Synergistic and Antagonistic Drug Combinations against SARS-CoV-2

Tesia Bobrowski, Lu Chen, Richard T Eastman, Zina Itkin, Paul Shinn, Catherine Z Chen, Hui Guo, Wei Zheng, Sam Michael, Anton Simeonov, Matthew D Hall, Alexey V Zakharov, Eugene N Muratov, Tesia Bobrowski, Lu Chen, Richard T Eastman, Zina Itkin, Paul Shinn, Catherine Z Chen, Hui Guo, Wei Zheng, Sam Michael, Anton Simeonov, Matthew D Hall, Alexey V Zakharov, Eugene N Muratov

Abstract

Antiviral drug development for coronavirus disease 2019 (COVID-19) is occurring at an unprecedented pace, yet there are still limited therapeutic options for treating this disease. We hypothesized that combining drugs with independent mechanisms of action could result in synergy against SARS-CoV-2, thus generating better antiviral efficacy. Using in silico approaches, we prioritized 73 combinations of 32 drugs with potential activity against SARS-CoV-2 and then tested them in vitro. Sixteen synergistic and eight antagonistic combinations were identified; among 16 synergistic cases, combinations of the US Food and Drug Administration (FDA)-approved drug nitazoxanide with remdesivir, amodiaquine, or umifenovir were most notable, all exhibiting significant synergy against SARS-CoV-2 in a cell model. However, the combination of remdesivir and lysosomotropic drugs, such as hydroxychloroquine, demonstrated strong antagonism. Overall, these results highlight the utility of drug repurposing and preclinical testing of drug combinations for discovering potential therapies to treat COVID-19.

Keywords: COVID-19; CPE assay; SARS-CoV-2; combination therapy; drug combinations; drug repurposing; drug synergy; in silico design; knowledge mining; nitazoxanide remdesivir combo.

Conflict of interest statement

The authors declare no competing interests.

Copyright © 2020 The American Society of Gene and Cell Therapy. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
Performance of Matrix Screening (A) Z′ factor on different assays (CPE or Tox) and biological batches. (B) Reproducibility across all replicates (defined as a compound at certain concentration). Number of replicates (n) may vary, e.g., more single-agent replicates were performed due to matrix setting. (C–G) Dose response curves from an independent benchmark set performed at a different site. (H) Layout of a 6 × 6 dose matrix. Wells with (or without) bold border represent dose combination (or single agent alone).
Figure 2
Figure 2
Summary of Synergism or Antagonism across 73 Combinations Due to biphasic dose response, synergism was separated from antagonism. Synergism is calculated as the sum of HSA.neg values from non-toxic dose combinations (Tox > 50%) and vice versa. The size of circle reflected the confidence of the observed synergism/antagonism (bigger circle = less doses were excluded due to toxicity). The inconclusive blocks (nnon-toxic < 25 or rough activity landscape) were shown in transparent points and lines. Two dashed lines indicated the cutoff of HSA synergism (−100) or antagonism (100). Blue arrows highlighted the combinations between remdesivir and tertiary amine compounds from conclusive blocks.
Figure 3
Figure 3
Matrix Blocks from Remdesivir + Amine Drugs in CPE Assay The activity was normalized so that 100 corresponded to full cytopathic effect and 0 corresponded to no cytopathic effect. Red arrow, the concentrations that synergize with the partner compound. Blue arrow, the concentrations that antagonize against the partner compound. Chemical structures were shown on the right. (A) Hydroxychloroquine, (B) mefloquine, (C) amodiaquine, (D) arbidol. (E) CPE data from single-dose combination (5 μM GS-441524 or 20 μM remdesivir ± amine compounds; nsingle-agent RdRp inhibitor = 12 and ncombination = 3). The lower and upper box hinges correspond to the first and third quartiles, and the whiskers extend from upper or lower hinges to 1.5 * IQR (inter-quartile range).
Figure 4
Figure 4
Heptagonal Polygonogram Depicting Some of the Binary Combinations Tested in the Study Degrees of synergism/antagonism were ascertained from Figure 3. The definitions were defined based on the degree of HSA synergism/antagonism determined in the CPE assay.
Figure 5
Figure 5
Summary of Synergism or Antagonism over Different Mechanism of Action (MoA) Combination Inconclusive blocks or singleton MoA were excluded. Two dashed lines indicated the cutoff of HSA synergism (−100) or antagonism (100). The lower and upper box hinges correspond to the first and third quartiles, and the whiskers extend from upper or lower hinges to 1.5 * IQR (inter-quartile range).
Figure 6
Figure 6
Matrix Blocks from Three Synergistic Combinations Involving Nitazoxanide (A) Nitazoxanide + remdesivir; (B) nitazoxanide + arbidol; (C) nitazoxanide + amodiaquine. Red arrow, the concentrations that synergize with the partner compound.
Figure 7
Figure 7
The Putative Mechanism of the Antagonism between Remdesivir and the Lysosomotropic Agent We hypothesize that lysosomotropic agents antagonize remdesivir by impairing its upstream activation (e.g., esterase-mediated hydrolysis) rather than the formation of triphosphate active agent.
Figure 8
Figure 8
Study Design for Selecting Possible Synergistic Drug Combinations In this study, we report only 73 binary combinations; 95 ternary combinations identified in a similar fashion will be reported in a future study.

