergothioneine in Some European Countries and in the United States. Hum. Ecol. Risk Assess. Int. J. 2015;22:667–677. doi: 10.1080/10807039.2015.1104241.
    1. Weigand-Heller A.J., Kris-Etherton P.M., Beelman R.B. The Bioavailability of Ergothioneine from Mushrooms (Agaricus bisporus) and the Acute Effects on Antioxidant Capacity and Biomarkers of Inflammation. Prev. Med. 2012;54:S75–S78. doi: 10.1016/j.ypmed.2011.12.028.
    1. Toh D.S.L., Limenta L.M.G., Yee J.Y., Wang L.-Z., Goh B.-C., Murray M., Lee E.J.D. Effect of Mushroom Diet on Pharmacokinetics of Gabapentin in Healthy Chinese Subjects. Br. J. Clin. Pharmacol. 2013;78:129–134. doi: 10.1111/bcp.12273.
    1. Cheah I.K., Tang R.M., Yew T.S., Lim K.H., Halliwell B. Administration of Pure Ergothioneine to Healthy Human Subjects: Uptake, Metabolism, and Effects on Biomarkers of Oxidative Damage and Inflammation. Antioxid. Redox Signal. 2017;26:193–206. doi: 10.1089/ars.2016.6778.
    1. Calvo M.S., Mehrotra A., Beelman R.B., Nadkarni G., Wang L., Cai W., Goh B.C., Kalaras M.D., Uribarri J. A Retrospective Study in Adults with Metabolic Syndrome: Diabetic Risk Factor Response to Daily Consumption of Agaricus bisporus (White Button Mushrooms) Plant Foods Hum. Nutr. 2016;71:245–251. doi: 10.1007/s11130-016-0552-7.
    1. Xu J., Yadan J.C. Synthesis of L-(+)-Ergothioneine. J. Org. Chem. 1995;60:6296–6301. doi: 10.1021/jo00125a014.
    1. EFSA Panel on Dietetic Products. Nutrition and Allergies (NDA) Turck D., Bresson J.-L., Burlingame B., Dean T., Fairweather-Tait S., Heinonen M., Hirsch-Ernst K.I., Mangelsdorf I., et al. Safety of Synthetic L-ergothioneine (Ergoneine®) as a Novel Food Pursuant to Regulation (EC) No 258/97. EFSA J. 2016;14:e04629. doi: 10.2903/j.efsa.2016.4629.
    1. United States Food and Drug Administration GRN No. 734 Ergothionine. [(accessed on 1 March 2021)]; Available online: .
    1. Marone P.A., Trampota J., Weisman S. A Safety Evaluation of a Nature-Identical l-Ergothioneine in Sprague Dawley Rats. Int. J. Toxicol. 2016;35:568–583. doi: 10.1177/1091581816653375.
    1. Gründemann D., Harlfinger S., Golz S., Geerts A., Lazar A., Berkels R., Jung N., Rubbert A., Schömig E. Discovery of the Ergothioneine Transporter. Proc. Natl. Acad. Sci. USA. 2005;102:5256–5261. doi: 10.1073/pnas.0408624102.
    1. Grigat S., Harlfinger S., Pal S., Striebinger R., Golz S., Geerts A., Lazar A., Schömig E., Gründemann D. Probing the Substrate Specificity of the Ergothioneine Transporter with Methimazole, Hercynine, and Organic Cations. Biochem. Pharmacol. 2007;74:309–316. doi: 10.1016/j.bcp.2007.04.015.
    1. Kato Y., Kubo Y., Iwata D., Kato S., Sudo T., Sugiura T., Kagaya T., Wakayama T., Hirayama A., Sugimoto M., et al. Gene Knockout and Metabolome Analysis of Carnitine/Organic Cation Transporter OCTN1. Pharm. Res. 2010;27:832–840. doi: 10.1007/s11095-010-0076-z.
    1. Tang R.M.Y., Cheah I.K.-M., Yew T.S.K., Halliwell B. Distribution and Accumulation of Dietary Ergothioneine and Its Metabolites in Mouse Tissues. Sci. Rep. 2018;8:1–15. doi: 10.1038/s41598-018-20021-z.
