Idiopathic pulmonary fibrosis: Current and future treatment

Daniel S Glass, David Grossfeld, Heather A Renna, Priya Agarwala, Peter Spiegler, Joshua DeLeon, Allison B Reiss, Daniel S Glass, David Grossfeld, Heather A Renna, Priya Agarwala, Peter Spiegler, Joshua DeLeon, Allison B Reiss

Abstract

Objectives: Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic lung disease characterized by dry cough, fatigue, and progressive exertional dyspnea. Lung parenchyma and architecture is destroyed, compliance is lost, and gas exchange is compromised in this debilitating condition that leads inexorably to respiratory failure and death within 3-5 years of diagnosis. This review discusses treatment approaches to IPF in current use and those that appear promising for future development.

Data source: The data were obtained from the Randomized Controlled Trials and scientific studies published in English literature. We used search terms related to IPF, antifibrotic treatment, lung transplant, and management.

Results: Etiopathogenesis of IPF is not fully understood, and treatment options are limited. Pathological features of IPF include extracellular matrix remodeling, fibroblast activation and proliferation, immune dysregulation, cell senescence, and presence of aberrant basaloid cells. The mainstay therapies are the oral antifibrotic drugs pirfenidone and nintedanib, which can improve quality of life, attenuate symptoms, and slow disease progression. Unilateral or bilateral lung transplantation is the only treatment for IPF shown to increase life expectancy.

Conclusion: Clearly, there is an unmet need for accelerated research into IPF mechanisms so that progress can be made in therapeutics toward the goals of increasing life expectancy, alleviating symptoms, and improving well-being.

Keywords: idiopathic pulmonary fibrosis; lung transplantation; nintedanib; pentraxin; pirfenidone.

Conflict of interest statement

All authors have no conflict of interest to declare.

© 2022 The Authors. The Clinical Respiratory Journal published by John Wiley & Sons Ltd.

Figures

FIGURE 1
FIGURE 1
Comparison of healthy lung to idiopathic pulmonary fibrosis (IPF) lung. The healthy lung is characterized by unscarred airways with thin‐walled alveoli and unimpeded gas exchange. Pathological features of the IPF lung include dilated bronchi, airway distortion, and thickened alveolar walls. Inflammation and fibrosis lead to impaired gas exchange within the alveoli

