A systematic review of the diagnostic accuracy of artificial intelligence-based computer programs to analyze chest x-rays for pulmonary tuberculosis

Miriam Harris, Amy Qi, Luke Jeagal, Nazi Torabi, Dick Menzies, Alexei Korobitsyn, Madhukar Pai, Ruvandhi R Nathavitharana, Faiz Ahmad Khan, Miriam Harris, Amy Qi, Luke Jeagal, Nazi Torabi, Dick Menzies, Alexei Korobitsyn, Madhukar Pai, Ruvandhi R Nathavitharana, Faiz Ahmad Khan

Abstract

We undertook a systematic review of the diagnostic accuracy of artificial intelligence-based software for identification of radiologic abnormalities (computer-aided detection, or CAD) compatible with pulmonary tuberculosis on chest x-rays (CXRs). We searched four databases for articles published between January 2005-February 2019. We summarized data on CAD type, study design, and diagnostic accuracy. We assessed risk of bias with QUADAS-2. We included 53 of the 4712 articles reviewed: 40 focused on CAD design methods ("Development" studies) and 13 focused on evaluation of CAD ("Clinical" studies). Meta-analyses were not performed due to methodological differences. Development studies were more likely to use CXR databases with greater potential for bias as compared to Clinical studies. Areas under the receiver operating characteristic curve (median AUC [IQR]) were significantly higher: in Development studies AUC: 0.88 [0.82-0.90]) versus Clinical studies (0.75 [0.66-0.87]; p-value 0.004); and with deep-learning (0.91 [0.88-0.99]) versus machine-learning (0.82 [0.75-0.89]; p = 0.001). We conclude that CAD programs are promising, but the majority of work thus far has been on development rather than clinical evaluation. We provide concrete suggestions on what study design elements should be improved.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Study flow diagram.
Fig 1. Study flow diagram.
Computer aided detection (CAD).
Fig 2. Quality assessment (QUADAS 2) graph…
Fig 2. Quality assessment (QUADAS 2) graph of development studies.
Fig 3. Quality assessment (QUADAS 2) graph…
Fig 3. Quality assessment (QUADAS 2) graph of clinical studies.
Fig 4. Forest plots of accuracy measures…
Fig 4. Forest plots of accuracy measures of development and CAD4TB studies.
TP, true positive; FP, false positive; FN, false negative; TN, true negative; AI, artificial intelligence; CXRs, chest x-rays; ML, machine learning; DL, deep learning; CI, confidence interval; NAAT, nucleic acid amplification test.
Fig 5. Boxplots of the AUC of…
Fig 5. Boxplots of the AUC of studies stratified by software design, CXR usage, reference standard, and degree of patient selection, index test, and reference standard bias.
AUC, area under the cure; Vs, versus; CXR, chest x-ray.