    1. Cheah I.K., Tang R., Ye P., Yew T.S.Z., Lim K.H.C., Halliwell B. Liver Ergothioneine Accumulation in a Guinea Pig Model of Non-alcoholic Fatty Liver Disease. a Possible Mechanism of Defence? Free. Radic. Res. 2015;50:14–25. doi: 10.3109/10715762.2015.1099642.
    1. Sansbury B.E., De Martino A.M., Xie Z., Brooks A.C., Brainard R.E., Watson L.J., DeFilippis A.P., Cummins T.D., Harbeson M.A., Brittian K.R., et al. Metabolomic Analysis of Pressure-Overloaded and Infarcted Mouse Hearts. Circ. Hear. Fail. 2014;7:634–642. doi: 10.1161/CIRCHEARTFAILURE.114.001151.
    1. Shinozaki Y., Furuichi K., Toyama T., Kitajima S., Hara A., Iwata Y., Sakai N., Shimizu M., Kaneko S., Isozumi N., et al. Impairment of the Carnitine/Organic Cation Transporter 1–Ergothioneine Axis Is Mediated by Intestinal Transporter Dysfunction in Chronic Kidney Disease. Kidney Int. 2017;92:1356–1369. doi: 10.1016/j.kint.2017.04.032.
    1. Mayumi T., Kawano H., Sakamoto Y., Suehisa E., Kawai Y., Hama T. Studies on Ergothioneine. V. Determination by High Performance Liquid Chromatography and Application to Metabolic Research. Chem. Pharm. Bull. 1978;26:3772–3778. doi: 10.1248/cpb.26.3772.
    1. Servillo L., D’Onofrio N., Casale R., Cautela D., Giovane A., Castaldo D., Balestrieri M.L. Ergothioneine Products Derived by Superoxide Oxidation in Endothelial Cells Exposed to High-Glucose. Free. Radic. Biol. Med. 2017;108:8–18. doi: 10.1016/j.freeradbiomed.2017.03.009.
    1. Franzoni F., Colognato R., Galetta F., Laurenza I., Barsotti M., Di Stefano R., Bocchetti R., Regoli F., Carpi A., Balbarini A., et al. An in Vitro Study on the Free Radical Scavenging Capacity of Ergothioneine: Comparison with Reduced Glutathione, Uric Acid and Trolox. Biomed. Pharmacother. 2006;60:453–457. doi: 10.1016/j.biopha.2006.07.015.
    1. Rougee M., Bensasson R.V., Land E.J., Pariente R. Deactivation of Singlet Molecular Oxygen by Thiols and Related Compounds, Possible Pro-tectors against Skin Photosensitivity. Photochem. Photobiol. 1988;47:485–489. doi: 10.1111/j.1751-1097.1988.tb08835.x.
    1. Laurenza I., Del Prato S., Benzi L., Colognato R., Migliore L. Modulation of Palmitic Acid-Induced Cell Death by Ergothioneine: Evidence of an Anti-inflammatory Action. BioFactors. 2008;33:237–247. doi: 10.1002/biof.5520330401.
    1. Sakrak O., Kerem M., Bedirli A., Pasaoglu H., Akyurek N., Ofluoglu E., Gültekin F.A. Ergothioneine Modulates Proinflammatory Cytokines and Heat Shock Protein 70 in Mesenteric Ischemia and Reperfusion Injury. J. Surg. Res. 2008;144:36–42. doi: 10.1016/j.jss.2007.04.020.
    1. Lim S., Taskinen M.-R., Borén J. Crosstalk between Nonalcoholic Fatty Liver Disease and Cardiometabolic Syndrome. Obes. Rev. 2019;20:599–611. doi: 10.1111/obr.12820.
    1. Pandey A., Chawla S., Guchhait P. Type-2 Diabetes: Current Understanding and Future Perspectives. IUBMB Life. 2015;67:506–513. doi: 10.1002/iub.1396.
    1. Ramos M., Burgos N., Barnard A., Evans G., Preece J., Graz M., Ruthes A.C., Jiménez-Quero A., Martínez-Abad A., Vilaplana F., et al. Agaricus Bisporus and Its by-Products as a Source of Valuable Extracts and Bioactive Compounds. Food Chem. 2019;292:176–187. doi: 10.1016/j.foodchem.2019.04.035.