References

    1. King TE Jr, Pardo A, Selman M. Idiopathic pulmonary fibrosis. Lancet. 2011;378:1949‐1961.
    1. Olson AL, Swigris JJ, Lezotte DC, Norris JM, Wilson CG, Brown KK. Mortality from pulmonary fibrosis increased in the United States from 1992 to 2003. Am J Respir Crit Care Med. 2007;176:277‐284.
    1. Raghu G, Collard HR, Egan JJ, et al. An official ATS/ERS/JRS/ALAT statement: Idiopathic pulmonary fibrosis: evidence‐based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183:788‐824.
    1. Raghu G, Chen SY, Yeh WS, et al. Idiopathic pulmonary fibrosis in US Medicare beneficiaries aged 65 years and older: Incidence, prevalence, and survival, 2001‐11. Lancet Respir Med. 2014;2:566‐572.
    1. Pleasants R, Tighe RM. Management of idiopathic pulmonary fibrosis. Ann Pharmacother. 2019;53:1238‐1248.
    1. Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. Lancet. 2017;389:1941‐1952.
    1. Baumgartner KB, Samet JM, Stidley CA, Colby TV, Waldron JA. Cigarette smoking: A risk factor for idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 1997;155:242‐248.
    1. Wynn TA. Integrating mechanisms of pulmonary fibrosis. J Exp Med. 2011;208:1339‐1350, 133950.
    1. Todd NW, Atamas SP, Luzina IG, et al. Permanent alveolar collapse is the predominant mechanism in idiopathic pulmonary fibrosis. Expert Rev Respir Med. 2015;9:411‐418.
    1. Martinez FJ, Safrin S, Weycker D, et al. IPF study group. The clinical course of patients with idiopathic pulmonary fibrosis. Ann Intern Med. 2005;142:S963‐S967.
    1. Smith ML. Update on pulmonary fibrosis: Not all fibrosis is created equally. Arch Pathol Lab Med. 2016;140:221‐229.
    1. van Manen MJ, Geelhoed JJ, Tak NC, Wijsenbeek MS. Optimizing quality of life in patients with idiopathic pulmonary fibrosis [published correction appears in Ther Adv Respir Dis. 2017;11:245.
    1. Senanayake S, Harrison K, Lewis M, McNarry M, Hudson J. Patients' experiences of coping with Idiopathic Pulmonary Fibrosis and their recommendations for its clinical management. PLoS One. 2018;13:e0197660.
    1. Kulkarni T, Duncan SR. Acute exacerbation of idiopathic pulmonary fibrosis: Who to treat, how to treat. Curr Pulmonol Rep. 2019;8:123‐130.
    1. Sprunger DB, Olson AL, Huie TJ, et al. Pulmonary fibrosis is associated with an elevated risk of thromboembolic disease. Eur Respir J. 2012;39(1):125‐132.
    1. Suzuki Y, Aono Y, Kono M, et al. Cause of mortality and sarcopenia in patients with idiopathic pulmonary fibrosis receiving antifibrotic therapy. Respirology. 2021;26:171‐179.
    1. Mori Y, Kondoh Y. What parameters can be used to identify early idiopathic pulmonary fibrosis? Respir Investig. 2021;59:53‐65.
    1. Davidsen JR, Lund LC, Laursen CB, Hallas J, Henriksen DP. Dynamics in diagnoses and pharmacotherapy before and after diagnosing idiopathic pulmonary fibrosis. ERJ Open Res. 2020;6:00479‐02020.
    1. Thickett D, Voorham J, Ryan R, et al. Historical database cohort study addressing the clinical patterns prior to idiopathic pulmonary fibrosis (IPF) diagnosis in UK primary care. BMJ Open. 2020;10:e034428.
    1. Martinez FJ, Chisholm A, Collard HR, et al. The diagnosis of idiopathic pulmonary fibrosis: Current and future approaches. Lancet Respir Med. 2017;5:61‐71.
    1. Sellarés J, Hernández‐González F, Lucena CM, et al. Auscultation of velcro crackles is associated with usual interstitial pneumonia. Medicine (Baltimore). 2016;95:e2573.
    1. Jafri S, Ahmed N, Saifullah N, Musheer M. Epidemiology and clinico‐radiological features of interstitial lung diseases. Pak J Med Sci. 2020;36:365‐370.
    1. van Manen MJG, Vermeer LC, Moor CC, et al. Clubbing in patients with fibrotic interstitial lung diseases. Respir Med. 2017;132:226‐231.
    1. Ley B, Ryerson CJ, Vittinghoff E, et al. A multidimensional index and staging system for idiopathic pulmonary fibrosis. Ann Intern Med. 2012;156:684‐691.
    1. Lancaster L, Fieuw A, Meulemans J, Ford P, Nathan SD. Standardization of the 6‐min walk test in clinical trials of idiopathic pulmonary fibrosis. Contemp Clin Trials. 2020;100:106227.
