A Biodegradable Flexible Micro/Nano-Structured Porous Hemostatic Dental Sponge

Simin Sharifi, Solmaz Maleki Dizaj, Elham Ahmadian, Alireza Karimpour, Abdollah Maleki, Mohammad Yousef Memar, Mohammad Ali Ghavimi, Elaheh Dalir Abdolahinia, Khang Wen Goh, Simin Sharifi, Solmaz Maleki Dizaj, Elham Ahmadian, Alireza Karimpour, Abdollah Maleki, Mohammad Yousef Memar, Mohammad Ali Ghavimi, Elaheh Dalir Abdolahinia, Khang Wen Goh

Abstract

A biodegradable micro/nano-structured porous hemostatic gelatin-based sponge as a dentistry surgery foam was prepared using a freeze-drying method. In vitro function evaluation tests were performed to ensure its hemostatic effect. Biocompatibility tests were also performed to show the compatibility of the sponge on human fetal foreskin fibroblasts (HFFF2) cells and red blood cells (RBCs). Then, 10 patients who required the extraction of two teeth were selected, and after teeth extraction, for dressing, the produced sponge was placed in one of the extracavities while a commercial sponge was placed in the cavity in the other tooth as a control. The total weight of the absorbed blood in each group was compared. The results showed a porous structure with micrometric and nanometric pores, flexibility, a two-week range for degradation, and an ability to absorb blood 35 times its weight in vitro. The prepared sponge showed lower blood clotting times (BCTs) (243.33 ± 2.35 s) and a lower blood clotting index (BCI) (10.67 ± 0.004%) compared to two commercial sponges that displayed its ability for faster coagulation and good hemostatic function. It also had no toxic effects on the HFFF2 cells and RBCs. The clinical assessment showed a better ability of blood absorption for the produced sponge (p-value = 0.0015). The sponge is recommended for use in dental surgeries because of its outstanding abilities.

Keywords: dentistry sponge; gelatin; hemostatic effect; nanomedicines; nanotechnology.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
A scheme for the reaction steps.
Figure 2
Figure 2
The process for clinical assessment.
Figure 3
Figure 3
The produced sponge with the dimension of 10 × 10 × 10 mm (a). The SEM image of the sponge (b) and the EDX analysis (c).
Figure 4
Figure 4
FTIR results for gelatin and the produced sponge.
Figure 5
Figure 5
XRD diffraction patterns, gelatin (a), and the prepared sponge (b).
Figure 6
Figure 6
The degradation process of the produced sponge for 2 weeks.
Figure 7
Figure 7
The morphology of RBCs under the light microscope (100×).
Figure 8
Figure 8
The results for CT coagulation time.
Figure 9
Figure 9
The results for blood clotting index (BCI).
Figure 10
Figure 10
The absorption and aggregation of platelets on the produced sponge.
Figure 11
Figure 11
The time points of the fibrin formation process under a light microscope (100×): (a) on the production sponge at the time of 30 s, (b) on the production sponge at the time of 70 s, and (cj) related to the blood droplet from 180 to 240 s.

References

    1. Guo B., Dong R., Liang Y., Li M. Haemostatic materials for wound healing applications. Nat. Rev. Chem. 2021;5:773–791. doi: 10.1038/s41570-021-00323-z.
    1. Wang L., Li W., Qu Y., Wang K., Lv K., He X., Qin S. Preparation of Super Absorbent and Highly Active Fish Collagen Sponge and its Hemostatic Effect in vivo and in vitro. Front. Bioeng. Biotechnol. 2022;10:862532. doi: 10.3389/fbioe.2022.862532.
    1. Tomizawa Y. Clinical benefits and risk analysis of topical hemostats: A review. J. Artif. Organs. 2005;8:137–142. doi: 10.1007/s10047-005-0296-x.
    1. Aziz O., Athanasiou T., Darzi A. Haemostasis using a ready-to-use collagen sponge coated with activated thrombin and fibrinogen. Surg. Technol. Online. 2005;14:35–40.
