Hand rehabilitation with sonification techniques in the subacute stage of stroke

Alfredo Raglio, Monica Panigazzi, Roberto Colombo, Marco Tramontano, Marco Iosa, Sara Mastrogiacomo, Paola Baiardi, Daniele Molteni, Eleonora Baldissarro, Chiara Imbriani, Chiara Imarisio, Laura Eretti, Mehrnaz Hamedani, Caterina Pistarini, Marcello Imbriani, Gian Luigi Mancardi, Carlo Caltagirone, Alfredo Raglio, Monica Panigazzi, Roberto Colombo, Marco Tramontano, Marco Iosa, Sara Mastrogiacomo, Paola Baiardi, Daniele Molteni, Eleonora Baldissarro, Chiara Imbriani, Chiara Imarisio, Laura Eretti, Mehrnaz Hamedani, Caterina Pistarini, Marcello Imbriani, Gian Luigi Mancardi, Carlo Caltagirone

Abstract

After a stroke event, most survivors suffer from arm paresis, poor motor control and other disabilities that make activities of daily living difficult, severely affecting quality of life and personal independence. This randomized controlled trial aimed at evaluating the efficacy of a music-based sonification approach on upper limbs motor functions, quality of life and pain perceived during rehabilitation. The study involved 65 subacute stroke individuals during inpatient rehabilitation allocated into 2 groups which underwent usual care dayweek) respectively of standard upper extremity motor rehabilitation or upper extremity treatment with sonification techniques. The Fugl-Meyer Upper Extremity Scale, Box and Block Test and the Modified Ashworth Scale were used to perform motor assessment and the McGill Quality of Life-it and the Numerical Pain Rating Scale to assess quality of life and pain. The assessment was performed at baseline, after 2 weeks, at the end of treatment and at follow-up (1 month after the end of treatment). Total scores of the Fugl-Meyer Upper Extremity Scale (primary outcome measure) and hand and wrist sub scores, manual dexterity scores of the affected and unaffected limb in the Box and Block Test, pain scores of the Numerical Pain Rating Scale (secondary outcomes measures) significantly improved in the sonification group compared to the standard of care group (time*group interaction < 0.05). Our findings suggest that music-based sonification sessions can be considered an effective standardized intervention for the upper limb in subacute stroke rehabilitation.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
The flow chart of the study. All randomized patients received the allocated intervention. Between baseline and the 4-week evaluation two patients in the Sonification group discontinued the treatment. No discontinuation occurred in the Standard Care Group. After 1 month from the beginning of treatment (T3 follow-up) 18 and 16 patients were lost to follow-up in the Sonification and Standard Care Groups, respectively. The primary analysis (T2, end of the 4-week treatment) was performed on the Intention To Treat (ITT) and Per Protocol (PP) populations, with the numbers reported in the figure.
Figure 2
Figure 2
Trend between baseline (T0) and end of treatment (T2, 4 weeks) of primary outcome, FM-UE Total Score.
Figure 3
Figure 3
Trend between baseline (T0) and end of treatment (T2, 4 weeks) of secondary outcomes.