    1. Pastre J, Barnett S, Ksovreli I, et al. Idiopathic pulmonary fibrosis patients with severe physiologic impairment: Characteristics and outcomes. Respir Res. 2021;22:5.
    1. Selman M, Pardo A. Role of epithelial cells in idiopathic pulmonary fibrosis: From innocent targets to serial killers. Proc am Thorac Soc. 2006;3:364‐372.
    1. Romei C, Turturici L, Tavanti L, et al. The use of chest magnetic resonance imaging in interstitial lung disease: A systematic review. Eur Respir Rev. 2018;27:180062.
    1. Hobbs S, Chung JH, Leb J, Kaproth‐Joslin K, Lynch DA. Practical imaging interpretation in patients suspected of having idiopathic pulmonary fibrosis: Official recommendations from the radiology working group of the pulmonary fibrosis foundation. Radiol Cardiothorac Imaging. 2021;3:e200279.
    1. Park J, Jung J, Yoon SH, et al. CT quantification of the heterogeneity of fibrosis boundaries in idiopathic pulmonary fibrosis. Eur Radiol. 2021;13:1‐12.
    1. Watadani T, Sakai F, Johkoh T, et al. Interobserver variability in the CT assessment of honeycombing in the lungs. Radiology. 2013;266:936‐944.
    1. Bartholmai BJ, Raghunath S, Karwoski RA, et al. Quantitative CT imaging of interstitial lung diseases. J Thorac Imaging. 2013;28:298‐307.
    1. Lynch DA, Sverzellati N, Travis WD, et al. Diagnostic criteria for idiopathic pulmonary fibrosis: A Fleischner society white paper. Lancet Respir Med. 2018;6:138‐153.
    1. Cosgrove GP, Bianchi P, Danese S, Lederer DJ. Barriers to timely diagnosis of interstitial lung disease in the real world: The INTENSITY survey. BMC Pulm Med. 2018;18:9.
    1. Kim GHJ, Goldin JG, Hayes W, Oh A, Soule B, Du S. The value of imaging and clinical outcomes in a phase II clinical trial of a lysophosphatidic acid receptor antagonist in idiopathic pulmonary fibrosis. Ther Adv Respir Dis. 2021;15. 17534666211004238
    1. Alhamad EH, Cal JG, Alrajhi NN, Aharbi WM, AlRikabi AC, AlBoukai AA. Clinical characteristics, comorbidities, and outcomes in patients with idiopathic pulmonary fibrosis. Ann Thorac Med. 2020;15:208‐214.
    1. Fisher JH, Kolb M, Algamdi M, et al. Baseline characteristics and comorbidities in the CAnadian REgistry for Pulmonary Fibrosis. BMC Pulm Med. 2019;19:223.
    1. Raghu G, Anstrom KJ, King TE Jr, Lasky JA, Martinez FJ. Idiopathic pulmonary fibrosis clinical research network. Prednisone, azathioprine, and N‐acetylcysteine for pulmonary fibrosis. N Engl J Med. 2012;366:1968‐1977.
    1. Newton CA, Zhang D, Oldham JM, et al. Telomere length and use of immunosuppressive medications in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2019;200:336‐347.
    1. Moon SW, Kim SY, Chung MP, et al. Longitudinal changes in clinical features, management, and outcomes of idiopathic pulmonary fibrosis: A nationwide cohort study. Ann am Thorac Soc. 2021;18:780‐787.
    1. Vigeland CL, Hughes AH, Horton MR. Etiology and treatment of cough in idiopathic pulmonary fibrosis. Respir Med. 2017;123:98‐104.
    1. Kondoh Y, Taniguchi H, Yokoi T, et al. Cyclophosphamide and low‐dose prednisolone in idiopathic pulmonary fibrosis and fibrosing nonspecific interstitial pneumonia. Eur Respir J. 2005;25:528‐533.
    1. Tzouvelekis A, Bouros E, Oikonomou A, et al. Effect and safety of mycophenolate mofetil in idiopathic pulmonary fibrosis. Pulm Med. 2011:849035.
    1. Franks ME, MacPherson GR, Figg WD. Thalidomide. Lancet. 2004;363:1802‐1811.
    1. Bartlett JB, Dredge K, Dalgleish AG. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer. 2004;4:314‐322.
    1. Nemer G, Khalil A. A cautious note on thalidomide usage in cancer treatment: Genetic profiling of the TBX2 sub‐family gene expression is required. Drug Res (Stuttg). 2019;69:512‐518.
    1. Horton MR, Hallowell RW. Revisiting thalidomide: Fighting with caution against idiopathic pulmonary fibrosis. Drugs Today (Barc). 2012;48:661‐671.
    1. Tabata C, Tabata R, Kadokawa Y, et al. Thalidomide prevents bleomycin‐induced pulmonary fibrosis in mice. J Immunol. 2007;179:708‐714.