References

    1. Einav S., Sobol H.D.D., Gehrig E., Glenn J.S.S. The hepatitis C virus (HCV) NS4B RNA binding inhibitor clemizole is highly synergistic with HCV protease inhibitors. J. Infect. Dis. 2010;202:65–74.
    1. Sun W., He S., Martínez-Romero C., Kouznetsova J., Tawa G., Xu M., Shinn P., Fisher E., Long Y., Motabar O. Synergistic drug combination effectively blocks Ebola virus infection. Antiviral Res. 2017;137:165–172.
    1. Chou T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006;58:621–681.
    1. Sun X., Vilar S., Tatonetti N.P. High-Throughput Methods for Combinatorial Drug Discovery. Sci. Transl. Med. 2013;5:205rv1.
    1. Choudhary S., Silakari O. Scaffold morphing of arbidol (umifenovir) in search of multi-targeting therapy halting the interaction of SARS-CoV-2 with ACE2 and other proteases involved in COVID-19. Virus Res. 2020;289:198146.
    1. Vankadari N. Arbidol: A potential antiviral drug for the treatment of SARS-CoV-2 by blocking trimerization of the spike glycoprotein. Int. J. Antimicrob. Agents. 2020;56:105998.
    1. Gordon D.E., Jang G.M., Bouhaddou M., Xu J., Obernier K., White K.M., O’Meara M.J., Rezelj V.V., Guo J.Z., Swaney D.L. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583:459–468.
    1. Menden M.P., Wang D., Mason M.J., Szalai B., Bulusu K.C., Guan Y., Yu T., Kang J., Jeon M., Wolfinger R., AstraZeneca-Sanger Drug Combination DREAM Consortium Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nat. Commun. 2019;10:2674.
    1. Hung I.F.N., Lung K.C., Tso E.Y.K., Liu R., Chung T.W.H., Chu M.Y., Ng Y.Y., Lo J., Chan J., Tam A.R. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020;395:1695–1704.
    1. Cao B., Wang Y., Wen D., Liu W., Wang J., Fan G., Ruan L., Song B., Cai Y., Wei M. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N. Engl. J. Med. 2020;382:1787–1799.
    1. Beigel J.H., Tomashek K.M., Dodd L.E., Mehta A.K., Zingman B.S., Kalil A.C., Hohmann E., Chu H.Y., Luetkemeyer A., Kline S., ACTT-1 Study Group Members Remdesivir for the Treatment of Covid-19—Preliminary Report. N. Engl. J. Med. 2020;383:1813–1826.
    1. Muratov E., Zakharov A. Viribus Unitis: Drug Combinations as a Treatment Against COVID-19. chemRxiv. 2020 doi: 10.26434/chemrxiv.12143355.v1.
    1. Richards R., Schwartz H.R., Honeywell M.E., Stewart M.S., Cruz-Gordillo P., Joyce A.J., Landry B.D., Lee M.J. Drug antagonism and single-agent dominance result from differences in death kinetics. Nat. Chem. Biol. 2020;16:791–800.
    1. Glaumann H., Motakefi A.-M., Jansson H. Intracellular distribution and effect of the antimalarial drug mefloquine on lysosomes of rat liver. Liver. 1992;12:183–190.
    1. Eastman R.T., Roth J.S., Brimacombe K.R., Simeonov A., Shen M., Patnaik S., Hall M.D. Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19. ACS Cent. Sci. 2020;6:672–683.
    1. Murakami E., Wang T., Babusis D., Lepist E.I., Sauer D., Park Y., Vela J.E., Shih R., Birkus G., Stefanidis D. Metabolism and pharmacokinetics of the anti-hepatitis C virus nucleotide prodrug GS-6620. Antimicrob. Agents Chemother. 2014;58:1943–1951.
    1. Ferner R.E., Aronson J.K. Chloroquine and hydroxychloroquine in covid-19. BMJ. 2020;369:m1432.
    1. Rossignol J.F. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J. Infect. Public Health. 2016;9:227–230.