    1. Sun H., Lv L., Bai Y., Yang H., Zhou H., Li C., Yang L. Nanotechnology-enabled materials for hemostatic and anti-infection treatments in orthopedic surgery. Int. J. Nanomed. 2018;13:8325. doi: 10.2147/IJN.S173063.
    1. Huang Y., Cheng W., JMH Y., Gao S., Li D. A Preparation Method of Regenerated Cellulose Hemostatic Material with Surface Nanostructure. 102,912,622A. CN Patent. 2013
    1. Xi G., Liu W., Chen M., Li Q., Hao X., Wang M., Yang X., Feng Y., He H., Shi C., et al. Polysaccharide-based lotus seedpod surface-like porous microsphere with precise and controllable micromorphology for ultrarapid hemostasis. ACS Appl. Mater. Interfaces. 2019;11:46558–46571. doi: 10.1021/acsami.9b17543.
    1. Xue J., Wu T., Dai Y., Xia Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019;119:5298–5415. doi: 10.1021/acs.chemrev.8b00593.
    1. Zheng W., Chen C., Zhang X., Wen X., Xiao Y., Li L., Xu Q., Fu F., Diao H., Liu X. Layer-by-layer coating of carboxymethyl chitosan-gelatin-alginate on cotton gauze for hemostasis and wound healing. Surf. Coat. Technol. 2021;406:126644. doi: 10.1016/j.surfcoat.2020.126644.
    1. Al-Mofty S.E.-D., Karaly A.H., Sarhan W.A., Azzazy H.M. Multifunctional Hemostatic PVA/Chitosan Sponges Loaded with Hydroxyapatite and Ciprofloxacin. ACS Omega. 2022;7:13210–13220. doi: 10.1021/acsomega.2c00654.
    1. Dowd F.J., Yagiela J.A., Johnson B., Mariotti A., Neidle E.A. Pharmacology and Therapeutics for Dentistry-E-Book. Elsevier Health Sciences; Amsterdam, The Netherlands: 2010.
    1. Ibne Mahbub M.S., Sultana T., Gwon J.-G., Lee B.-T. Fabrication of thrombin loaded TEMPO-oxidized cellulose nanofiber-gelatin sponges and their hemostatic behavior in rat liver hemorrhage model. J. Biomater. Sci. Polym. Ed. 2022;33:499–516. doi: 10.1080/09205063.2021.1992877.
    1. di Lena F. Hemostatic polymers: The concept, state of the art and perspectives. J. Mater. Chem. B. 2014;2:3567–3577. doi: 10.1039/C3TB21739F.
    1. Mann A., Tighe B.J. Advanced Wound Repair Therapies. Elsevier; Amsterdam, The Netherlands: 2011. Wound healing studies and interfacial phenomena: Use and relevance of the corneal model; pp. 284–320.
    1. Nagraj S.K., Prashanti E., Aggarwal H., Lingappa A., Muthu M.S., Krishanappa S.K.K., Hassan H. Interventions for treating post-extraction bleeding. Cochrane Database Syst. Rev. 2018:CD011930.
    1. Howe N., Cherpelis B. Obtaining rapid and effective hemostasis: Part I. Update and review of topical hemostatic agents. J. Am. Acad. Dermatol. 2013;69:659.e1–e17. doi: 10.1016/j.jaad.2013.07.014.
    1. McCormick N.J., Moore U.J., Meechan J.G. Haemostasis part 1: The management of post-extraction haemorrhage. Dent. Updat. 2014;41:290–296. doi: 10.12968/denu.2014.41.4.290.
    1. Traver M.A., Assimos D.G. New generation tissue sealants and hemostatic agents: Innovative urologic applications. Rev. Urol. 2006;8:104.
    1. Guralnick W.C., Berg L. Gelfoam in oral surgery: A report of two hundred fifty cases. Oral Surg. Oral Med. Oral Pathol. 1948;1:632–639. doi: 10.1016/0030-4220(48)90337-5.