    1. Tabata C, Tabata R, Takahashi Y, Nakamura K, Nakano T. Thalidomide prevents cigarette smoke extract‐induced lung damage in mice. Int Immunopharmacol. 2015;25:511‐517.
    1. Horton MR, Santopietro V, Mathew L, et al. Thalidomide for the treatment of cough in idiopathic pulmonary fibrosis: A randomized trial. Ann Intern Med. 2012;157:398‐406.
    1. Birring SS, Kavanagh JE, Irwin RS, et al. Treatment of interstitial lung disease associated cough: CHEST guideline and expert panel report. Chest. 2018;154:904‐917.
    1. Zhou XL, Xu P, Chen HH, et al. Thalidomide inhibits TGF‐β1‐induced epithelial to mesenchymal transition in alveolar epithelial cells via Smad‐dependent and Smad‐independent signaling pathways. Sci Rep. 2017;7:14727.
    1. Glassberg MK. Overview of idiopathic pulmonary fibrosis, evidence‐based guidelines, and recent developments in the treatment landscape. Am J Manag Care. 2019;25:S195‐S203.
    1. Saito S, Alkhatib A, Kolls JK, Kondoh Y, Lasky JA. Pharmacotherapy and adjunctive treatment for idiopathic pulmonary fibrosis (IPF). J Thorac Dis. 2019;11:S1740‐S1754.
    1. Collins BF, Raghu G. Antifibrotic therapy for fibrotic lung disease beyond idiopathic pulmonary fibrosis. Eur Respir Rev. 2019;28:190022.
    1. Noble PW, Albera C, Bradford WZ, et al. Pirfenidone for idiopathic pulmonary fibrosis: Analysis of pooled data from three multinational phase 3 trials. Eur Respir J. 2016;47:243‐253.
    1. Noble PW, Albera C, Bradford WZ, et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): Two randomised trials. Lancet. 2011;377:1760‐1769.
    1. King TE, Bradford WZ, Castro‐Bernardini S, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2083‐2092.
    1. Ley B, Swigris J, Day BM, et al. Pirfenidone reduces respiratory‐related hospitalizations in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2017;196:756‐761.
    1. Eaden JA, Barber CM, Renshaw SA, Chaudhuri N, Bianchi SM. Real world experience of response to pirfenidone in patients with idiopathic pulmonary fibrosis: A two centre retrospective study. Sarcoidosis Vasc Diffuse Lung Dis. 2020;37:218‐224.
    1. Cameli P, Refini RM, Bergantini L, et al. Long‐term follow‐up of patients with idiopathic pulmonary fibrosis treated with pirfenidone or nintedanib: A real‐life comparison study. Front Mol Biosci. 2020;7:581828.
    1. Feng H, Zhao Y, Li Z, Kang J. Real‐life experiences in a single center: Efficacy of pirfenidone in idiopathic pulmonary fibrosis and fibrotic idiopathic non‐specific interstitial pneumonia patients. Ther Adv Respir Dis. 2020;14:1753466620963015.
    1. Verma N, Kumar P, Mitra S, et al. Drug idiosyncrasy due to pirfenidone presenting as acute liver failure: Case report and mini‐review of the literature. Hepatol Commun. 2018;2:142‐147.
    1. Lamb YN. Nintedanib: A review in fibrotic interstitial lung diseases. Drugs. 2021;81:575‐586.
    1. Wollin L, Wex E, Pautsch A, et al. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur Respir J. 2015;45:1434‐1445.
    1. Richeldi L, du Bois RM, Raghu G, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2071‐2082.
    1. Librero Jiménez M, Heredia Carrasco C, Fernández Cano MC. Severe Hepatotoxicity Secondary to Nintedanib. Rev Esp Enferm Dig. 2020. Dec 29. Epub ahead of print
    1. Rahaghi F, Belperio JA, Fitzgerald J, et al. Delphi consensus recommendations on management of dosing, adverse events, and comorbidities in the treatment of idiopathic pulmonary fibrosis with nintedanib. Clin Med Insights Circ Respir Pulm Med. 2021;15:11795484211006050.
    1. Bargagli E, Piccioli C, Rosi E, et al. Pirfenidone and Nintedanib in idiopathic pulmonary fibrosis: Real‐life experience in an Italian referral centre. Pulmonology. 2019;25:149‐153.
    1. Rochwerg B, Neupane B, Zhang Y, et al. Treatment of idiopathic pulmonary fibrosis: A network meta‐analysis. BMC Med. 2016;14:18.
    1. Wright WA, Crowley LE, Parekh D, et al. Real‐world retrospective observational study exploring the effectiveness and safety of antifibrotics in idiopathic pulmonary fibrosis. BMJ Open Respir Res. 2021;8:e000782.