    1. Li R.W.S., Yang C., Sit A.S.M., Kwan Y.W., Lee S.M.Y., Hoi M.P.M., Chan S.-W., Hausman M., Vanhoutte P.M., Leung G.P.H. Uptake and Protective Effects of Ergothioneine in Human Endothelial Cells. J. Pharmacol. Exp. Ther. 2014;350:691–700. doi: 10.1124/jpet.114.214049.
    1. D’Onofrio N., Servillo L., Giovane A., Casale R., Vitiello M., Marfella R., Paolisso G., Balestrieri M.L. Ergothioneine Oxidation in the Protection against High-Glucose Induced Endothelial Senescence: Involvement of SIRT1 and SIRT6. Free. Radic. Biol. Med. 2016;96:211–222. doi: 10.1016/j.freeradbiomed.2016.04.013.
    1. Sosnowska B., Mazidi M., Penson P., Gluba-Brzózka A., Rysz J., Banach M. The Sirtuin Family Members SIRT1, SIRT3 and SIRT6: Their Role in Vascular Biology and Atherogenesis. Atherosclerosis. 2017;265:275–282. doi: 10.1016/j.atherosclerosis.2017.08.027.
    1. Bonkowski M.S., Sinclair M.S.B.D.A. Slowing Ageing by Design: The Rise of NAD+ and Sirtuin-Activating Compounds. Nat. Rev. Mol. Cell Biol. 2016;17:679–690. doi: 10.1038/nrm.2016.93.
    1. Zhou S., Chen H.-Z., Wan Y.-Z., Zhang Q.-J., Wei Y.-S., Huang S., Liu J.-J., Lu Y.-B., Zhang Z.-Q., Yang R.-F., et al. Repression of P66Shc Expression by SIRT1 Contributes to the Prevention of Hyperglycemia-Induced Endothelial Dysfunction. Circ. Res. 2011;109:639–648. doi: 10.1161/CIRCRESAHA.111.243592.
    1. Lappas M. Anti-Inflammatory Properties of Sirtuin 6 in Human Umbilical Vein Endothelial Cells. Mediat. Inflamm. 2012;2012:1–11. doi: 10.1155/2012/597514.
    1. Song T.-Y., Yang N.-C., Chen C.-L., Vo T.-L. Protective Effects and Possible Mechanisms of Ergothioneine and Hispidin against Methylglyoxal-Induced Injuries in Rat Pheochromocytoma Cells. Oxidative Med. Cell. Longev. 2017;2017:1–10. doi: 10.1155/2017/4824371.
    1. Guijarro M., Indart A., Aruoma O., Viana M., Bonet B. Effects of Ergothioneine on Diabetic Embryopathy in Pregnant Rats. Food Chem. Toxicol. 2002;40:1751–1755. doi: 10.1016/S0278-6915(02)00177-1.
    1. North B.J., Sinclair D.A. The Intersection Between Aging and Cardiovascular Disease. Circ. Res. 2012;110:1097–1108. doi: 10.1161/CIRCRESAHA.111.246876.
    1. Smith E., Ottosson F., Hellstrand S., Ericson U., Orho-Melander M., Fernandez C., Melander O. Ergothioneine Is Associated with Reduced Mortality and Decreased Risk of Cardiovascular Disease. Hear. 2019;106:691–697. doi: 10.1136/heartjnl-2019-315485.
    1. Tavakoli S., Asmis R. Reactive Oxygen Species and Thiol Redox Signaling in the Macrophage Biology of Atherosclerosis. Antioxid. Redox Signal. 2012;17:1785–1795. doi: 10.1089/ars.2012.4638.
    1. Abidin M.H.Z., Abdullah N., Abidin N.Z. Protective Effect of Antioxidant Extracts from Grey Oyster Mushroom, Pleurotus pulmonarius (Agaricomycetes), Against Human Low-Density Lipoprotein Oxidation and Aortic Endothelial Cell Damage. Int. J. Med. Mushrooms. 2016;18:109–121. doi: 10.1615/IntJMedMushrooms.v18.i2.20.