    1. Amin K., Khor W.S., Rosich-Medina A., Beale V. Alveolar bone grafting: Donor site review of 100 consecutive cases in cleft lip and palate. Cleft Palate-Craniofacial J. 2017;54:137–141. doi: 10.1597/15-180.
    1. Zhang W., Yelick P.C. Vital pulp therapy—Current progress of dental pulp regeneration and revascularization. Int. J. Dent. 2010;2010:856087. doi: 10.1155/2010/856087.
    1. Volpe S., Di Girolamo M., Pagliani P., Zicari S., Sennerby L. Osteotome-Induced Blood Clot and Subsequent Bone Formation with the Use of Collagen Sponge for Integration of Single Dental Implants into the Atrophied Posterior Maxilla: A Retrospective Follow-Up of 36 Implants after 5 to 13 years. Int. J. Dent. 2022;2022:6594279. doi: 10.1155/2022/6594279.
    1. Al-obaidi M., Alhamdani F., Alalawi H., Alhamdani F. Evaluation of Bone around Dental Implants with Sinus Lift Using Gelfoam Augmentation. South Asian Res. J. Oral Dent. Sci. 2021;3:108–118.
    1. Kim J.-C., Choi S.-S., Wang S.-J., Kim S.-G. Minor complications after mandibular third molar surgery: Type, incidence, and possible prevention. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology. 2006;102:e4–e11. doi: 10.1016/j.tripleo.2005.10.050.
    1. Noroozi A.-R., Philbert R.F. Modern concepts in understanding and management of the “dry socket” syndrome: Comprehensive review of the literature. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology. 2009;107:30–35. doi: 10.1016/j.tripleo.2008.05.043.
    1. Pal U.S., Singh B.P., Verma V. Comparative evaluation of zinc oxide eugenol versus gelatin sponge soaked in plasma rich in growth factor in the treatment of dry socket: An initial study. Contemp. Clin. Dent. 2013;4:37–41. doi: 10.4103/0976-237X.111592.
    1. Kobatake K., Mita K., Kato M. Effect on hemostasis of an absorbable hemostatic gelatin sponge after transrectal prostate needle biopsy. Int. Braz J Urol. 2015;41:337–343. doi: 10.1590/S1677-5538.IBJU.2015.02.22.
    1. Piry P., Esmaeeli Sari A., Mahdipour A., Asayesh H. The effect of using Gelatamp on pain and gingival bleeding after tooth extraction: A randomize clinical trial. Qom Univ. Med. Sci. J. 2018;12:10–18. doi: 10.29252/qums.12.8.10.
    1. Valenta C., Auner B.G. The use of polymers for dermal and transdermal delivery. Eur. J. Pharm. Biopharm. 2004;58:279–289. doi: 10.1016/j.ejpb.2004.02.017.
    1. Lu B., Wang T., Li Z., Dai F., Lv L., Tang F., Yu K., Liu J., Lan G. Healing of skin wounds with a chitosan–gelatin sponge loaded with tannins and platelet-rich plasma. Int. J. Biol. Macromol. 2016;82:884–891. doi: 10.1016/j.ijbiomac.2015.11.009.
    1. Ghosh T., Deveswaran R., Murahari M., Bharath S. Development and Characterization of Copper Cross-Linked Freeze-Dried Bioscaffolds for Potential Wound Healing Activity. J. Pharm. Innov. 2022:1–11. doi: 10.1007/s12247-021-09613-x.
    1. Musa A., Ahmad M.B., Hussein M.Z., Saiman M.I., Sani H.A. Effect of gelatin-stabilized copper nanoparticles on catalytic reduction of methylene blue. Nanoscale Res. Lett. 2016;11:438. doi: 10.1186/s11671-016-1656-6.
    1. Cai B., Chen L., Luo J. Synthesis and characterization of bis-(O-vanillin) benzoic imine Schiff base. J. Nanjing For. Univ. 2011;35:91–94.