    1. Justet A, Klay D, Porcher R, et al. Safety and efficacy of pirfenidone and nintedanib in patients with idiopathic pulmonary fibrosis and carrying a telomere‐related gene mutation. Eur Respir J. 2021;57:2003198.
    1. Schmid U, Weber B, Magnusson MO, Freiwald M. Exposure‐efficacy analyses of nintedanib in patients with chronic fibrosing interstitial lung disease. Respir Med. 2021;180:106369.
    1. Dempsey TM, Payne S, Sangaralingham L, et al. Adoption of the anti‐fibrotic medications pirfenidone and nintedanib for patients with idiopathic pulmonary fibrosis. Ann am Thorac Soc. 2021;18:1121‐1128.
    1. Nemoto M, Zaizen Y, Kataoka K, et al. Histologic factors associated with nintedanib efficacy in patients with idiopathic pulmonary fibrosis. PLoS One. 2021;16:e0245147.
    1. Somogyi V, Chaudhuri N, Torrisi SE, Kahn N, Müller V, Kreuter M. The therapy of idiopathic pulmonary fibrosis: What is next? Eur Respir Rev. 2019;28:190021.
    1. Weill D, Benden C, Corris PA, et al. A consensus document for the selection of lung transplant candidates: 2014—An update from the pulmonary transplantation council of the international society for heart and lung transplantation. J Heart Lung Transplant. 2015;34:1‐15.
    1. Amor MS, Rosengarten D, Shitenberg D, Pertzov B, Shostak Y, Kramer MR. Lung transplantation in idiopathic pulmonary fibrosis: Risk factors and outcome. Isr Med Assoc J. 2020;22:741‐746.
    1. Riddell P, Kleinerova J, Eaton D, et al. Meaningful survival benefit for single lung transplantation in idiopathic pulmonary fibrosis patients over 65 years of age. Eur Respir J. 2020;56:1902413.
    1. Yusen RD, Edwards LB, Kucheryavaya AY, et al. The registry of the international society for heart and lung transplantation: Thirty‐first adult lung and heart‐lung transplant report—2014; focus theme: Retransplantation. J Heart Lung Transplant. 2014;33:1009‐1024.
    1. Chambers DC, Cherikh WS, Goldfarb SB, et al. The international thoracic organ transplant registry of the international society for heart and lung transplantation: Thirty‐fifth adult lung and heart‐lung transplant report‐2018; focus theme: Multiorgan transplantation. J Heart Lung Transplant. 2018;37:1169‐1183.
    1. Hackman KL, Bailey MJ, Snell GI, Bach LA. Diabetes is a major risk factor for mortality after lung transplantation. Am J Transplant. 2014;14:438‐445.
    1. Patti MG, Vela MF, Odell DD, Richter JE, Fisichella PM, Vaezi MF. The intersection of GERD, aspiration, and lung transplantation. J Laparoendosc Adv Surg Tech A. 2016;26:501‐505.
    1. George PM, Patterson CM, Reed AK, Thillai M. Lung transplantation for idiopathic pulmonary fibrosis. Lancet Respir Med. 2019;7:271‐282.
    1. Balestro E, Cocconcelli E, Tinè M, et al. Idiopathic pulmonary fibrosis and lung transplantation: When it is feasible. Medicina (Kaunas). 2019;55:702.
    1. Bilgili H, Białas AJ, Górski P, Piotrowski WJ. Telomere abnormalities in the pathobiology of idiopathic pulmonary fibrosis. J Clin Med. 2019;8:1232.
    1. Kumar A, Kapnadak SG, Girgis RE, Raghu G. Lung transplantation in idiopathic pulmonary fibrosis. Expert Rev Respir Med. 2018;12:375‐385.
    1. Alvarez D, Cardenes N, Sellares J, et al. IPF lung fibroblasts have a senescent phenotype. Am J Physiol Lung Cell Mol Physiol. 2017;313:L1164‐L1173.
    1. Merck SJ, Armanios M. Shall we call them “telomere‐mediated”? Renaming the idiopathic after the cause is found. Eur Respir J. 2016;48:1556‐1558.
    1. Le Pavec J, Dauriat G, Gazengel P, et al. Lung transplantation for idiopathic pulmonary fibrosis. Presse Med. 2020;49:104026.
    1. Silhan LL, Shah PD, Chambers DC, et al. Lung transplantation in telomerase mutation carriers with pulmonary fibrosis. Eur Respir J. 2014;44:178‐187.
    1. Tokman S, Singer JP, Devine MS, et al. Clinical outcomes of lung transplant recipients with telomerase mutations. J Heart Lung Transplant. 2015;34:1318‐1324.
    1. Kannengiesser C, Borie R, Renzoni EA. Pulmonary fibrosis: Genetic analysis of telomere‐related genes, telomere length measurement‐or both? Respirology. 2019;24:97‐98.
