Early Intervention with a Compression Sleeve in Mild Breast Cancer-Related Arm Lymphedema: A 12-Month Prospective Observational Study

Karin Johansson, Katarina Blom, Lena Nilsson-Wikmar, Christina Brogårdh, Karin Johansson, Katarina Blom, Lena Nilsson-Wikmar, Christina Brogårdh

Abstract

Background: In our previous randomized controlled trial (RCT), the progression/no progression of mild breast cancer-related arm lymphedema (BCRL) was examined among women randomized to a compression group (CG) with a compression sleeve (compression class (ccl) 1) or not (NCG) for 6 months. In the present prospective study, BCRL in the CG and NCG was followed for 12 months.

Methods: At the end of the RCT, 33 women with mild BCRL were eligible in the CG and 37 in the NCG. The proportional differences in no progression/progression of BCRL were defined as a >2% increase from start of RCT or exceeding 10% in the lymphedema relative volume as measured by the water displacement method. In addition, changes in the lymphedema relative volume and tissue dielectric constant ratio, which measures local tissue water, were examined. At the end of the RCT (i.e., after 6 months), a one-month break of the compression treatment was made in the CG. If the lymphedema relative volume progressed by definition, the compression treatment was resumed and continued, with follow-up of all women at 9 and 12 months.

Results: A larger proportion of women in the NCG showed progression (57%, 61%, 67%) compared to the CG (16%, 22%, 31%) at 6, 9, and 12 months (p < 0.001, 0.005, 0.012), respectively. Twelve (33%) women in the NCG did not progress at all. No changes of the lymphedema relative volume and local tissue water were found over time at any follow-ups, but were stable on a low level.

Conclusions: To avoid the progression of mild BCRL into a chronic issue in the long-term, compression sleeve ccl 1 may be applied immediately after early diagnosis of mild BCRL.

Keywords: breast cancer; clinical research; lymphedema; prevention; treatment.

Conflict of interest statement

All authors declare no competing financial or other conflict of interests.

Figures

Figure 1
Figure 1
Flowchart of randomization to compression group (CG) or no compression group (NCG) and primary outcome being the proportional difference between the groups, showing progression/no progression of mild breast cancer-related lymphedema for a 6-month intervention and at follow-ups. No progression = Lymphedema relative volume did not increase ≥2% compared to start of RCT or exceed ≥10%. LRV = lymphedema relative volume, including all women showing progress by an increase ≥2% compared to start of RCT or exceeding ≥10%. * Indicates differences between groups, calculated by Fisher–Freeman–Halton exact test or Pearson Chi square test.