    1. Liu Y., Huang X., Guo P., Liao X., Shi B. Skin collagen fiber-based radar absorbing materials. Chin. Sci. Bull. 2011;56:202–208. doi: 10.1007/s11434-010-4343-5.
    1. Wahab R.A., Elias N., Abdullah F., Ghoshal S.K. On the taught new tricks of enzymes immobilization: An all-inclusive overview. React. Funct. Polym. 2020;152:104613. doi: 10.1016/j.reactfunctpolym.2020.104613.
    1. Tengroth C., Gasslander U., Andersson F.O., Jacobsson S.P.J. Cross-linking of gelatin capsules with formaldehyde and other aldehydes: An FTIR spectroscopy study. Pharm. Dev. Technol. 2005;10:405–412. doi: 10.1081/PDT-65693.
    1. Ramasubramaniam S., Govindarajan C., Nasreen K., Sudha P. Removal of cadmium (II) ions from aqueous solution using chitosan/starch polymer blend. Interfaces. 2014;21:95–109. doi: 10.1080/15685543.2013.834199.
    1. Cheng S., Wang W., Li Y., Gao G., Zhang K., Zhou J., Wu Z. Cross-linking and film-forming properties of transglutaminase-modified collagen fibers tailored by denaturation temperature. Food Chem. 2019;271:527–535. doi: 10.1016/j.foodchem.2018.07.223.
    1. Liu F., Majeed H., Antoniou J., Li Y., Ma Y., Yokoyama W., Ma J., Zhong F. Tailoring physical properties of transglutaminase-modified gelatin films by varying drying temperature. Food Hydrocoll. 2016;58:20–28. doi: 10.1016/j.foodhyd.2016.01.026.
    1. Qu W., Häkkinen R., Allen J., D’Agostino C., Abbott A.P. Globular and fibrous proteins modified with deep eutectic solvents: Materials for drug delivery. Molecules. 2019;24:3583. doi: 10.3390/molecules24193583.
    1. Long H., Ma K., Xiao Z., Ren X., Yang G. Preparation and characteristics of gelatin sponges crosslinked by microbial transglutaminase. PeerJ. 2017;5:e3665. doi: 10.7717/peerj.3665.
    1. Li X., Zhang H., He L., Chen Z., Tan Z., You R., Wang D. Flexible nanofibers-reinforced silk fibroin films plasticized by glycerol. Compos. Part B Eng. 2018;152:305–310. doi: 10.1016/j.compositesb.2018.08.136.
    1. Rafienia M., Imani R., Hojjati Emami S., Rabbani M., Kabiri M. Synthesis and characterization of biodegradable hemostat gelatin sponge for surgery application. Iran. J. Pharm. Sci. 2008;4:193–200.
    1. Tropp J., Rivnay J. Design of biodegradable and biocompatible conjugated polymers for bioelectronics. J. Mater. Chem. C. 2021;9:13543–13556. doi: 10.1039/D1TC03600A.
    1. Singh B., Pal L. Sterculia crosslinked PVA and PVA-poly (AAm) hydrogel wound dressings for slow drug delivery: Mechanical, mucoadhesive, biocompatible and permeability properties. J. Mech. Behav. Biomed. Mater. 2012;9:9–21. doi: 10.1016/j.jmbbm.2012.01.021.
    1. Seyfert U.T., Biehl V., Schenk J. In vitro hemocompatibility testing of biomaterials according to the ISO 10993-4. Biomol. Eng. 2002;19:91–96. doi: 10.1016/S1389-0344(02)00015-1.
    1. Xie X., Li D., Chen Y., Shen Y., Yu F., Wang W., Yuan Z., Morsi Y., Wu J., Mo X. Conjugate electrospun 3D gelatin nanofiber sponge for rapid hemostasis. Adv. Healthc. Mater. 2021;10:2100918. doi: 10.1002/adhm.202100918.
