Is Environmental Enrichment Ready for Clinical Application in Human Post-stroke Rehabilitation?

Matthew W McDonald, Kathryn S Hayward, Ingrid C M Rosbergen, Matthew S Jeffers, Dale Corbett, Matthew W McDonald, Kathryn S Hayward, Ingrid C M Rosbergen, Matthew S Jeffers, Dale Corbett

Abstract

Environmental enrichment (EE) has been widely used as a means to enhance brain plasticity mechanisms (e.g., increased dendritic branching, synaptogenesis, etc.) and improve behavioral function in both normal and brain-damaged animals. In spite of the demonstrated efficacy of EE for enhancing brain plasticity, it has largely remained a laboratory phenomenon with little translation to the clinical setting. Impediments to the implementation of enrichment as an intervention for human stroke rehabilitation and a lack of clinical translation can be attributed to a number of factors not limited to: (i) concerns that EE is actually the "normal state" for animals, whereas standard housing is a form of impoverishment; (ii) difficulty in standardizing EE conditions across clinical sites; (iii) the exact mechanisms underlying the beneficial actions of enrichment are largely correlative in nature; (iv) a lack of knowledge concerning what aspects of enrichment (e.g., exercise, socialization, cognitive stimulation) represent the critical or active ingredients for enhancing brain plasticity; and (v) the required "dose" of enrichment is unknown, since most laboratory studies employ continuous periods of enrichment, a condition that most clinicians view as impractical. In this review article, we summarize preclinical stroke recovery studies that have successfully utilized EE to promote functional recovery and highlight the potential underlying mechanisms. Subsequently, we discuss how EE is being applied in a clinical setting and address differences in preclinical and clinical EE work to date. It is argued that the best way forward is through the careful alignment of preclinical and clinical rehabilitation research. A combination of both approaches will allow research to fully address gaps in knowledge and facilitate the implementation of EE to the clinical setting.

Keywords: clinical translation; environmental enrichment; neuroplasticity; recovery; rehabilitation; stroke.

Figures

Figure 1
Figure 1
Environmental enrichment (EE) is a multi-faceted form of housing that provides enhanced motor, cognitive, sensory and social stimulation, relative to the standard conditions of rodent housing. This form of housing has been shown to create widespread changes in the neuroplastic milieu of the brain. Following stroke, these beneficial changes create a neural environment that is permissive to recovery, resulting in robust improvements in both cognitive and gross motor function.

References

    1. Allred R. P., Cappellini C. H., Jones T. A. (2010). The “good” limb makes the “bad” limb worse: experience-dependent interhemispheric disruption of functional outcome after cortical infarcts in rats. Behav. Neurosci. 124, 124–132. 10.1037/a0018457
    1. Allred R. P., Jones T. A. (2008). Maladaptive effects of learning with the less-affected forelimb after focal cortical infarcts in rats. Exp. Neurol. 210, 172–181. 10.1016/j.expneurol.2007.10.010
    1. Anåker A., von Koch L., Sjöstrand C., Bernhardt J., Elf M. (2017). A comparative study of patients’ activities and interactions in a stroke unit before and after reconstruction-the significance of the built environment. PLoS One 12:e0177477. 10.1371/journal.pone.0177477
    1. Arwert H. J., Meesters J. J. L., Boiten J., Balk F., Wolterbeek R., Vliet Vlieland T. P. M. (2018). Post stroke depression, a long term problem for stroke survivors. Am. J. Phys. Med. Rehabil. [Epub ahead of print]. 10.1097/PHM.0000000000000918
    1. Askim T., Bernhardt J., Løge A. D., Indredavik B. (2012). Stroke patients do not need to be inactive in the first two-weeks after stroke: results from a stroke unit focused on early rehabilitation. Int. J. Stroke 7, 25–31. 10.1111/j.1747-4949.2011.00697.x
    1. Åstrand A., Saxin C., Sjöholm A., Skarin M., Linden T., Stoker A., et al. . (2016). Poststroke physical activity levels no higher in rehabilitation than in the acute hospital. J. Stroke Cerebrovasc. Dis. 25, 938–945. 10.1016/j.jstrokecerebrovasdis.2015.12.046
    1. Auriat A. M., Colbourne F. (2008). Influence of amphetamine on recovery after intracerebral hemorrhage in rats. Behav. Brain Res. 186, 222–229. 10.1016/j.bbr.2007.08.010
    1. Barker R. N., Brauer S. G. (2005). Upper limb recovery after stroke: the stroke survivors’ perspective. Disabil. Rehabil. 27, 1213–1223. 10.1080/09638280500075717
    1. Bechara R. G., Kelly Á. M. (2013). Exercise improves object recognition memory and induces BDNF expression and cell proliferation in cognitively enriched rats. Behav. Brain Res. 245, 96–100. 10.1016/j.bbr.2013.02.018
    1. Bennett E. L., Diamond M. C., Krech D., Rosenzweig M. R. (1964). Chemical and anatomical plasticity of brain. Science 146, 610–619. 10.1126/science.146.3644.610
    1. Bennett J. C., McRae P. A., Levy L. J., Frick K. M. (2006). Long-term continuous, but not daily, environmental enrichment reduces spatial memory decline in aged male mice. Neurobiol. Learn. Mem. 85, 139–152. 10.1016/j.nlm.2005.09.003