References

    1. Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: A systematic review. Lancet Neurol. 2009;8:741–754. doi: 10.1016/S1474-4422(09)70150-4.
    1. Pollock A, et al. Interventions for improving upper limb function after stroke. Cochrane Database Syst. Rev. 2014;12:CD0102820.
    1. Kwakkel G, Kollen BJ. Predicting activities after stroke: What is clinically relevant? Int. J. Stroke. 2013;8:25–32. doi: 10.1111/j.1747-4949.2012.00967.x.
    1. Nowak DA, Hermsdörfer J, Topka H. Deficits of predictive grip force control during object manipulation in acute stroke. J. Neurol. 2003;250:850–860. doi: 10.1007/s00415-003-1095-z.
    1. Kwakkel G. Impact of intensity of practice after stroke: Issues for consideration. Disabil. Rehabil. 2006;28:823–830. doi: 10.1080/09638280500534861.
    1. Maclean N, Pound P, Wolfe C, Rudd A. Qualitative analysis of stroke patients’ motivation for rehabilitation. BMJ. 2000;321:1051–1054. doi: 10.1136/bmj.321.7268.1051.
    1. Iosa M, et al. Seven capital devices for the future of stroke rehabilitation. Stroke Res. Treat. 2012;2012:187965.
    1. Moens B, Leman M. Alignment strategies for the entrainment of music and movement rhythms. Ann. N. Y. Acad. Sci. 2015;1337:86–93. doi: 10.1111/nyas.12647.
    1. Morone G, et al. Rehabilitative devices for a top-down approach. Expert Rev. Med. Devices. 2019;16:187–195. doi: 10.1080/17434440.2019.1574567.
    1. Dauvergne C, et al. Home-based training of rhythmic skills with a serious game in Parkinson's disease: Usability and acceptability. Ann. Phys. Rehabil. Med. 2018;61:380–385. doi: 10.1016/j.rehab.2018.08.002.
    1. Mehrholz J, Pohl M, Platz T, Kugler J, Elsner B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst. Rev. 2018;9:CD006876.
    1. Balasubramanian S, Klein J, Burdet E. Robot-assisted rehabilitation of hand function. Curr. Opin. Neurol. 2010;23:661–670. doi: 10.1097/WCO.0b013e32833e99a4.
    1. Yue Z, Zhang X, Wang J. Hand rehabilitation robotics on poststroke motor recovery. Behav. Neurol. 2017;2017:3908135. doi: 10.1155/2017/3908135.
    1. Moumdjian L, Sarkamo T, Leone C, Leman M, Feys P. Effectiveness of music-based interventions on motricity or cognitive functioning in neurological populations: A systematic review. Eur. J. Phys. Rehabil. Med. 2017;53:466–482.
    1. Schlaug G. Part VI introduction: Listening to and making music facilitates brain recovery processes. Ann. N. Y. Acad. Sci. 2009;1169:372–373. doi: 10.1111/j.1749-6632.2009.04869.x.
    1. Altenmuller E, Marco-Pallares J, Munte TF, Schneider S. Neural reorganization underlies improvement in stroke-induced motor dysfunction by music-supported therapy. Ann. N. Y. Acad. Sci. 2009;1169:395–405. doi: 10.1111/j.1749-6632.2009.04580.x.
    1. Ripollés P, et al. Music supported therapy promotes motor plasticity in individuals with chronic stroke. Brain Imaging Behav. 2016;10:1289–1307. doi: 10.1007/s11682-015-9498-x.
    1. Sihvonen AJ, et al. Music-based interventions in neurological rehabilitation. Lancet Neurol. 2017;16:648–660. doi: 10.1016/S1474-4422(17)30168-0.
    1. Herholz SC, Zatorre RJ. Musical training as a framework for brain plasticity: Behavior, function, and structure. Neuron. 2012;76:486–502. doi: 10.1016/j.neuron.2012.10.011.
    1. Bangert M, Altenmuller E. Mapping perception to action in piano practice: A longitudinal DC-EEG-study. BMC Neurosci. 2003;4:26–36. doi: 10.1186/1471-2202-4-26.
    1. Bangert M, et al. Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. Neuroimage. 2006;30:917–926. doi: 10.1016/j.neuroimage.2005.10.044.
    1. Suh JH, et al. Effect of rhythmic auditory stimulation on gait and balance in hemiplegic stroke patients. NeuroRehabilitation. 2014;34:193–199. doi: 10.3233/NRE-131008.
    1. Hayden R, Clair AA, Johnson G, Otto D. The effect of rhythmic auditory stimulation (RAS) on physical therapy outcomes for patients in gait training following stroke: A feasibility study. Int. J. Neurosci. 2009;119:2183–2195. doi: 10.3109/00207450903152609.