    1. Fang Y., Xu Y., Wang Z., Zhou W., Yan L., Fan X., Liu H. 3D porous chitin sponge with high absorbency, rapid shape recovery, and excellent antibacterial activities for noncompressible wound. Chem. Eng. J. 2020;388:124169. doi: 10.1016/j.cej.2020.124169.
    1. Fan X., Li Y., Li N., Wan G., Ali M.A., Tang K. Rapid hemostatic chitosan/cellulose composite sponge by alkali/urea method for massive haemorrhage. Int. J. Biol. Macromol. 2020;164:2769–2778. doi: 10.1016/j.ijbiomac.2020.07.312.
    1. González A., Avivar J., Maya F., Palomino Cabello C., Turnes Palomino G., Cerdà V. In-syringe dispersive μ-SPE of estrogens using magnetic carbon microparticles obtained from zeolitic imidazolate frameworks. Anal. Bioanal. Chem. 2017;409:225–234. doi: 10.1007/s00216-016-9988-8.
    1. Liu W., Yang C., Gao R., Zhang C., Ou-Yang W., Feng Z., Zhang C., Pan X., Huang P., Kong D., et al. Polymer Composite Sponges with Inherent Antibacterial, Hemostatic, Inflammation-Modulating and Proregenerative Performances for Methicillin-Resistant Staphylococcus aureus-Infected Wound Healing. Adv. Healthc. Mater. 2021;10:2101247. doi: 10.1002/adhm.202101247.
    1. He Y., Zhao W., Dong Z., Ji Y., Li M., Hao Y., Zhang D., Yuan C., Deng J., Zhao P., et al. A biodegradable antibacterial alginate/carboxymethyl chitosan/Kangfuxin sponges for promoting blood coagulation and full-thickness wound healing. Int. J. Biol. Macromol. 2021;167:182–192. doi: 10.1016/j.ijbiomac.2020.11.168.
    1. Zhang Y., Guan J., Wu J., Ding S., Yang J., Zhang J., Dong A., Deng L. N-alkylated chitosan/graphene oxide porous sponge for rapid and effective hemostasis in emergency situations. Carbohydr. Polym. 2019;219:405–413. doi: 10.1016/j.carbpol.2019.05.028.
    1. Mahmoodzadeh A., Moghaddas J., Jarolmasjed S., Kalan A.E., Edalati M., Salehi R. Biodegradable cellulose-based superabsorbent as potent hemostatic agent. Chem. Eng. J. 2021;418:129252. doi: 10.1016/j.cej.2021.129252.
    1. Wan Y., Han J., Cheng F., Wang X., Wang H., Song Q., He W. Green preparation of hierarchically structured hemostatic epoxy-amine sponge. Chem. Eng. J. 2020;397:125445. doi: 10.1016/j.cej.2020.125445.
    1. Wang L., Zhong Y., Qian C., Yang D., Nie J., Ma G. A natural polymer-based porous sponge with capillary-mimicking microchannels for rapid hemostasis. Acta Biomater. 2020;114:193–205. doi: 10.1016/j.actbio.2020.07.043.
    1. Periayah M.H., Halim A.S., Saad A.Z.M. Mechanism action of platelets and crucial blood coagulation pathways in hemostasis. Int. J. Hematol. Oncol. Stem Cell Res. 2017;11:319.
    1. Liu C., Liu X., Liu C., Wang N., Chen H., Yao W., Sun G., Song Q., Qiao W. A highly efficient, in situ wet-adhesive dextran derivative sponge for rapid hemostasis. Biomaterials. 2019;205:23–37. doi: 10.1016/j.biomaterials.2019.03.016.
    1. Davalos D., Akassoglou K. Fibrinogen as a key regulator of inflammation in disease. Semin. Immunopathol. 2011;34:43–62. doi: 10.1007/s00281-011-0290-8.
    1. Guralnick W.C. Absorbable gelatin sponge and thrombin in oral surgery. Am. J. Orthod. Oral Surg. 1946;32:792–794. doi: 10.1016/0096-6347(46)90041-5.

Source: PubMed

3
Abonner