    1. Bernhardt J., Borschmann K., Boyd L., Carmichael S. T., Corbett D., Cramer S. C., et al. . (2017a). Moving rehabilitation research forward: developing consensus statements for rehabilitation and recovery research. Neurorehabil. Neural Repair 31, 694–698. 10.1177/1545968317724290
    1. Bernhardt J., Hayward K. S., Kwakkel G., Ward N. S., Wolf S. L., Borschmann K., et al. . (2017b). Agreed definitions and a shared vision for new standards in stroke recovery research: the stroke recovery and rehabilitation roundtable taskforce. Int. J. Stroke 12, 444–450. 10.1177/1747493017711816
    1. Bernhardt J., Dewey H., Thrift A., Donnan G. (2004). Inactive and alone: physical activity within the first 14 days of acute stroke unit care. Stroke 35, 1005–1009. 10.1161/01.str.0000120727.40792.40
    1. Biernaskie J., Chernenko G., Corbett D. (2004). Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J. Neurosci. 24, 1245–1254. 10.1523/JNEUROSCI.3834-03.2004
    1. Biernaskie J., Corbett D. (2001). Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J. Neurosci. 21, 5272–5280. 10.1523/JNEUROSCI.21-14-05272.2001
    1. Binkofski F., Seitz R. J. (2004). Modulation of the BOLD-response in early recovery from sensorimotor stroke. Neurology 63, 1223–1229. 10.1212/
    1. Boyd L. A., Hayward K. S., Ward N. S., Stinear C. M., Rosso C., Fisher R. J., et al. . (2017). Biomarkers of stroke recovery: consensus-based core recommendations from the stroke recovery and rehabilitation roundtable. Int. J. Stroke 12, 480–493. 10.1177/1747493017714176
    1. Brenes J. C., Lackinger M., Höglinger G. U., Schratt G., Schwarting R. K. W., Wöhr M. (2016). Differential effects of social and physical environmental enrichment on brain plasticity, cognition and ultrasonic communication in rats. J. Comp. Neurol. 524, 1586–1607. 10.1002/cne.23842
    1. Brown C. E., Wong C., Murphy T. H. (2008). Rapid morphologic plasticity of peri-infarct dendritic spines after focal ischemic stroke. Stroke 39, 1286–1291. 10.1161/STROKEAHA.107.498238
    1. Bryan G. K., Riesen A. H. (1989). Deprived somatosensory-motor experience in stumptailed monkey neocortex: dendritic spine density and dendritic branching of layer IIIB pyramidal cells. J. Comp. Neurol. 286, 208–217. 10.1002/cne.902860206
    1. Buchhold B., Mogoanta L., Suofu Y., Hamm A., Walker L., Kessler C., et al. . (2007). Environmental enrichment improves functional and neuropathological indices following stroke in young and aged rats. Restor. Neurol. Neurosci. 25, 467–484. Available online at:
    1. Caliaperumal J., Colbourne F. (2014). Rehabilitation improves behavioral recovery and lessens cell death without affecting iron, ferritin, transferrin, or inflammation after intracerebral hemorrhage in rats. Neurorehabil. Neural Repair 28, 395–404. 10.1177/1545968313517758
    1. Carmichael T. S. (2016). Emergent properties of neural repair: elemental biology to therapeutic concepts. Ann. Neurol. 79, 895–906. 10.1002/ana.24653
    1. Cechetti F., Worm P. V., Lovatel G., Moysés F., Siqueira I. R., Netto C. A. (2012). Environmental enrichment prevents behavioral deficits and oxidative stress caused by chronic cerebral hypoperfusion in the rat. Life Sci. 91, 29–36. 10.1016/j.lfs.2012.05.013
    1. Chen J.-Y., Yu Y., Yuan Y., Zhang Y.-J., Fan X.-P., Yuan S.-Y., et al. . (2017). Enriched housing promotes post-stroke functional recovery through astrocytic HMGB1-IL-6-mediated angiogenesis. Cell Death Discov. 3:17054. 10.1038/cddiscovery.2017.54
    1. Clarke J., Langdon K. D., Corbett D. (2014). Early poststroke experience differentially alters periinfarct layer II and III cortex. J. Cereb. Blood Flow Metab. 34, 630–637. 10.1038/jcbfm.2013.237
    1. Clarke J., Mala H., Windle V., Chernenko G., Corbett D. (2009). The effects of repeated rehabilitation tune-ups on functional recovery after focal ischemia in rats. Neurorehabil. Neural Repair 23, 886–894. 10.1177/1545968309341067
    1. Clarkson A. N., Overman J. J., Zhong S., Mueller R., Lynch G., Carmichael S. T. (2011). AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke. J. Neurosci. 31, 3766–3775. 10.1523/JNEUROSCI.5780-10.2011
    1. Cook D. J., Nguyen C., Chun H. N., L Llorente I., Chiu A. S., Machnicki M., et al. . (2017). Hydrogel-delivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke. J. Cereb. Blood Flow Metab. 37, 1030–1045. 10.1177/0271678x16649964
    1. Corbett D., Carmichael S. T., Murphy T. H., Jones T. A., Schwab M. E., Jolkkonen J., et al. . (2017). Enhancing the alignment of the preclinical and clinical stroke recovery research pipeline: consensus-based core recommendations from the stroke recovery and rehabilitation roundtable translational working group. Int. J. Stroke 12, 462–471. 10.1177/1545968317724285
    1. Corbett D., Jeffers M., Nguemeni C., Gomez-Smith M., Livingston-Thomas J. (2015). Lost in translation: rethinking approaches to stroke recovery. Prog. Brain Res. 218, 413–434. 10.1016/bs.pbr.2014.12.002
    1. Corbett D., Nguemeni C., Gomez-Smith M. (2014). How can you mend a broken brain? Neurorestorative approaches to stroke recovery. Cerebrovasc. Dis. 38, 233–239. 10.1159/000368887
    1. Dahlqvist P., Rönnbäck A., Bergström S.-A., Söderström I., Olsson T. (2004). Environmental enrichment reverses learning impairment in the Morris water maze after focal cerebral ischemia in rats. Eur. J. Neurosci. 19, 2288–2298. 10.1111/j.0953-816x.2004.03248.x