    1. Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M., Shi Z., Hu Z., Zhong W., Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269–271.
    1. Jasenosky L.D., Cadena C., Mire C.E., Borisevich V., Haridas V., Ranjbar S., Nambu A., Bavari S., Soloveva V., Sadukhan S. The FDA-Approved Oral Drug Nitazoxanide Amplifies Host Antiviral Responses and Inhibits Ebola Virus. iScience. 2019;19:1279–1290.
    1. Jurgeit A., McDowell R., Moese S., Meldrum E., Schwendener R., Greber U.F. Niclosamide Is a Proton Carrier and Targets Acidic Endosomes with Broad Antiviral Effects. PLoS Pathog. 2012;8:e1002976.
    1. Rajoli R.K., Pertinez H., Arshad U., Box H., Tatham L., Curley P., Neary M., Sharp J., Liptrott N.J., Valentijn A. Dose prediction for repurposing nitazoxanide in SARS-CoV-2 treatment or chemoprophylaxis. medRxiv. 2020 doi: 10.1101/2020.05.01.20087130.
    1. Stockis A., Allemon A.M., De Bruyn S., Gengler C. Nitazoxanide pharmacokinetics and tolerability in man using single ascending oral doses. Int. J. Clin. Pharmacol. Ther. 2002;40:213–220.
    1. Rocco P.R.M., Silva P.L., Cruz F.F., Junior A.C.M., Tierno P.F.G.M.M., Moura M.A., De Oliveira L.F.G., Lima C.C., Dos Santos E.A., Junior W.F. Early use of nitazoxanide in mild Covid-19 disease: randomized, placebo-controlled trial. medRxiv. 2020 doi: 10.1101/2020.10.21.20217208.
    1. Ko M., Jeon S., Ryu W.-S., Kim S. Comparative analysis of antiviral efficacy of FDA-approved drugs against SARS-CoV-2 in human lung cells: Nafamostat is the most potent antiviral drug candidate. bioRxiv. 2020 doi: 10.1101/2020.05.12.090035.
    1. Riva L., Yuan S., Yin X., Martin-Sancho L., Matsunaga N., Pache L., Burgstaller-Muehlbacher S., De Jesus P.D., Teriete P., Hull M.V. Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature. 2020;586:113–119.
    1. Davidson A.D., Williamson M.K., Lewis S., Shoemark D., Carroll M.W., Heesom K.J., Zambon M., Ellis J., Lewis P.A., Hiscox J.A., Matthews D.A. Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein. Genome Med. 2020;12:68.
    1. Klimstra W.B., Tilston-Lunel N.L., Nambulli S., Boslett J., McMillen C.M., Gilliland T., Dunn M.D., Sun C., Wheeler S.E., Wells A. SARS-CoV-2 growth, furin-cleavage-site adaptation and neutralization using serum from acutely infected hospitalized COVID-19 patients. J. Gen. Virol. 2020;101:1156–1169.
    1. Johnson B.A., Xie X., Kalveram B., Lokugamage K.G., Muruato A., Zou J., Zhang X., Juelich T., Smith J.K., Zhang L. Furin Cleavage Site Is Key to SARS-CoV-2 Pathogenesis. bioRxiv. 2020 doi: 10.1101/2020.08.26.268854.
    1. Deng P., Zhong D., Yu K., Zhang Y., Wang T., Chen X. Pharmacokinetics, metabolism, and excretion of the antiviral drug arbidol in humans. Antimicrob. Agents Chemother. 2013;57:1743–1755.
    1. Capuzzi S.J., Thornton T.E., Liu K., Baker N., Lam W.I., O’Banion C.P., Muratov E.N., Pozefsky D., Tropsha A. Chemotext: A Publicly Available Web Server for Mining Drug-Target-Disease Relationships in PubMed. J. Chem. Inf. Model. 2018;58:212–218.
    1. Bizon C., Cox S., Balhoff J., Kebede Y., Wang P., Morton K., Fecho K., Tropsha A. ROBOKOP KG and KGB: Integrated Knowledge Graphs from Federated Sources. J. Chem. Inf. Model. 2019;59:4968–4973.
    1. Korn D., Bobrowski T., Li M., Kebede Y., Wang P., Owen P., Vaidya G., Muratov E., Chirkova R., Bizon C., Tropsha A. COVID-KOP: Integrating Emerging COVID-19 Data with the ROBOKOP Database. chemRxiv. 2020 doi: 10.26434/chemrxiv.12462623.V1.