References

    1. Chen K., Beeraka N.M., Zhang J., Reshetov I.V., Nikolenko V.N., Sinelnikov M.Y. Efficacy of da Vinci robot-assisted lymph node surgery than conventional axillary lymph node dissection in breast cancer—A comparative study. Int. J. Med. Robot. 2021;17:e2307. doi: 10.1002/rcs.2307.
    1. DiSipio T., Rye S., Newman B., Hayes S. Incidence of unilateral arm lymphoedema after breast cancer: A systematic review and meta-analysis. Lancet Oncol. 2013;14:500–515. doi: 10.1016/S1470-2045(13)70076-7.
    1. Stanton A.W., Modi S., Mellor R.H., Levick J.R., Mortimer P.S. Recent advances in breast cancer-related lymphedema of the arm: Lymphatic pump failure and predisposing factors. Lymphat. Res. Biol. 2009;7:29–45. doi: 10.1089/lrb.2008.1026.
    1. Johansson K., Branje E. Arm lymphoedema in a cohort of breast cancer survivors 10 years after diagnosis. Acta Oncol. 2010;49:166–735. doi: 10.3109/02841860903483676.
    1. Kilgore L.J., Korentager S.S., Hangge A.N., Amin A.L., Balanoff C.R., Larson K.E., Mitchell M.P., Chen J.G., Burgen E., Khan Q.J., et al. Reducing Breast Cancer-Related Lymphedema (BCRL) Through Prospective Surveillance Monitoring Using Bioimpedance Spectroscopy (BIS) and Patient Directed Self-Interventions. Ann. Surg. Oncol. 2018;25:2948–2952. doi: 10.1245/s10434-018-6601-8.
    1. McNeely M.L., Peddle C.J., Yurick J.L., Dayes I.S., Mackey J.R. Conservative and dietary interventions for cancer-related lymphedema: A systematic review and meta-analysis. Cancer. 2011;117:1136–1148. doi: 10.1002/cncr.25513.
    1. Casley-Smith J. Alterations of untreated lymphedema and it’s grades over time. Lymphology. 1995;28:174–185.
    1. Bar Ad V., Cheville A., Solin L.J., Dutta P., Both S., Harris E.E. Time course of mild arm lymphedema after breast conservation treatment for early-stage breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 2010;76:85–90. doi: 10.1016/j.ijrobp.2009.01.024.
    1. Soran A., Ozmen T., McGuire K.P., Diego E.J., McAuliffe P.F., Bonaventura M., Ahrendt G.M., DeGore L., Johnson R. The importance of detection of subclinical lymphedema for the prevention of breast cancer-related clinical lymphedema after axillary lymph node dissection; a prospective observational study. Lymphat. Res. Biol. 2014;12:289–294. doi: 10.1089/lrb.2014.0035.
    1. Kaufman D.I., Shah C., Vicini F.A., Rizzi M. Utilization of bioimpedance spectroscopy in the prevention of chronic breast cancer-related lymphedema. Breast Cancer Res. Treat. 2017;166:809–815. doi: 10.1007/s10549-017-4451-x.
    1. Bundred N.J., Barrett E., Todd C., Morris J., Watterson D., Purushotham A., Riches K., Evans A., Skene A., Keeley V., et al. Prevention of lymphoedema after axillary clearance by external compression sleeves PLACE randomised trial results. Effects of high BMI. Cancer Med. 2023;12:5506–5516. doi: 10.1002/cam4.5378.
    1. Ramos S., O´Donnell L., Knight G. Edema volume, not timing, is the key to success in lymphedema treatment. Am. J. Surg. 1999;178:311–315. doi: 10.1016/S0002-9610(99)00185-3.
    1. Bundred N., Foden P., Todd C., Morris J., Watterson D., Purushotham A., Bramley M., Riches K., Hodgkiss T., Evans A., et al. Increases in arm volume predict lymphoedema and quality of life deficits after axillary surgery: A prospective cohort study. Br. J. Cancer. 2020;123:17–25. doi: 10.1038/s41416-020-0844-4.
    1. Mazor M., Smoot B.J., Mastick J., Mausisa G., Paul S.M., Kober K.M., Elboim C., Singh K., Conley Y.P., Mickevicius G., et al. Assessment of local tissue water in the arms and trunk of breast cancer survivors with and without upper extremity lymphoedema. Clin. Physiol. Funct. Imaging. 2019;39:57–64. doi: 10.1111/cpf.12541.
    1. Stout N.L., Pfalzer L.A., Levy E., McGarvey C., Springer B., Gerber L.H., Soballe P. Segmental limb volume change as a predictor of the onset of lymphedema in women with early breast cancer. PM&R. 2011;3:1098–1105. doi: 10.1016/j.pmrj.2011.07.021.
    1. Thomis S., Dams L., Fourneau I., De Vrieze T., Nevelsteen I., Neven P., Gebruers N., Devoogdt N. Correlation Between Clinical Assessment and Lymphofluoroscopy in Patients with Breast Cancer-Related Lymphedema: A Study of Concurrent Validity. Lymphat. Res. Biol. 2020;18:539–548. doi: 10.1089/lrb.2019.0090.