    1. Diamond M. C., Krech D., Rosenzweig M. R. (1964). The effects of an enriched environment on the histology of the rat cerebral cortex. J. Comp. Neurol. 123, 111–119. 10.1002/cne.901230110
    1. Dijkhuizen R. M., Ren J., Mandeville J. B., Wu O., Ozdag F. M., Moskowitz M. A., et al. . (2001). Functional magnetic resonance imaging of reorganization in rat brain after stroke. Proc. Natl. Acad. Sci. U S A 98, 12766–12771. 10.1073/pnas.231235598
    1. Dromerick A. W., Lang C. E., Birkenmeier R. L., Wagner J. M., Miller J. P., Videen T. O., et al. . (2009). Very early constraint-induced movement during stroke rehabilitation (VECTORS): a single-center RCT. Neurology 73, 195–201. 10.1212/WNL.0b013e3181ab2b27
    1. Duncan F., Kutlubaev M. A., Dennis M. S., Greig C., Mead G. E. (2012). Fatigue after stroke: a systematic review of associations with impaired physical fitness. Int. J. Stroke 7, 157–162. 10.1111/j.1747-4949.2011.00741.x
    1. Duncan P. W., Goldstein L. B., Matchar D., Divine G. W., Feussner J. (1992). Measurement of motor recovery after stroke. Stroke 23, 1084–1089. 10.1161/01.str.23.8.1084
    1. Edwardson M. A., Wang X., Liu B., Ding L., Lane C. J., Park C., et al. . (2017). Stroke lesions in a large upper limb rehabilitation trial cohort rarely match lesions in common preclinical models. Neurorehabil. Neural Repair 31, 509–520. 10.1177/1545968316688799
    1. English C., Bernhardt J., Crotty M., Esterman A., Segal L., Hillier S. (2015). Circuit class therapy or seven-day week therapy for increasing rehabilitation intensity of therapy after stroke (CIRCIT): a randomized controlled trial. Int. J. Stroke 10, 594–602. 10.1111/ijs.12470
    1. English C., Bernhardt J., Hillier S. (2014). Circuit class therapy and 7-day-week therapy increase physiotherapy time, but not patient activity: early results from the CIRCIT trial. Stroke 45, 3002–3007. 10.1161/STROKEAHA.114.006038
    1. Ergul A., Alhusban A., Fagan S. C. (2012). Angiogenesis: a harmonized target for recovery after stroke. Stroke 43, 2270–2274. 10.1161/STROKEAHA.111.642710
    1. Farrell R., Evans S., Corbett D. (2001). Environmental enrichment enhances recovery of function but exacerbates ischemic cell death. Neuroscience 107, 585–592. 10.1016/s0306-4522(01)00386-4
    1. Fini N. A., Holland A. E., Keating J., Simek J., Bernhardt J. (2017). How physically active are people following stroke? Systematic review and quantitative synthesis. Phys. Ther. 97, 707–717. 10.1093/ptj/pzx038
    1. Frick K. M., Stearns N. A., Pan J.-Y., Berger-Sweeney J. (2003). Effects of environmental enrichment on spatial memory and neurochemistry in middle-aged mice. Learn. Mem. 10, 187–198. 10.1101/lm.50703
    1. Gentile A. M., Beheshti Z., Held J. M. (1987). Enrichment versus exercise effects on motor impairments following cortical removals in rats. Behav. Neural Biol. 47, 321–332. 10.1016/s0163-1047(87)90435-3
    1. Gobbo O. L., O’Mara S. M. (2004). Impact of enriched-environment housing on brain-derived neurotrophic factor and on cognitive performance after a transient global ischemia. Behav. Brain Res. 152, 231–241. 10.1016/j.bbr.2003.10.017
    1. Grabowski M., Brundin P., Johansson B. B. (1993). Paw-reaching, sensorimotor, and rotational behavior after brain infarction in rats. Stroke 24, 889–895. 10.1161/01.str.24.6.889
    1. Greenough W. T., Volkmar F. R., Juraska J. M. (1973). Effects of rearing complexity on dendritic branching in frontolateral and temporal cortex of the rat. Exp. Neurol. 41, 371–378. 10.1016/0014-4886(73)90278-1
    1. Grégoire C. A., Bonenfant D., Le Nguyen A., Aumont A., Fernandes K. J. L. (2014). Untangling the influences of voluntary running, environmental complexity, social housing and stress on adult hippocampal neurogenesis. PLoS One 9:e86237. 10.1371/journal.pone.0086237
    1. Hannan A. J. (2014). Review: environmental enrichment and brain repair: harnessing the therapeutic effects of cognitive stimulation and physical activity to enhance experience-dependent plasticity. Neuropathol. Appl. Neurobiol. 40, 13–25. 10.1111/nan.12102
    1. Harris J. E., Eng J. J., Miller W. C., Dawson A. S. (2009). A self-administered graded repetitive arm supplementary program (GRASP) improves arm function during inpatient stroke rehabilitation: a multi-site randomized controlled trial. Stroke 40, 2123–2128. 10.1161/STROKEAHA.108.544585
    1. Hase Y., Craggs L., Hase M., Stevenson W., Slade J., Chen A., et al. . (2018). The effects of environmental enrichment on white matter pathology in a mouse model of chronic cerebral hypoperfusion. J. Cereb. Blood Flow Metab. 38, 151–165. 10.1177/0271678X17694904
    1. Hase Y., Craggs L., Hase M., Stevenson W., Slade J., Lopez D., et al. . (2017). Effects of environmental enrichment on white matter glial responses in a mouse model of chronic cerebral hypoperfusion. J. Neuroinflammation 14:81. 10.1186/s12974-017-0850-5
    1. Hayward K. S., Brauer S. G. (2015). Dose of arm activity training during acute and subacute rehabilitation post stroke: a systematic review of the literature. Clin. Rehabil. 29, 1234–1243. 10.1177/0269215514565395
    1. Hayward K. S., Barker R. N., Carson R. G., Brauer S. G. (2014). The effect of altering a single component of a rehabilitation programme on the functional recovery of stroke patients: a systematic review and meta-analysis. Clin. Rehabil. 28, 107–117. 10.1177/0269215513497601