    1. Veit T, Leuschner G, Sisic A, et al. Pirfenidone exerts beneficial effects in patients with IPF undergoing single lung transplantation. Am J Transplant. 2019;19:2358‐2365.
    1. Tuyls S, Verleden SE, Wuyts WA, et al. Determinants of survival in lung transplantation patients with idiopathic pulmonary fibrosis: A retrospective cohort study. Transplant Int. 2019;32:399‐409.
    1. Force SD, Kilgo P, Neujahr DC, et al. Bilateral lung transplantation offers better long‐term survival, compared with single‐lung transplantation, for younger patients with idiopathic pulmonary fibrosis. Ann Thorac Surg. 2011;91:244‐249.
    1. Villavicencio MA, Axtell AL, Osho A, et al. Single‐ versus double‐lung transplantation in pulmonary fibrosis: Impact of age and pulmonary hypertension. Ann Thorac Surg. 2018;106:856‐863.
    1. Li D, Liu Y, Wang B. Single versus bilateral lung transplantation in idiopathic pulmonary fibrosis: A systematic review and meta‐analysis. PLoS One. 2020;15(5):e0233732.
    1. Snell GI, Yusen RD, Weill D, et al. Report of the ISHLT working group on primary lung graft dysfunction, part I: Definition and grading‐A 2016 consensus group statement of the international society for heart and lung transplantation. J Heart Lung Transplant. 2017;36:1097‐1103.
    1. Laporta Hernandez R, Aguilar Perez M, Lázaro Carrasco MT, Ussetti GP. Lung transplantation in idiopathic pulmonary fibrosis. Med Sci (Basel). 2018;6:68.
    1. d'Alessandro M, Bergantini L, Torricelli E, et al. Systematic review and metanalysis of oncomarkers in ipf patients and serial changes of oncomarkers in a prospective Italian real‐life case series. Cancers (Basel). 2021;13:539.
    1. Lama VN, Smith L, Badri L, et al. Evidence for tissue‐resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J Clin Invest. 2007;117:989‐996.
    1. Chanda D, Kurundkar A, Rangarajan S, et al. Developmental reprogramming in mesenchymal stromal cells of human subjects with idiopathic pulmonary fibrosis. Sci Rep. 2016;6:37445.
    1. Toonkel RL, Hare JM, Matthay MA, Glassberg MK. Mesenchymal stem cells and idiopathic pulmonary fibrosis. Potential for clinical testing. Am J Respir Crit Care Med. 2013;188:133‐140.
    1. Tzouvelekis A, Toonkel R, Karampitsakos T, et al. Mesenchymal stem cells for the treatment of idiopathic pulmonary fibrosis. Front Med (Lausanne). 2018;5:142.
    1. Glassberg MK, Minkiewicz J, Toonke RL, et al. Allogeneic human mesenchymal stem cells in patients with idiopathic pulmonary fibrosis via intravenous delivery (AETHER) A phase I safety clinical trial. Chest. 2017;151:971‐981.
    1. Fishman JE, Kim GJ, Kyeong NY, Goldin JG, Glassberg MK. Intravenous stem cell dose and changes in quantitative lung fibrosis and DLCO in the AETHER trial: A pilot study. Eur Rev Med Pharmacol Sci. 2019;23:7568‐7572.
    1. Averyanov A, Koroleva I, Konoplyannikov M, et al. First‐in‐human high‐cumulative‐dose stem cell therapy in idiopathic pulmonary fibrosis with rapid lung function decline. Stem Cells Transl Med. 2020;9:6‐16.
    1. Deban L, Bottazzi B, Garlanda C, de la Torre YM, Mantovani A. Pentraxins: Multifunctional proteins at the interface of innate immunity and inflammation. Biofactors. 2009;35:138‐145.
    1. Cox N, Pilling D, Gomer RH. Serum amyloid P: A systemic regulator of the innate immune response. J Leukoc Biol. 2014;96:739‐743.
    1. Pilling D, Galvis‐Carvajal E, Karhadkar TR, Cox N, Gomer RH. Monocyte differentiation and macrophage priming are regulated differentially by pentraxins and their ligands. BMC Immunol. 2017;18:30.
    1. Cox N, Pilling D, Gomer RH. Distinct Fcγ receptors mediate the effect of serum amyloid p on neutrophil adhesion and fibrocyte differentiation. J Immunol. 2014;193:1701‐1708.
    1. Bharadwaj D, Mold C, Markham E, Du Clos TW. Serum amyloid P component binds to Fc gamma receptors and opsonizes particles for phagocytosis. J Immunol. 2001;166:6735‐6741.
    1. Murray LA, Chen Q, Kramer MS, et al. TGF‐beta driven lung fibrosis is macrophage dependent and blocked by Serum amyloid P. Int J Biochem Cell Biol. 2011;43:154‐162.