    1. van Wijck F, et al. Making music after stroke: Using musical activities to enhance arm function. Ann. N. Y. Acad. Sci. 2012;1252:305–311. doi: 10.1111/j.1749-6632.2011.06403.x.
    1. Schneider S, Schonle PW, Altenmuller E, Munte TF. Using musical instruments to improve motor skill recovery following a stroke. J. Neurol. 2007;254:1339–1346. doi: 10.1007/s00415-006-0523-2.
    1. Lim KB, et al. The therapeutic effect of neurologic music therapy and speech language therapy in post-stroke aphasic patients. Ann. Rehabil. Med. 2013;37:556–562. doi: 10.5535/arm.2013.37.4.556.
    1. Kim SJ, Jo U. Study of accent-based music speech protocol development for improving voice problems in stroke patients with mixed dysarthria. NeuroRehabilitation. 2013;32:185–190. doi: 10.3233/NRE-130835.
    1. Jun EM, Roh YH, Kim MJ. The effect of music-movement therapy on physical and psychological states of stroke patients. J. Clin. Nurs. 2013;22:22–31. doi: 10.1111/j.1365-2702.2012.04243.x.
    1. Kim DS, et al. Effects of music therapy on mood in stroke patients. Yonsei Med. J. 2011;52:977–981. doi: 10.3349/ymj.2011.52.6.977.
    1. Magee WL, Davidson JW. The effect of music therapy on mood states in neurological patients: A pilot study. J. Music Ther. 2002;39:20–29. doi: 10.1093/jmt/39.1.20.
    1. Bevilacqua F, et al. Sensori-motor learning with movement sonification: Perspectives from recent interdisciplinary studies. Front. Neurosci. 2016;10:385. doi: 10.3389/fnins.2016.00385.
    1. Effenberg O, Fehse U, Schmitz G, Krueger B, Mechling H. Movement sonification: Effects on motor learning beyond rhythmic adjustments. Front. Neurosci. 2016;10:219. doi: 10.3389/fnins.2016.00219.
    1. Friedman N, et al. Retraining and assessing hand movement after stroke using the MusicGlove: Comparison with conventional hand therapy and isometric grip training. J. Neuroeng. Rehabil. 2014;11:76. doi: 10.1186/1743-0003-11-76.
    1. Zondervan DK, et al. Home-based hand rehabilitation after chronic stroke: Randomized, controlled single-blind trial comparing the MusicGlove with a conventional exercise program. J. Rehabil. Res. Dev. 2016;53:457–472. doi: 10.1682/JRRD.2015.04.0057.
    1. Scholz DS, et al. Sonification as a possible stroke rehabilitation strategy. Front. Neurosci. 2014;8:332. doi: 10.3389/fnins.2014.00332.
    1. Scholz DS, Rhode S, Großbach M, Rollnik J, Altenmüller E. Moving with music for stroke rehabilitation: A sonification feasibility study. Ann. N. Y. Acad. Sci. 2015;1337:69–76. doi: 10.1111/nyas.12691.
    1. Scholz DS, et al. Sonification of arm movements in stroke rehabilitation—a novel approach in neurologic music therapy. Front. Neurol. 2016;7:106. doi: 10.3389/fneur.2016.00106.
    1. Schmitz G, et al. Movement sonification in stroke rehabilitation. Front. Neurol. 2018;9:389. doi: 10.3389/fneur.2018.00389.
    1. Ghai S, Schmitz G, Hwang TH, Effenberg AO. Auditory proprioceptive integration: Effects of real-time kinematic auditory feedback on knee proprioception. Front. Neurosci. 2018;12:142. doi: 10.3389/fnins.2018.00142.
    1. Effenberg AO, Schmitz G. Acceleration and deceleration at constant speed: Systematic modulation of motion perception by kinematic sonification. Ann. N. Y. Acad. Sci. 2018;1425:52–69. doi: 10.1111/nyas.13693.
    1. Nikmaram N, et al. Musical sonification of arm movements in stroke rehabilitation yields limited benefits. Front. Neurosci. 2019;13:1378. doi: 10.3389/fnins.2019.01378.
    1. Reh J, Hwang TH, Schmitz G, Effenberg AO. Dual mode gait sonification for rehabilitation after unilateral hip arthroplasty. Brain Sci. 2019;9:66. doi: 10.3390/brainsci9030066.
    1. Colombo R, et al. The SonicHand protocol for rehabilitation of hand motor function: A validation and feasibility study. IEEE Trans. Neural. Syst. Rehabil. Eng. 2019;27:664–672. doi: 10.1109/TNSRE.2019.2905076.
    1. Chen P, Lai CK, Chung RC, Ng SS. The Jacket Test for assessing people with chronic stroke. Disabil. Rehabil. 2017;39:2577–2583. doi: 10.1080/09638288.2016.1236413.
    1. Leathley MJ, et al. Reliability of measurements of muscle tone and muscle power in stroke patients. Age Ageing. 2000;29:223–228. doi: 10.1093/ageing/29.3.223.