    1. Hebb D. (1947). The effects of early experience on problem solving at maturity. Am. Psychol. 2, 306–307.
    1. Hebb D. (1949). The Organization of Behavior: A Neuropsychological Theory. New York, NY: John Wiley & Sons Inc.
    1. Hicks A. U., MacLellan C. L., Chernenko G. A., Corbett D. (2008). Long-term assessment of enriched housing and subventricular zone derived cell transplantation after focal ischemia in rats. Brain Res. 1231, 103–112. 10.1016/j.brainres.2008.07.041
    1. Higgins M., McKevitt C., Wolfe C. D. A. (2005). Reading to stroke unit patients: perceived impact and potential of an innovative arts based therapy. Disabil. Rehabil. 27, 1391–1398. 10.1080/09638280500164727
    1. Hirata K., Kuge Y., Yokota C., Harada A., Kokame K., Inoue H., et al. . (2011). Gene and protein analysis of brain derived neurotrophic factor expression in relation to neurological recovery induced by an enriched environment in a rat stroke model. Neurosci. Lett. 495, 210–215. 10.1016/j.neulet.2011.03.068
    1. Hokstad A., Indredavik B., Bernhardt J., Ihle-Hansen H., Salvesen Ø., Seljeseth Y. M., et al. . (2015). Hospital differences in motor activity early after stroke: a comparison of 11 Norwegian stroke units. J. Stroke Cerebrovasc. Dis. 24, 1333–1340. 10.1016/j.jstrokecerebrovasdis.2015.02.009
    1. Hu Y.-S., Long N., Pigino G., Brady S. T., Lazarov O. (2013). Molecular mechanisms of environmental enrichment: impairments in Akt/GSK3β, neurotrophin-3 and CREB signaling. PLoS One 8:e64460. 10.1371/journal.pone.0064460
    1. Hu X., Zheng H., Yan T., Pan S., Fang J., Jiang R., et al. . (2010). Physical exercise induces expression of CD31 and facilitates neural function recovery in rats with focal cerebral infarction. Neurol. Res. 32, 397–402. 10.1179/016164110X12670144526309
    1. Humm J. L., Kozlowski D. A., James D. C., Gotts J. E., Schallert T. (1998). Use-dependent exacerbation of brain damage occurs during an early post-lesion vulnerable period. Brain Res. 783, 286–292. 10.1016/s0006-8993(97)01356-5
    1. Iadecola C., Anrather J. (2011). Stroke research at a crossroad: asking the brain for directions. Nat. Neurosci. 14, 1363–1368. 10.1038/nn.2953
    1. Janssen H., Ada L., Bernhardt J., McElduff P., Pollack M., Nilsson M., et al. . (2014). An enriched environment increases activity in stroke patients undergoing rehabilitation in a mixed rehabilitation unit: a pilot non-randomized controlled trial. Disabil. Rehabil. 36, 255–262. 10.3109/09638288.2013.788218
    1. Janssen H., Bernhardt J., Collier J. M., Sena E. S., McElduff P., Attia J., et al. . (2010). An enriched environment improves sensorimotor function post-ischemic stroke. Neurorehabil. Neural Repair 24, 802–813. 10.1177/1545968310372092
    1. Jeffers M. S., Corbett D. (2018). Synergistic effects of enriched environment and task-specific reach training on poststroke recovery of motor function. Stroke 49, 1496–1503. 10.1161/STROKEAHA.118.020814
    1. Jeffers M. S., Hoyles A., Morshead C., Corbett D. (2014). Epidermal growth factor and erythropoietin infusion accelerate functional recovery in combination with rehabilitation. Stroke 45, 1856–1858. 10.1161/STROKEAHA.114.005464
    1. Jeffers M. S., Karthikeyan S., Corbett D. (2018a). Does stroke rehabilitation really matter? Part A: proportional stroke recovery in the rat. Neurorehabil. Neural Repair 32, 3–6. 10.1177/1545968317751210
    1. Jeffers M. S., Karthikeyan S., Gomez-Smith M., Gasinzigwa S., Achenbach J., Feiten A., et al. . (2018b). Does stroke rehabilitation really matter? Part B: an algorithm for prescribing an effective intensity of rehabilitation. Neurorehabil. Neural Repair 32, 73–83. 10.1177/1545968317753074
    1. Jha S., Dong B., Sakata K. (2011). Enriched environment treatment reverses depression-like behavior and restores reduced hippocampal neurogenesis and protein levels of brain-derived neurotrophic factor in mice lacking its expression through promoter IV. Transl. Psychiatry 1:e40. 10.1038/tp.2011.33
    1. Johansson B. B. (1996). Functional outcome in rats transferred to an enriched environment 15 days after focal brain ischemia. Stroke 27, 324–326. 10.1161/01.str.27.2.324
    1. Johansson B. B. (2004). Functional and cellular effects of environmental enrichment after experimental brain infarcts. Restor. Neurol. Neurosci. 22, 163–174. Available online at:
    1. Johansson B. B., Belichenko P. V. (2002). Neuronal plasticity and dendritic spines: effect of environmental enrichment on intact and postischemic rat brain. J. Cereb. Blood Flow Metab. 22, 89–96. 10.1097/00004647-200201000-00011
    1. Johansson B. B., Ohlsson A. L. (1996). Environment, social interaction and physical activity as determinants of functional outcome after cerebral infarction in the rat. Exp. Neurol. 139, 322–327. 10.1006/exnr.1996.0106
    1. Jones T. A. (2017). Motor compensation and its effects on neural reorganization after stroke. Nat. Rev. Neurosci. 18, 267–280. 10.1038/nrn.2017.26
    1. Jones T. A., Chu C. J., Grande L. A., Gregory A. D. (1999). Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J. Neurosci. 19, 10153–10163. 10.1523/JNEUROSCI.19-22-10153.1999
    1. Jørgensen H. S., Nakayama H., Raaschou H. O., Vive-Larsen J., Støier M., Olsen T. S. (1995). Outcome and time course of recovery in stroke. Part II: time course of recovery. The copenhagen stroke study. Arch. Phys. Med. Rehabil. 76, 406–412. 10.1016/s0003-9993(95)80568-0