    1. Suami H. Anatomical Theories of the Pathophysiology of Cancer-Related Lymphoedema. Cancers. 2020;12:1338. doi: 10.3390/cancers12051338.
    1. Karlsson K., Nilsson-Wikmar L., Brogardh C., Johansson K. Palpation of Increased Skin and Subcutaneous Thickness, Tissue Dielectric Constant, and Water Displacement Method for Diagnosis of Early Mild Arm Lymphedema. Lymphat. Res. Biol. 2020;18:219–225. doi: 10.1089/lrb.2019.0042.
    1. Blom K.Y., Johansson K.I., Nilsson-Wikmar L.B., Brogårdh C.B. Early intervention with compression garments prevents progression in mild breast cancer-related arm lymphedema: A randomized controlled trial. Acta Oncol. 2022;61:897–905. doi: 10.1080/0284186X.2022.2081932.
    1. Johansson K., Ingvar C., Albertsson M., Ekdahl C. Arm lymphedema, shoulder mobility and muscle strength after breast cancer treatment-a prospective 2 year study. Adv. Physiother. 2001;3:55–66. doi: 10.1080/14038190119371.
    1. Lahtinen T., Seppala J., Viren T., Johansson K. Experimental and Analytical Comparisons of Tissue Dielectric Constant (TDC) and Bioimpedance Spectroscopy (BIS) in Assessment of Early Arm Lymphedema in Breast Cancer Patients after Axillary Surgery and Radiotherapy. Lymphat. Res. Biol. 2015;13:176–185. doi: 10.1089/lrb.2015.0019.
    1. Mayrovitz H.N., Weingrad D.N., Lopez L. Assessing localized skin-to-fat water in arms of women with breast cancer via tissue dielectric constant measurements in pre- and post-surgery patients. Ann. Surg. Oncol. 2015;22:1483–1489. doi: 10.1245/s10434-014-4185-5.
    1. Specht M.C., Miller C.L., Russell T.A., Horick N., Skolny M.N., O’Toole J.A., Jammallo L.S., Niemierko A., Sadek B.T., Shenouda M.N., et al. Defining a threshold for intervention in breast cancer-related lymphedema: What level of arm volume increase predicts progression? Breast Cancer Res. Treat. 2013;140:485–494. doi: 10.1007/s10549-013-2655-2.
    1. Mahamaneerat W.K., Shyu C.-R., Stewart B.R., Armer J.M. Breast cancer treatment, BMI, post-op swelling/lymphedema. J. Lymphoedema. 2008;3:38–44.
    1. Ibrahim E.M., Al-Homaidh A. Physical activity and survival after breast cancer diagnosis: Meta-analysis of published studies. Med. Oncol. 2011;28:753–765. doi: 10.1007/s12032-010-9536-x.
    1. Lahart I.M., Metsios G.S., Nevill A.M., Carmichael A.R. Physical activity, risk of death and recurrence in breast cancer survivors: A systematic review and meta-analysis of epidemiological studies. Acta Oncol. 2015;54:635–654. doi: 10.3109/0284186X.2014.998275.
    1. Johansson K., Ohlsson K., Ingvar C., Albertsson M. Factors associated with the development of arm lymphedema following breast cancer treatment: A match pair case-control study. Lymphology. 2002;35:59–71.
    1. Ridner S., Deng J., Fu M.R., Radina E., Thiadens S.R., Weiss J., Dietrich M.S., Cormier J.N., Tuppo C.M., Armer J.M. Symptom burden and infection occurrence among individuals with extremity lymphedema. Lymphology. 2012;45:113–123.
    1. Moayedi M., Davis K.D. Theories of pain: From specificity to gate control. J. Neurophysiol. 2013;109:5–12. doi: 10.1152/jn.00457.2012.
    1. Karges J., Mark B., Stikeleather S., Worrell T. Concurrent validity of upper extremity volume estimates: Comparison of calculated volume derived from girth measurements and water displacement volume. Phys. Ther. 2003;83:134–145. doi: 10.1093/ptj/83.2.134.
    1. Hidding J.T., Viehoff P.B., Beurskens C.H., van Laarhoven H.W., Nijhuis-van der Sanden M.W., van der Wees P.J. Measurement properties of instruments for measuring of lymphedema:systematic review. Phys Ther. 2016;96:1965–1981. doi: 10.2522/ptj.20150412.
    1. ISL The diagnosis and treatment of peripheral lymphedema: 2020 Consensus document of the International Society of Lymphology. Lymphology. 2020;53:3–19.
    1. Taylor R., Jayasinghe U., Koelmeyer L., Ung O.A., Boyages J. Reliability and Validity of arm volume measurements for assessment of lymphedema. Phys. Ther. 2006;86:205–214. doi: 10.1093/ptj/86.2.205.
    1. Mayrovitz H.N., Weingrad D.N., Brlit F., Lopez L.B., Desfor R. Tissue dielectric constant (Water) as an index of localized arm skin water: Differences between measuring probes and genders. Lymphology. 2015;48:15–23.