    1. Castaão AP, Lin SL, Surowy T, et al. Serum amyloid P inhibits fibrosis through Fc gamma R‐dependent monocyte‐macrophage regulation in vivo. Sci Transl Med. 2009;1:5ra13.
    1. Naik‐Mathuria B, Pilling D, Crawford JR, et al. Serum amyloid P inhibits dermal wound healing. Wound Repair Regen. 2008;16:266‐273.
    1. Tzouvelekis A, Tzilas V, Antoniou KM, Bouros D. Human pentraxin 2 protein treatment for IPF. Lancet Respir Med. 2019;7:640‐641.
    1. van den Blink B, Dillingh MR, Ginns LC, et al. Recombinant human pentraxin‐2 therapy in patients with idiopathic pulmonary fibrosis: Safety, pharmacokinetics and exploratory efficacy. Eur Respir J. 2016;47:889‐897.
    1. Duffield JS, Lupher ML Jr. PRM‐151 (recombinant human serum amyloid P/pentraxin 2) for the treatment of fibrosis. Drug News Perspect. 2010;23:305‐315.
    1. Moeller A, Gilpin SE, Ask K, et al. Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2009;179:588‐594.
    1. Pilling D, Gomer RH. Persistent lung inflammation and fibrosis in serum amyloid P component (APCs−/−) knockout mice. PLoS One. 2014;9:e93730.
    1. Dillingh MR, van den Blink B, Moerland M, et al. Recombinant human serum amyloid P in healthy volunteers and patients with pulmonary fibrosis. Pulm Pharmacol Ther. 2013;26:672‐676.
    1. Raghu G, van den Blink B, Hamblin MJ, et al. Effect of recombinant human pentraxin 2 vs placebo on change in forced vital capacity in patients with idiopathic pulmonary fibrosis: A randomized clinical trial. Jama. 2018;319:2299‐2307.
    1. Raghu G, van den Blink B, Hamblin MJ, et al. Long‐term treatment with recombinant human pentraxin 2 protein in patients with idiopathic pulmonary fibrosis: An open‐label extension study. Lancet Respir Med. 2019;7:657‐664.
    1. Lipson KE, Wong C, Teng Y, Spong S. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair. 2012;5(Suppl 1):S24.
    1. Picozzi V, Alseidi A, Winter J, et al. Gemcitabine/nab‐paclitaxel with pamrevlumab: A novel drug combination and trial design for the treatment of locally advanced pancreatic cancer. ESMO Open. 2020;5:e000668.
    1. Richeldi L, Fernández Pérez ER, Costabel U, et al. Pamrevlumab, an anti‐connective tissue growth factor therapy, for idiopathic pulmonary fibrosis (PRAISE): A phase 2, randomised, double‐blind, placebo‐controlled trial. Lancet Respir Med. 2020;8:25‐33.
    1. Leask A. Breathe, breathe in the air: The anti‐CCN2 antibody pamrevlumab (FG‐3019) completes a successful phase II clinical trial for idiopathic pulmonary fibrosis. J Cell Commun Signal. 2019;13:441‐442.
    1. Sgalla G, Franciosa C, Simonetti J, Richeldi L. Pamrevlumab for the treatment of idiopathic pulmonary fibrosis. Expert Opin Investig Drugs. 2020;29:771‐777.
    1. Di Martino E, Provenzani A, Vitulo P, Polidori P. Systematic review and meta‐analysis of pirfenidone, nintedanib, and pamrevlumab for the treatment of idiopathic pulmonary fibrosis. Ann Pharmacother. 2021;55:723‐731.
    1. Ninou I, Magkrioti C, Aidinis V. Autotaxin in pathophysiology and pulmonary fibrosis. Front Med (Lausanne). 2018;5:180.
    1. Desroy N, Housseman C, Bock X, et al. Discovery of 2‐[[2‐Ethyl‐6‐[4‐[2‐(3‐hydroxyazetidin‐1‐yl)‐2‐oxoethyl]piperazin‐1‐yl]‐8‐methylimidazo[1,2‐a]pyridin‐3‐yl]methylamino]‐4‐(4‐fluorophenyl)thiazole‐5‐carbonitrile (GLPG1690), a first‐in‐class autotaxin inhibitor undergoing clinical evaluation for the treatment of idiopathic pulmonary fibrosis. J Med Chem. 2017;60:3580‐3590.
    1. Oikonomou N, Mouratis MA, Tzouvelekis A, et al. Pulmonary autotaxin expression contributes to the pathogenesis of pulmonary fibrosis. Am J Respir Cell Mol Biol. 2012;47:566‐574.
    1. Tager AM. Autotaxin emerges as a therapeutic target for idiopathic pulmonary fibrosis: Limiting fibrosis by limiting lysophosphatidic acid synthesis. Am J Respir Cell Mol Biol. 2012;47:563‐565.
    1. Tager AM, LaCamera P, Shea BS, et al. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat Med. 2008;14:45‐54.