    1. Kenah K., Bernhardt J., Cumming T., Spratt N., Luker J., Janssen H. (2017). Boredom in patients with acquired brain injuries during inpatient rehabilitation: a scoping review. Disabil. Rehabil. [Epub ahead of print]. 10.1080/09638288.2017.1354232
    1. Khan F., Amatya B., Elmalik A., Lowe M., Ng L., Reid I., et al. . (2016). An enriched environmental programme during inpatient neuro-rehabilitation: a randomized controlled trial. J. Rehabil. Med. 48, 417–425. 10.2340/16501977-2081
    1. Kim S. Y., Allred R. P., Adkins D. L., Tennant K. A., Donlan N. A., Kleim J. A., et al. . (2015). Experience with the “good” limb induces aberrant synaptic plasticity in the perilesion cortex after stroke. J. Neurosci. 35, 8604–8610. 10.1523/JNEUROSCI.0829-15.2015
    1. King A., McCluskey A., Schurr K. (2011). The time use and activity levels of inpatients in a co-located acute and rehabilitation stroke unit: an observational study. Top. Stroke Rehabil. 18, 654–665. 10.1310/tsr18s01-654
    1. Kolb B., Elliott W. (1987). Recovery from early cortical damage in rats. II. Effects of experience on anatomy and behavior following frontal lesions at 1 or 5 days of age. Behav. Brain Res. 26, 47–56. 10.1016/0166-4328(87)90015-5
    1. Kolb B., Gibb R. (1991). Environmental enrichment and cortical injury: behavioral and anatomical consequences of frontal cortex lesions. Cereb. Cortex 1, 189–198. 10.1093/cercor/1.2.189
    1. Komitova M., Mattsson B., Johansson B. B., Eriksson P. S. (2005a). Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats. Stroke 36, 1278–1282. 10.1161/01.str.0000166197.94147.59
    1. Komitova M., Zhao L. R., Gidö G., Johansson B. B., Eriksson P. (2005b). Postischemic exercise attenuates whereas enriched environment has certain enhancing effects on lesion-induced subventricular zone activation in the adult rat. Eur. J. Neurosci. 21, 2397–2405. 10.1111/j.1460-9568.2005.04072.x
    1. Komitova M., Perfilieva E., Mattsson B., Eriksson P. S., Johansson B. B. (2006). Enriched environment after focal cortical ischemia enhances the generation of astroglia and NG2 positive polydendrocytes in adult rat neocortex. Exp. Neurol. 199, 113–121. 10.1016/j.expneurol.2005.12.007
    1. Krakauer J. W., Carmichael S. T., Corbett D., Wittenberg G. F. (2012). Getting neurorehabilitation right: what can be learned from animal models? Neurorehabil. Neural Repair 26, 923–931. 10.1177/1545968312440745
    1. Kuptsova K., Kvist E., Nitzsche F., Jolkkonen J. (2015). Combined enriched environment/atipamezole treatment transiently improves sensory functions in stroke rats independent from neurogenesis and angiogenesis. Rom. J. Morphol. Embryol. 56, 41–47. Available online at:
    1. Kwakkel G., Kollen B., Twisk J. (2006). Impact of time on improvement of outcome after stroke. Stroke 37, 2348–2353. 10.1161/01.str.0000238594.91938.1e
    1. Kwakkel G., Kollen B. J., Van der Grond J. V., Prevo A. J. H. (2003). Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke 34, 2181–2186. 10.1161/
    1. Lang C. E., Lohse K. R., Birkenmeier R. L. (2015). Dose and timing in neurorehabilitation: prescribing motor therapy after stroke. Curr. Opin. Neurol. 28, 549–555. 10.1097/WCO.0000000000000256
    1. Lang C. E., Macdonald J. R., Reisman D. S., Boyd L., Jacobson Kimberley T., Schindler-Ivens S. M., et al. . (2009). Observation of amounts of movement practice provided during stroke rehabilitation. Arch. Phys. Med. Rehabil. 90, 1692–1698. 10.1016/j.apmr.2009.04.005
    1. Langdon K. D., Corbett D. (2012). Improved working memory following novel combinations of physical and cognitive activity. Neurorehabil. Neural Repair 26, 523–532. 10.1177/1545968311425919
    1. Langdon K. D., Granter-Button S., Harley C. W., Moody-Corbett F., Peeling J., Corbett D. (2014). A cognitive rehabilitation paradigm effective in male rats lacks efficacy in female rats. J. Cereb. Blood Flow Metab. 34, 1673–1680. 10.1038/jcbfm.2014.132
    1. Langhorne P., Bernhardt J., Kwakkel G. (2011). Stroke rehabilitation. Lancet 377, 1693–1702. 10.1016/S0140-6736(11)60325-5
    1. Langhorne P., Wu O., Rodgers H., Ashburn A., Bernhardt J. (2017). A very early rehabilitation trial after stroke (AVERT): a Phase III, multicentre, randomised controlled trial. Health Technol. Assess. 21, 1–120. 10.3310/hta21540
    1. Leger M., Paizanis E., Dzahini K., Quiedeville A., Bouet V., Cassel J. C., et al. . (2015). Environmental enrichment duration differentially affects behavior and neuroplasticity in adult mice. Cereb. Cortex 25, 4048–4061. 10.1093/cercor/bhu119
    1. Li C., Wen H. M., Wang Q. M., Zhang C. J., Jiang L., Dou Z. L., et al. . (2015). Exercise training inhibits the Nogo-A/NgR1/Rho-A signals in the cortical peri-infarct area in hypertensive stroke rats. Am. J. Phys. Med. Rehabil. 94, 1083–1094. 10.1097/PHM.0000000000000339
    1. Livingston-Thomas J., Nelson P., Karthikeyan S., Antonescu S., Jeffers M. S., Marzolini S., et al. . (2016). Exercise and environmental enrichment as enablers of task-specific neuroplasticity and stroke recovery. Neurotherapeutics 13, 395–402. 10.1007/s13311-016-0423-9
    1. Lohse K. R., Lang C. E., Boyd L. A. (2014). Is more better? Using metadata to explore dose-response relationships in stroke rehabilitation. Stroke 45, 2053–2058. 10.1161/STROKEAHA.114.004695
    1. Lohse K., Bland M. D., Lang C. E. (2016). Quantifying change during outpatient stroke rehabilitation: a retrospective regression analysis. Arch. Phys. Med. Rehabil. 97, 1423.e1–1430.e1. 10.1016/j.apmr.2016.03.021