    1. Mayrovitz H.N., Davey S., Shapiro E. Suitability of single tissue dielectric constant measurements to assess local tissue water in normal and lymphedematous skin. Clin. Physiol. Funct. Imaging. 2009;29:123–127. doi: 10.1111/j.1475-097X.2008.00844.x.
    1. Mayrovitz H.N., Weingrad D.N., Davey S. Local tissue water in at-risk and contralateral forearms of women with and without breast cancer treatment related lymphedema. Lymphat. Res. Biol. 2009;7:153–158. doi: 10.1089/lrb.2009.0008.
    1. Frändin K., Grimby G. Assessment of physical activity, fitness and performance in 76 year olds. Scand. J. Med. Sci. Sport. 1994;4:41–46. doi: 10.1111/j.1600-0838.1994.tb00404.x.
    1. Akita S., Nakamura R., Yamamoto N., Tokumoto H., Ishigaki T., Yamaji Y., Yoshitaro S., Yoshitaka K., Nobuyuki M., Kaneshige S. Early Detection of Lymphatic Disorder and Treatment for Lymphedema following Breast Cancer. Plast. Reconstr. Surg. 2016;138:192e–202e. doi: 10.1097/PRS.0000000000002337.
    1. Martin-Almedina S., Mortimer P.S., Ostergaard P. Development and physiological functions of the lymphatic system: Insights from human genetic studies of primary lymphedema. Physiol. Rev. 2021;101:1809–1871. doi: 10.1152/physrev.00006.2020.
    1. Kilbreath S.L., Lee M.J., Refshauge K.M., Beith J.M., Ward L.C., Simpson J.M., Black D. Transient swelling versus lymphoedema in the first year following surgery for breast cancer. Support. Care Cancer. 2013;21:2207–2215. doi: 10.1007/s00520-013-1770-2.
    1. Stout Gergich N.L., Pfalzer L.A., McGarvey C., Springer B., Gerber L.H., Soballe P. Preoperative assessment enables the early diagnosis and successful treatment of lymphedema. Cancer. 2008;112:2809–2819. doi: 10.1002/cncr.23494.
    1. Bernas M., Witte C., Belch D., Summers P. Limb volume measurments in lymphedema issues and standards. Lymphology. 1996;29:199–202.
    1. Jonsson C., Johansson K., Bjurberg M., Brogardh C. Circumferential Measurements to Calculate Lower Limb Volume in Persons with Lymphedema: What Segment Length Is to Be Recommended? Lymphat. Res. Biol. 2022;54:1389–1399. doi: 10.1089/lrb.2022.0032.
    1. Hayes S.C., Singh B., Reul-Hirche H., Bloomquist K., Johansson K., Jonsson C., Plinsinga M. The Effect of Exercise for the Prevention and Treatment of Cancer-Related Lymphedema: A Systematic Review with Meta-analysis. Med. Sci. Sport. Exerc. 2022;54:1389–1399. doi: 10.1249/MSS.0000000000002918.
    1. Huang T., Tseng S., Lin C., Bai C., Chen C., Hung C., Huang C., Wu C., Tam K. Effects of manual lymphatic drainage on breast cancer-related lymphedema: A systematic review and meta-analysis of randomized controlled trial. World J. Surg. Oncol. 2013;11:15. doi: 10.1186/1477-7819-11-15.
    1. Liang M., Chen Q., Peng K., Deng L., He L., Hou Y., Zhang Y., Guo J., Mei Z., Li Z. Manual lymphatic drainage for lymphedema in patients after breast cancer surgery: A systematic review and meta-analysis of randomized controlled trials. Medicine. 2020;99:e23192. doi: 10.1097/MD.0000000000023192.
    1. De Vrieze T., Gebruers N., Nevelsteen I., Fieuws S., Thomis S., De Groef A., Tjalma W.A., Belgrado J.-P., Vandermeeren L., Monten C., et al. Manual lymphatic drainage with or without fluoroscopy guidance did not substantially improve the effect of decongestive lymphatic therapy in people with breast cancer-related lymphoedema (EFforT-BCRL trial): A multicentre randomised trial. J. Physiother. 2022;68:110–122. doi: 10.1016/j.jphys.2022.03.010.
    1. Lymphoedema Framework Best Practice for the Management of Lymphoedema. International Consensus London: MEP Ltd., BP PAGESfinjune8 bQ5. [(accessed on 1 March 2023)]. Available online: .
    1. Karlsson K., Biguet G., Johansson K., Nilsson-Wikmar L. Perceptions of lymphoedema treatment in patients with breast cancer—A patient perspective. Scand. J. Caring Sci. 2015;29:110–117. doi: 10.1111/scs.12138.
    1. Zaleska M.T., Olszewski W.L. Indocyanine green near-infrared lymphangiography for evaluation of effectiveness of edema fluid flow under therapeutic compression. J. Biophotonics. 2018;11:1–9. doi: 10.1002/jbio.201700150.
    1. Suami H., Koelmeyer L., Mackie H., Boyages J. Patterns of lymphatic drainage after axillary node dissection impact arm lymphoedema severity: A review of animal and clinical imaging studies. Surg. Oncol. 2018;27:743–750. doi: 10.1016/j.suronc.2018.10.006.

Source: PubMed

3
Abonner