    1. Taneja A, Desrivot J, Diderichsen PM, et al. Population pharmacokinetic and pharmacodynamic analysis of GLPG1690, an autotaxin inhibitor, in healthy volunteers and patients with idiopathic pulmonary fibrosis. Clin Pharmacokinet. 2019;58:1175‐1191.
    1. Maher TM, Kreuter M, Lederer DJ, et al. Rationale, design and objectives of two phase III, randomised, placebo‐controlled studies of GLPG1690, a novel autotaxin inhibitor, in idiopathic pulmonary fibrosis (ISABELA 1 and 2). BMJ Open Respir Res. 2019;6:e000422.
    1. accessed April 21, 2021
    1. Tan Z, Lei H, Guo M, Chen Y, Zhai X. An updated patent review of autotaxin inhibitors (2017‐present). Expert Opin Ther Pat. 2021;31:421‐434.
    1. Jia W, Wang Z, Gao C, Wu J, Wu Q. Trajectory modeling of endothelial‐to‐mesenchymal transition reveals galectin‐3 as a mediator in pulmonary fibrosis. Cell Death Dis. 2021;12:327.
    1. Hirani N, MacKinnon AC, Nicol L, et al. Target‐inhibition of galectin‐3 by inhaled TD139 in patients with idiopathic pulmonary fibrosis. Eur Respir J. 2020;57:2002559.
    1. Govindappa PK, Patil M, Garikipati VNS, et al. Targeting exosome‐associated human antigen R attenuates fibrosis and inflammation in diabetic heart. FASEB j. 2020;34:2238‐2251.
    1. Woodhoo A, Iruarrizaga‐Lejarreta M, Beraza N, et al. Human antigen R contributes to hepatic stellate cell activation and liver fibrosis. Hepatology. 2012;56:1870‐1882.
    1. Al‐Habeeb F, Aloufi N, Traboulsi H, et al. Human antigen R promotes lung fibroblast differentiation to myofibroblasts and increases extracellular matrix production. J Cell Physiol. 2021;236:6836‐6851.
    1. Adams TS, Schupp JC, Poli S, et al. Single‐cell RNA‐seq reveals ectopic and aberrant lung‐resident cell populations in idiopathic pulmonary fibrosis. Sci Adv. 2020;6:eaba1983.
    1. Neumark N, Cosme C Jr, Rose KA, Kaminski N. The idiopathic pulmonary fibrosis cell atlas. Am J Physiol Lung Cell Mol Physiol. 2020;319:L887‐L893.
    1. Valenzi E, Tabib T, Papazoglou A, et al. Disparate interferon signaling and shared aberrant basaloid cells in single‐cell profiling of idiopathic pulmonary fibrosis and systemic sclerosis‐associated interstitial lung disease. Front Immunol. 2021;12:595811.
    1. Drakopanagiotakis F, Wujak L, Wygrecka M, Markart P. Biomarkers in idiopathic pulmonary fibrosis. Matrix Biol. 2018;68‐69:404‐421.
    1. Todd JL, Neely ML, Overton R, et al. Peripheral blood proteomic profiling of idiopathic pulmonary fibrosis biomarkers in the multicentre IPF‐PRO Registry. Respir Res. 2019;20:227.
    1. Wuyts WA, Wijsenbeek M, Bondue B, et al. Idiopathic pulmonary fibrosis: Best practice in monitoring and managing a relentless fibrotic disease. Respiration. 2020;99:73‐82.
    1. Machahua C, Montes‐Worboys A, Planas‐Cerezales L, et al. Serum AGE/RAGEs as potential biomarker in idiopathic pulmonary fibrosis. Respir Res. 2018;19:215.
    1. Yamaguchi K, Iwamoto H, Mazur W, et al. Reduced endogenous secretory RAGE in blood and bronchoalveolar lavage fluid is associated with poor prognosis in idiopathic pulmonary fibrosis. Respir Res. 2020;2:145.
    1. Jessen H, Hoyer N, Prior TS, et al. Turnover of type I and III collagen predicts progression of idiopathic pulmonary fibrosis. Respir Res. 2021;22:205.
    1. Ghumman M, Dhamecha D, Gonsalves A, et al. Emerging drug delivery strategies for idiopathic pulmonary fibrosis treatment. Eur J Pharm Biopharm. 2021;164:1‐12. Apr 18:S0939‐6411(21)00099‐0. doi: 10.1016/j.ejpb.2021.03.017. Epub ahead of print
    1. Xu F, Tanabe N, Vasilescu DM, et al. The transition from normal lung anatomy to minimal and established fibrosis in idiopathic pulmonary fibrosis (IPF). EBioMedicine. 2021;66:103325.
    1. Konigsberg IR, Borie R, Walts AD, et al. Molecular signatures of idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2021;65:430‐441.
    1. Nambiar S, Clynick B, How BS, et al. There is detectable variation in the lipidomic profile between stable and progressive patients with idiopathic pulmonary fibrosis (IPF). Respir Res. 2021;22:105.

Source: PubMed

3
Abonner