    1. Luker J., Murray C., Lynch E., Bernhardsson S., Shannon M., Bernhardt J. (2017). Carers’ experiences, needs, and preferences during inpatient stroke rehabilitation: a systematic review of qualitative studies. Arch. Phys. Med. Rehabil. 98, 1852.e13–1862.e13. 10.1016/j.apmr.2017.02.024
    1. Ma Y., Qiang L., He M. (2013). Exercise therapy augments the ischemia-induced proangiogenic state and results in sustained improvement after stroke. Int. J. Mol. Sci. 14, 8570–8584. 10.3390/ijms14048570
    1. MacLellan C. L., Keough M. B., Granter-Button S., Chernenko G. A., Butt S., Corbett D. (2011a). A critical threshold of rehabilitation involving brain-derived neurotrophic factor is required for poststroke recovery. Neurorehabil. Neural Repair 25, 740–748. 10.1177/1545968311407517
    1. MacLellan C. L., Plummer N., Silasi G., Auriat A. M., Colbourne F. (2011b). Rehabilitation promotes recovery after whole blood-induced intracerebral hemorrhage in rats. Neurorehabil. Neural Repair 25, 477–483. 10.1177/1545968310395602
    1. Madinier A., Quattromani M. J., Sjölund C., Ruscher K., Wieloch T. (2014). Enriched housing enhances recovery of limb placement ability and reduces aggrecan-containing perineuronal nets in the rat somatosensory cortex after experimental stroke. PLoS One 9:e93121. 10.1371/journal.pone.0093121
    1. Malá H., Rasmussen C. P. (2017). The effect of combined therapies on recovery after acquired brain injury: systematic review of preclinical studies combining enriched environment, exercise, or task-specific training with other therapies. Cochrane Database Syst. Rev. 35, 25–64. 10.3233/RNN-160682
    1. Matsuda F., Sakakima H., Yoshida Y. (2011). The effects of early exercise on brain damage and recovery after focal cerebral infarction in rats. Acta Physiol. 201, 275–287. 10.1111/j.1748-1708.2010.02174.x
    1. Mering S., Jolkkonen J. (2015). Proper housing conditions in experimental stroke studies-special emphasis on environmental enrichment. Front. Neurosci. 9:106. 10.3389/fnins.2015.00106
    1. Mizutani K., Sonoda S., Yamada K., Beppu H., Shimpo K. (2011). Alteration of protein expression profile following voluntary exercise in the perilesional cortex of rats with focal cerebral infarction. Brain Res. 1416, 61–68. 10.1016/j.brainres.2011.08.012
    1. Murphy T. H., Corbett D. (2009). Plasticity during stroke recovery: from synapse to behaviour. Nat. Rev. Neurosci. 10, 861–872. 10.1038/nrn2735
    1. Nguemeni C., McDonald M. W., Jeffers M. S., Livingston-Thomas J., Lagace D., Corbett D. (2018). Short- and long-term exposure to low and high dose running produce differential effects on hippocampal neurogenesis. Neuroscience 369, 202–211. 10.1016/j.neuroscience.2017.11.026
    1. Nudo R. J., Milliken G. W., Jenkins W. M., Merzenich M. M. (1996a). Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J. Neurosci. 16, 785–807. 10.1523/JNEUROSCI.16-02-00785.1996
    1. Nudo R. J., Wise B. M., SiFuentes F., Milliken G. W. (1996b). Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272, 1791–1794. 10.1126/science.272.5269.1791
    1. Nygren J., Wieloch T. (2005). Enriched environment enhances recovery of motor function after focal ischemia in mice and downregulates the transcription factor NGFI-A. J. Cereb. Blood Flow Metab. 25, 1625–1633. 10.1038/sj.jcbfm.9600157
    1. Nygren J., Wieloch T., Pesic J., Brundin P., Deierborg T. (2006). Enriched environment attenuates cell genesis in subventricular zone after focal ischemia in mice and decreases migration of newborn cells to the striatum. Stroke 37, 2824–2829. 10.1161/01.STR.0000244769.39952.90
    1. O’Collins V. E., Macleod M. R., Donnan G. A., Horky L. L., van der Worp B. H., Howells D. W. (2006). 1,026 experimental treatments in acute stroke. Ann. Neurol. 59, 467–477. 10.1002/ana.20741
    1. Ohab J. J., Fleming S., Blesch A., Carmichael S. T. (2006). A neurovascular niche for neurogenesis after stroke. J. Neurosci. 26, 13007–13016. 10.1523/JNEUROSCI.4323-06.2006
    1. Ohlsson A. L., Johansson B. B. (1995). Environment influences functional outcome of cerebral infarction in rats. Stroke 26, 644–649. 10.1161/01.str.26.4.644
    1. Papadopoulos C. M., Tsai S. Y., Alsbiei T., O’Brien T. E., Schwab M. E., Kartje G. L. (2002). Functional recovery and neuroanatomical plasticity following middle cerebral artery occlusion and IN-1 antibody treatment in the adult rat. Ann. Neurol. 51, 433–441. 10.1002/ana.10144
    1. Papadopoulos C. M., Tsai S.-Y., Cheatwood J. L., Bollnow M. R., Kolb B. E., Schwab M. E., et al. . (2006). Dendritic plasticity in the adult rat following middle cerebral artery occlusion and Nogo-a neutralization. Cereb. Cortex 16, 529–536. 10.1093/cercor/bhi132
    1. Papadopoulos C. M., Tsai S. Y., Guillen V., Ortega J., Kartje G. L., Wolf W. A. (2009). Motor recovery and axonal plasticity with short-term amphetamine after stroke. Stroke 40, 294–302. 10.1161/STROKEAHA.108.519769
    1. Pereira L. O., Arteni N. S., Petersen R. C., da Rocha A. P., Achaval M., Netto C. A. (2007). Effects of daily environmental enrichment on memory deficits and brain injury following neonatal hypoxia-ischemia in the rat. Neurobiol. Learn. Mem. 87, 101–108. 10.1016/j.nlm.2006.07.003
    1. Pereira L. O., Strapasson A. C. P., Nabinger P. M., Achaval M., Netto C. A. (2008). Early enriched housing results in partial recovery of memory deficits in female, but not in male, rats after neonatal hypoxia-ischemia. Brain Res. 1218, 257–266. 10.1016/j.brainres.2008.04.010