    1. Desrosiers J, Bravo G, Hébert R, Dutil E, Mercier L. Validation of the box and block test as a measure of dexerity of elderly people: Reliability, validity, and norms studies. Arch. Phys. Med. Rehabil. 1994;75:751–755. doi: 10.1016/0003-9993(94)90130-9.
    1. McCaffery M, Beebe A. Pain: Clinical Manual for Nursing Practice. CV Mosby Company; 1989.
    1. Sguazzin C, Giorgi I, Alesii A, Fini M. Italian validation of the McGill Quality of Life Questionnaire (MQOL-It) G. Ital. Med. Lav. Ergon. 2010;32:B58–62.
    1. Page SJ, Fulk GD, Boyne P. Clinically important differences for the upper-extremity Fugl-Meyer Scale in people with minimal to moderate impairment due to chronic stroke. Phys. Ther. 2012;92:791–798. doi: 10.2522/ptj.20110009.
    1. Nakamura T, Abreu BC, Patterson RM, Buford WL, Jr, Ottenbacher KJ. Upper-limb kinematics of the presumed-to-be-unaffected side after brain injury. Am. J. Occup. Ther. 2008;62:46–50. doi: 10.5014/ajot.62.1.46.
    1. Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the Box and Block Test of manual dexterity. Am. J. Occup. Ther. 1985;39:386–391. doi: 10.5014/ajot.39.6.386.
    1. Kinney AR, Eakman AM, Graham JE. Novel effect size interpretation guidelines and an evaluation of statistical power in rehabilitation research. Arch. Phys. Med. Rehabil. 2020;101:2219–2226. doi: 10.1016/j.apmr.2020.02.017.
    1. Orihuela-Espina F, Roldán GF, Sánchez-Villavicencio I, Palafox L, Leder R, Sucar LE, Hernández-Franco J. Robot training for hand motor recovery in subacute stroke patients: A randomized controlled trial. J. Hand Ther. 2016;29:51–57. doi: 10.1016/j.jht.2015.11.006.
    1. Linnemann A, et al. The effects of music listening on pain and stress in the daily life of patients with fibromyalgia syndrome. Front. Hum. Neurosci. 2015;9:434. doi: 10.3389/fnhum.2015.00434.
    1. AA.VV. Trattamento riabilitativo e continuità dell’assistenza, in Stroke Prevention And Educational Awareness Diffusion (SPREAD), Ictus Cerebrale: Linee guida italiane di prevenzione e trattamento, Pubblicazioni Catel-Hyperphar Group SpA, pp. 297–376 (2003).
    1. Carr JH, Shepherd RB. A motor learning model for stroke rehabilitation. Physiotherapy. 1989;75:372–380. doi: 10.1016/S0031-9406(10)62588-6.
    1. Iosa M, et al. Leap motion controller videogame-based therapy for rehabilitation of elderly patients with post-acute stroke: A feasibility pilot study. Top Stroke Rehabil. 2015;22:306–316. doi: 10.1179/1074935714Z.0000000036.
    1. Smeragliuolo AH, Hill NJ, Disla L, Putrino D. Validation of the leap motion controller using markered motion capture technology. J. Biomech. 2016;49:1742–1750. doi: 10.1016/j.jbiomech.2016.04.006.
    1. Li W, Hsieh C, Lin L, Chu W. Hand gesture recognition for post-stroke rehabilitation using leap motion. Int. Conf. Appl. Syst. Innov. 2017;2017:386–388.
    1. Qian Q, Nam C, Guo Z, Huang Y, Hu X, Ng SC, Zheng Y, Poon W. Distal versus proximal—an investigation on different supportive strategies by robots for upper limb rehabilitation after stroke: A randomized controlled trial. J. Neuroeng. Rehabil. 2019;3:64. doi: 10.1186/s12984-019-0537-5.
    1. Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys. Ther. 1987;67:206–207. doi: 10.1093/ptj/67.2.206.
    1. Platz T, Pinkowski C, Van Wijck F, Kim IH, Di Bella P, Johnson G. Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer Test, Action Research Arm Test and Box and Block Test: A multicentre study. Clin. Rehabil. 2005;19:404–411. doi: 10.1191/0269215505cr832oa.
    1. Williamson A, Hoggart B. Pain: A review of three commonly used pain rating scales. J. Clin. Nurs. 2005;14:798–804. doi: 10.1111/j.1365-2702.2005.01121.x.
    1. Colombo R, Pisano F, Delconte C, Mazzone A, Grioni G, Castagna M, Bazzini G, Imarisio C, Maggioni G, Pistarini C. Comparison of exercise training effect with different robotic devices for upper limb rehabilitation: A retrospective study. Eur. J. Phys. Rehabil. Med. 2017;53:240–248.

Source: PubMed

3
Abonner