    1. Tropsha A. Best Practices for QSAR Model Development, Validation, and Exploitation. Mol. Inform. 2010;29:476–488.
    1. Bulusu K.C., Guha R., Mason D.J., Lewis R.P.I., Muratov E., Kalantar Motamedi Y., Cokol M., Bender A. Modelling of compound combination effects and applications to efficacy and toxicity: state-of-the-art, challenges and perspectives. Drug Discov. Today. 2016;21:225–238.
    1. Zakharov A.V., Varlamova E.V., Lagunin A.A., Dmitriev A.V., Muratov E.N., Fourches D., Kuz’min V.E., Poroikov V.V., Tropsha A., Nicklaus M.C. QSAR Modeling and Prediction of Drug-Drug Interactions. Mol. Pharm. 2016;13:545–556.
    1. Morton K., Wang P., Bizon C., Cox S., Balhoff J., Kebede Y., Fecho K., Tropsha A. ROBOKOP: an abstraction layer and user interface for knowledge graphs to support question answering. Bioinformatics. 2019;35:5382–5384.
    1. Biomedical Data Translator Consortium The Biomedical Data Translator Program: Conception, Culture, and Community. Clin. Transl. Sci. 2019;12:91–94.
    1. COVID-19 Open Research Dataset Challenge (CORD-19) 2020. An AI challenge with AI2, CZI, MSR, Georgetown, NIH, and the White House. Kaggle.
    1. Zakharov A.V., Zhao T., Nguyen D.-T., Peryea T., Sheils T., Yasgar A., Huang R., Southall N., Simeonov A. Novel Consensus Architecture To Improve Performance of Large-Scale Multitask Deep Learning QSAR Models. J. Chem. Inf. Model. 2019;59:4613–4624.
    1. Alves V.M., Bobrowski T., Melo-Filho C.C., Korn D., Auerbach S., Schmitt C., Muratov E.N., Tropsha A. QSAR modeling of SARS-CoV Mpro inhibitors identifies Sufugolix, Cenicriviroc, Proglumetacin and other drugs as candidates for repurposing against SARS-CoV-2. Mol. Inform. 2020 doi: 10.1002/minf.202000113. Published online July 28, 2020.
    1. Muratov E.N., Bajorath J., Sheridan R.P., Tetko I.V., Filimonov D., Poroikov V., Oprea T.I., Baskin I.I., Varnek A., Roitberg A. QSAR without borders. Chem. Soc. Rev. 2020;49:3525–3564.
    1. Cherkasov A., Muratov E.N., Fourches D., Varnek A., Baskin I.I., Cronin M., Dearden J., Gramatica P., Martin Y.C., Todeschini R. QSAR modeling: where have you been? Where are you going to? J. Med. Chem. 2014;57:4977–5010.
    1. Fourches D., Muratov E., Tropsha A. Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J. Chem. Inf. Model. 2010;50:1189–1204.
    1. Fourches D., Muratov E., Tropsha A. Trust, but Verify II: A Practical Guide to Chemogenomics Data Curation. J. Chem. Inf. Model. 2016;56:1243–1252.
    1. Fourches D., Muratov E., Tropsha A. Curation of chemogenomics data. Nat. Chem. Biol. 2015;11:535.
    1. Golbraikh A., Tropsha A. Beware of q2! J. Mol. Graph. Model. 2002;20:269–276.
    1. Muratov E.N., Varlamova E.V., Artemenko A.G., Polishchuk P.G., Kuz’min V.E. Existing and Developing Approaches for QSAR Analysis of Mixtures. Mol. Inform. 2012;31:202–221.
    1. Brimacombe K.R., Zhao T., Eastman R.T., Hu X., Wang K., Backus M., Baljinnyam B., Chen C.Z., Chen L., Eicher T. An OpenData portal to share COVID-19 drug repurposing data in real time. bioRxiv. 2020 doi: 10.1101/2020.06.04.135046.
    1. Foucquier J., Guedj M. Analysis of drug combinations: current methodological landscape. Pharmacol. Res. Perspect. 2015;3:e00149.

Source: PubMed

3
Abonner