    1. Ploughman M., Granter-Button S., Chernenko G., Attwood Z., Tucker B. A., Mearow K. M., et al. . (2007). Exercise intensity influences the temporal profile of growth factors involved in neuronal plasticity following focal ischemia. Brain Res. 1150, 207–216. 10.1016/j.brainres.2007.02.065
    1. Ploughman M., Windle V., MacLellan C. L., White N., Doré J. J., Corbett D. (2009). Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats. Stroke 40, 1490–1495. 10.1161/STROKEAHA.108.531806
    1. Prabhakaran S., Zarahn E., Riley C., Speizer A., Chong J. Y., Lazar R. M., et al. . (2008). Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil. Neural Repair 22, 64–71. 10.1177/1545968307305302
    1. Prado Lima M. G., Schimidt H. L., Garcia A., Daré L. R., Carpes F. P., Izquierdo I., et al. . (2018). Environmental enrichment and exercise are better than social enrichment to reduce memory deficits in amyloid β neurotoxicity. Proc. Natl. Acad. Sci. U S A 115, E2403–E2409. 10.1073/pnas.1718435115
    1. Prakash V., Shah M. A., Hariohm K. (2016). Family’s presence associated with increased physical activity in patients with acute stroke: an observational study. Braz. J. Phys. Ther. 20, 306–311. 10.1590/bjpt-rbf.2014.0172
    1. Puurunen K., Jolkkonen J., Sirviö J., Haapalinna A., Sivenius J. (2001). An α2-adrenergic antagonist, atipamezole, facilitates behavioral recovery after focal cerebral ischemia in rats. Neuropharmacology 40, 597–606. 10.1016/s0028-3908(00)00182-9
    1. Puurunen K., Sirviö J., Koistinaho J., Miettinen R., Haapalinna A., Riekkinen P., et al. . (1997). Studies on the influence of enriched-environment housing combined with systemic administration of an α2-adrenergic antagonist on spatial learning and hyperactivity after global ischemia in rats. Stroke 28, 623–631. 10.1161/01.str.28.3.623
    1. Ramsey L. E., Siegel J. S., Lang C. E., Strube M., Shulman G. L., Corbetta M. (2017). Behavioural clusters and predictors of performance during recovery from stroke. Nat. Hum. Behav. 1:0038. 10.1038/s41562-016-0038
    1. Risedal A., Zeng J., Johansson B. B. (1999). Early training may exacerbate brain damage after focal brain ischemia in the rat. J. Cereb. Blood Flow Metab. 19, 997–1003. 10.1097/00004647-199909000-00007
    1. Risedal A., Mattsson B., Dahlqvist P., Nordborg C., Olsson T., Johansson B. B. (2002). Environmental influences on functional outcome after a cortical infarct in the rat. Brain Res. Bull. 58, 315–321. 10.1016/s0361-9230(02)00796-7
    1. Rojas J. J., Deniz B. F., Miguel P. M., Diaz R., Hermel Edo E.-S., Achaval M., et al. . (2013). Effects of daily environmental enrichment on behavior and dendritic spine density in hippocampus following neonatal hypoxia-ischemia in the rat. Exp. Neurol. 241, 25–33. 10.1016/j.expneurol.2012.11.026
    1. Rönnbäck A., Dahlqvist P., Svensson P.-A., Jernås M., Carlsson B., Carlsson L. M. S., et al. . (2005). Gene expression profiling of the rat hippocampus one month after focal cerebral ischemia followed by enriched environment. Neurosci. Lett. 385, 173–178. 10.1016/j.neulet.2005.05.016
    1. Rosbergen I. C. M., Grimley R. S., Hayward K. S., Walker K. C., Rowley D., Campbell A. M., et al. . (2016). The effect of an enriched environment on activity levels in people with stroke in an acute stroke unit: protocol for a before-after pilot study. Pilot Feasibility Stud. 2:36. 10.1186/s40814-016-0081-z
    1. Rosbergen I. C. M., Grimley R. S., Hayward K. S., Walker K. C., Rowley D., Campbell A. M., et al. . (2017). Embedding an enriched environment in an acute stroke unit increases activity in people with stroke: a controlled before-after pilot study. Clin. Rehabil. 31, 1516–1528. 10.1177/0269215517705181
    1. Rosenzweig M. R., Krech D., Bennett E. L., Diamond M. C. (1962). Effects of environmental complexity and training on brain chemistry and anatomy: a replication and extension. J. Comp. Physiol. Psychol. 55, 429–437. 10.1037/h0041137
    1. Rossi C., Angelucci A., Costantin L., Braschi C., Mazzantini M., Babbini F., et al. . (2006). Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur. J. Neurosci. 24, 1850–1856. 10.1111/j.1460-9568.2006.05059.x
    1. Saucier D. M., Yager J. Y., Armstrong E. A. (2010). Housing environment and sex affect behavioral recovery from ischemic brain damage. Behav. Brain Res. 214, 48–54. 10.1016/j.bbr.2010.04.039
    1. Schäbitz W.-R., Berger C., Kollmar R., Seitz M., Tanay E., Kiessling M., et al. . (2004). Effect of brain-derived neurotrophic factor treatment and forced arm use on functional motor recovery after small cortical ischemia. Stroke 35, 992–997. 10.1161/01.STR.0000119754.85848.0d
    1. Schaefer S. Y., Patterson C. B., Lang C. E. (2013). Transfer of training between distinct motor tasks after stroke: implications for task-specific approaches to upper-extremity neurorehabilitation. Neurorehabil. Neural Repair 27, 602–612. 10.1177/1545968313481279
    1. Schneider E. J., Lannin N. A., Ada L., Schmidt J. (2016). Increasing the amount of usual rehabilitation improves activity after stroke: a systematic review. J. Physiother. 62, 182–187. 10.1016/j.jphys.2016.08.006
    1. Schuch C. P., Jeffers M. S., Antonescu S., Nguemeni C., Gomez-Smith M., Pereira L. O., et al. . (2016). Enriched rehabilitation promotes motor recovery in rats exposed to neonatal hypoxia-ischemia. Behav. Brain Res. 304, 42–50. 10.1016/j.bbr.2016.02.010