    1. Martin K.R. The Bioactive Agent Ergothioneine, a Key Component of Dietary Mushrooms, Inhibits Monocyte Binding to Endothelial Cells Characteristic of Early Cardiovascular Disease. J. Med. Food. 2010;13:1340–1346. doi: 10.1089/jmf.2009.0194.
    1. Gokce G., Arun M.Z. Ergothioneine Produces Relaxation in Isolated Rat Aorta by Inactivating Superoxide Anion. Eur. Rev. Med Pharmacol. Sci. 2014;18:3339–3345.
    1. Arduini A., Eddy L., Hochstein P. The Reduction of Ferryl Myoglobin by Ergothioneine: A Novel Function for Ergothioneine. Arch. Biochem. Biophys. 1990;281:41–43. doi: 10.1016/0003-9861(90)90410-Z.
    1. Peters K.M., Wilson R.B., Borradaile N.M. Non-parenchymal Hepatic Cell Lipotoxicity and the Coordinated Progression of Non-alcoholic Fatty Liver Disease and Atherosclerosis. Curr. Opin. Lipidol. 2018;29:417–422. doi: 10.1097/MOL.0000000000000535.
    1. Brunt E.M., Wong V.W.S., Nobili V., Day C.P., Sookoian S., Maher J.J., Rinella M.E. Nonalcoholic Fatty Liver Disease. Nat. Rev. Dis. Prim. 2015;1:1–22. doi: 10.1038/nrdp.2015.80.
    1. Dongiovanni P., Fracanzani A.L., Fargion S., Valenti L. Iron in Fatty Liver and in the Metabolic Syndrome: A Promising Therapeutic Target. J. Hepatol. 2011;55:920–932. doi: 10.1016/j.jhep.2011.05.008.
    1. Kaji K., Yoshiji H., Kitade M., Ikenaka Y., Noguchi R., Shirai Y., Aihara Y., Namisaki T., Yoshii J., Yanase K., et al. Combination Treatment of Angiotensin II Type I Receptor Blocker and New Oral Iron Chelator Attenuates Progression of Nonal-Coholic Steatohepatitis in Rats. Am. J. Physiol. Liver Physiol. 2011;300:G1094–G1104. doi: 10.1152/ajpgi.00365.2010.
    1. Bedirli A., Sakrak O., Muhtaroglu S., Soyuer I., Guler I., Erdogan A.R., Sozuer E.M. Ergothioneine Pretreatment Protects the Liver from Ischemia-Reperfusion Injury Caused by Increasing Hepatic Heat Shock Protein 70. J. Surg. Res. 2004;122:96–102. doi: 10.1016/j.jss.2004.06.016.
    1. Bao X.-Q., Liu G.-T. Induction of Overexpression of the 27-and 70-kDa Heat Shock Proteins by Bicyclol Attenuates Concanavalin A-Induced Liver Injury through Suppression of Nuclear Factor-κB in Mice. Mol. Pharmacol. 2009;75:1180–1188. doi: 10.1124/mol.108.053280.
    1. Lee K.J., Terada K., Oyadomari S., Inomata Y., Mori M., Gotoh T. Induction of Molecular Chaperones in Carbon Tetra-Chloride-treated Rat Liver: Implications in Protection against Liver Damage. Cell Stress Chaperones. 2004;9:58–68. doi: 10.1379/1466-1268(2004)009<0058:IOMCIC>;2.
    1. Tang Y., Masuo Y., Sakai Y., Wakayama T., Sugiura T., Harada R., Futatsugi A., Komura T., Nakamichi N., Sekiguchi H., et al. Localization of Xenobiotic Transporter OCTN1/SLC22A4 in Hepatic Stellate Cells and Its Protective Role in Liver Fibrosis. J. Pharm. Sci. 2016;105:1779–1789. doi: 10.1016/j.xphs.2016.02.023.
    1. Sugiura T., Kato S., Shimizu T., Wakayama T., Nakamichi N., Kubo Y., Iwata D., Suzuki K., Soga T., Asano M., et al. Functional Expression of Carnitine/Organic Cation Transporter OCTN1/SLC22A4 in Mouse Small Intestine and Liver. Drug Metab. Dispos. 2010;38:1665–1672. doi: 10.1124/dmd.110.032763.

Source: PubMed

3
Abonner