    1. Seo J. H., Yu J. H., Suh H., Kim M. S., Cho S. R. (2013). Fibroblast growth factor-2 induced by enriched environment enhances angiogenesis and motor function in chronic hypoxic-ischemic brain injury. PLoS One 8:e74405. 10.1371/journal.pone.0074405
    1. Simpson J., Kelly J. P. (2011). The impact of environmental enrichment in laboratory rats—behavioural and neurochemical aspects. Behav. Brain Res. 222, 246–264. 10.1016/j.bbr.2011.04.002
    1. Skarin M., Sjöholm A., Nilsson Å. L., Nilsson M., Bernhardt J., Lindén T. (2013). A mapping study on physical activity in stroke rehabilitation: establishing the baseline. J. Rehabil. Med. 45, 997–1003. 10.2340/16501977-1214
    1. Soleman S., Yip P. K., Duricki D. A., Moon L. D. F. (2012). Delayed treatment with chondroitinase ABC promotes sensorimotor recovery and plasticity after stroke in aged rats. Brain 135, 1210–1223. 10.1093/brain/aws027
    1. Sonninen R., Virtanen T., Sivenius J., Jolkkonen J. (2006). Gene expression profiling in the hippocampus of rats subjected to focal cerebral ischemia and enriched environment housing. Restor. Neurol. Neurosci. 24, 17–23. Available online at:
    1. Sorrells S. F., Paredes M. F., Cebrian-Silla A., Sandoval K., Qi D., Kelley K. W., et al. . (2018). Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555, 377–381. 10.1038/nature25975
    1. van de Port I. G. L., Valkenet K., Schuurmans M., Visser-Meily J. M. A. (2012). How to increase activity level in the acute phase after stroke. J. Clin. Nurs. 21, 3574–3578. 10.1111/j.1365-2702.2012.04249.x
    1. van Praag H., Kempermann G., Gage F. H. (2000). Neural consequences of enviromental enrichment. Nat. Rev. Neurosci. 1, 191–198. 10.1038/35044558
    1. Venna V. R., Xu Y., Doran S. J., Patrizz A., McCullough L. D. (2014). Social interaction plays a critical role in neurogenesis and recovery after stroke. Transl. Psychiatry 4:e351. 10.1038/tp.2013.128
    1. Voss M. W., Vivar C., Kramer A. F., van Praag H. (2013). Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn. Sci. 17, 525–544. 10.1016/j.tics.2013.08.001
    1. West T., Bernhardt J. (2013). Physical activity patterns of acute stroke patients managed in a rehabilitation focused stroke unit. Biomed Res. Int. 2013:438679. 10.1155/2013/438679
    1. Will B., Galani R., Kelche C., Rosenzweig M. R. (2004). Recovery from brain injury in animals: relative efficacy of environmental enrichment, physical exercise or formal training (1990–2002). Prog. Neurobiol. 72, 167–182. 10.1016/j.pneurobio.2004.03.001
    1. Windle V., Power A., Corbett D. (2007). Norepinephrine depletion facilitates recovery of function after focal ischemia in the rat. Eur. J. Neurosci. 26, 1822–1831. 10.1111/j.1460-9568.2007.05799.x
    1. Winstein C. J., Wolf S. L., Dromerick A. W., Lane C. J., Nelsen M. A., Lewthwaite R., et al. . (2016). Effect of a task-oriented rehabilitation program on upper extremity recovery following motor stroke: the ICARE randomized clinical trial. JAMA 315, 571–581. 10.1001/jama.2016.0276
    1. Winters C., van Wegen E. E. H., Daffertshofer A., Kwakkel G. (2015). Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke. Neurorehabil. Neural Repair 29, 614–622. 10.1177/1545968314562115
    1. Würbel H. (2001). Ideal homes? Housing effects on rodent brain and behaviour. Trends Neurosci. 24, 207–211. 10.1016/s0166-2236(00)01718-5
    1. Wurm F., Keiner S., Kunze A., Witte O. W., Redecker C. (2007). Effects of skilled forelimb training on hippocampal neurogenesis and spatial learning after focal cortical infarcts in the adult rat brain. Stroke 38, 2833–2840. 10.1161/STROKEAHA.107.485524
    1. Xu X., Ye L., Ruan Q. (2009). Environmental enrichment induces synaptic structural modification after transient focal cerebral ischemia in rats. Exp. Biol. Med. 234, 296–305. 10.3181/0804-RM-128
    1. Yang Y.-R., Chang H.-C., Wang P. S., Wang R.-Y. (2012). Motor performance improved by exercises in cerebral ischemic rats. J. Mot. Behav. 44, 97–103. 10.1080/00222895.2012.654524
    1. Yu J. H., Kim M., Seo J. H., Cho S.-R. (2016). Brain plasticity and neurorestoration by environmental enrichment. Brain Neurorehabil. 9:e2 10.12786/bn.2016.9.e2
    1. Yu K., Wu Y., Zhang Q., Xie H., Liu G., Guo Z., et al. . (2014). Enriched environment induces angiogenesis and improves neural function outcomes in rat stroke model. J. Neurol. Sci. 347, 275–280. 10.1016/j.jns.2014.10.022
    1. Zeiler S. R., Krakauer J. W. (2013). The interaction between training and plasticity in the poststroke brain. Curr. Opin. Neurol. 26, 609–616. 10.1097/WCO.0000000000000025
    1. Zhang X., Chen X. P., Lin J. B., Xiong Y., Liao W. J., Wan Q. (2017). Effect of enriched environment on angiogenesis and neurological functions in rats with focal cerebral ischemia. Brain Res. 1655, 176–185. 10.1016/j.brainres.2016.11.001
    1. Zheng Q., Zhu D., Bai Y., Wu Y., Jia J., Hu Y. (2011). Exercise improves recovery after ischemic brain injury by inducing the expression of angiopoietin-1 and Tie-2 in rats. Tohoku J. Exp. Med. 224, 221–228. 10.1620/tjem.224.221
    1. Zubedat S., Aga-Mizrachi S., Cymerblit-Sabba A., Ritter A., Nachmani M., Avital A. (2015). Methylphenidate and environmental enrichment ameliorate the deleterious effects of prenatal stress on attention functioning. Stress 18, 280–288. 10.3109/10253890.2015.1023790

Source: PubMed

3
Abonner