References

    1. WHO. Global Tuberculosis Report 2017. Geneva: Licence: CC BY-NC- SA 3.0 IGO.: World Health Organization, 2017.
    1. WILLIAMS FH. The Use of X-Ray Examinations in Pulmonary Tuberculosis. The Boston Medical and Surgical Journal. 1907;157(26):850–3. 10.1056/nejm190712261572602
    1. Pande T, Pai M, Khan FA, Denkinger CM. Use of chest radiography in the 22 highest tuberculosis burden countries. Eur Respir J. 2015;46(6):1816–9. 10.1183/13993003.01064-2015
    1. Chunhaswasdikul B, Kamolratanakul P, Jittinandana A, Tangcharoensathien V, Kuptawintu S, Pantumabamrung P. Anti-tuberculosis programs in Thailand: a cost analysis. Southeast Asian J Trop Med Public Health. 1992;23(2):195–9. Epub 1992/06/01. .
    1. WHO. Chest Radiography in Tuberculosis Detection—Summary of current WHO recommendations and guidance on programmatic approaches. 2016 2016. Report No.
    1. Samandari T, Bishai D, Luteijn M, Mosimaneotsile B, Motsamai O, Postma M, et al. Costs and consequences of additional chest x-ray in a tuberculosis prevention program in Botswana. Am J Respir Crit Care Med. 2011;183(8):1103–11. Epub 2010/12/15. 10.1164/rccm.201004-0620OC
    1. Beam AL, Kohane IS. Big data and machine learning in health care. JAMA. 2018;319(13):1317–8. 10.1001/jama.2017.18391
    1. Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential biases in machine learning algorithms using electronic health record data. JAMA Internal Medicine. 2018. 10.1001/jamainternmed.2018.3763
    1. Pande T, Cohen C, Pai M, Ahmad Khan F. Computer-aided detection of pulmonary tuberculosis on digital chest radiographs: A systematic review. Int J Tuberc Lung Dis. 2016;20(9):1226–30 and ii. 10.5588/ijtld.15.0926
    1. Moher D, Liberati A, Tetzlaff J, Altman DG, The PG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009;6(7):e1000097 10.1371/journal.pmed.1000097
    1. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–36. Epub 2011/10/19. 10.7326/0003-4819-155-8-201110180-00009 .
    1. Jaeger S, Candemir S, Antani S, Wang YX, Lu PX, Thoma G. Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quantitative imaging in medicine and surgery. 2014;4(6):475–7. Epub 2014/12/20. 10.3978/j.issn.2223-4292.2014.11.20
    1. Shiraishi J, Katsuragawa S, Ikezoe J, Matsumoto T, Kobayashi T, Komatsu K, et al. Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists' detection of pulmonary nodules. AJR Am J Roentgenol. 2000;174(1):71–4. Epub 2000/01/11. 10.2214/ajr.174.1.1740071 .
    1. Abubakar I, Story A, Lipman M, Bothamley G, van Hest R, Andrews N, et al. Diagnostic accuracy of digital chest radiography for pulmonary tuberculosis in a UK urban population. Eur Respir J. 2010;35(3):689–92. Epub 2010/03/02. 10.1183/09031936.00136609 .
    1. Theron G, Zijenah L, Chanda D, Clowes P, Rachow A, Lesosky M, et al. Feasibility, accuracy, and clinical effect of point-of-care Xpert MTB/RIF testing for tuberculosis in primary-care settings in Africa: a multicentre, randomised, controlled trial. Lancet. 2014;383(9915):424–35. Epub 2013/11/02. 10.1016/S0140-6736(13)62073-5 .
    1. How reliable is chest radiography? In: Frieden T, editor. Toman’s tuberculosis: case detection, treatment, and monitoring. Questions and answers, second edition [Internet]. World Health Organization; 2004. [cited 5 August 2018]. Available from: .
    1. Muyoyeta M, Moyo M, Kasese N, Ndhlovu M, Milimo D, Mwanza W, et al. Implementation Research to Inform the Use of Xpert MTB/RIF in Primary Health Care Facilities in High TB and HIV Settings in Resource Constrained Settings. PLoS One. 2015;10(6):e0126376 Epub 2015/06/02. 10.1371/journal.pone.0126376
    1. Breuninger M, Van Ginneken B, Philipsen RHHM, Mhimbira F, Hella JJ, Lwilla F, et al. Diagnostic accuracy of computer-aided detection of pulmonary tuberculosis in chest radiographs: A validation study from sub-Saharan Africa. PLoS One. 2014;9(9). 10.1371/journal.pone.0106381
    1. Melendez J, Sanchez CI, Philipsen RH, Maduskar P, Dawson R, Theron G, et al. An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information. Sci Rep. 2016;6:25265 Epub 2016/04/30. 10.1038/srep25265
    1. Melendez J, Philipsen R, C, a-Kapata P, Sunkutu V, Kapata N, et al. Automatic versus human reading of chest X-rays in the Zambia National Tuberculosis Prevalence Survey. International Journal of Tuberculosis & Lung Disease. 2017;21(8):880–6. 10.5588/ijtld.16.0851 .
    1. Steiner A, Mangu C, van den Hombergh J, van Deutekom H, van Ginneken B, Clowes P, et al. Screening for pulmonary tuberculosis in a Tanzanian prison and computer-aided interpretation of chest X-rays. Public health action. 2015;5(4):249–54. Epub 2016/01/15. 10.5588/pha.15.0037
    1. Muyoyeta M, Maduskar P, Moyo M, Kasese N, Milimo D, Spooner R, et al. The sensitivity and specificity of using a computer aided diagnosis program for automatically scoring chest X-rays of presumptive TB patients compared with Xpert MTB/RIF in Lusaka Zambia. PLoS One. 2014;9(4). 10.1371/journal.pone.0093757
    1. Maduskar P, Muyoyeta M, Ayles H, Hogeweg L, Peters-Bax L, Van Ginneken B. Detection of tuberculosis using digital chest radiography: Automated reading vs. interpretation by clinical officers. Int J Tuberc Lung Dis. 2013;17(12):1613–20+i. 10.5588/ijtld.13.0325
    1. Melendez J, Hogeweg L, Sanchez CI, Philipsen R, Aldridge RW, Hayward AC, et al. Accuracy of an automated system for tuberculosis detection on chest radiographs in high-risk screening. The international journal of tuberculosis and lung disease: the official journal of the International Union against Tuberculosis and Lung Disease. 2018;22(5):567–71. Epub 2018/04/18. 10.5588/ijtld.17.0492
    1. Zaidi SMA, Habib SS, Van Ginneken B, Ferrand RA, Creswell J, Khowaja S, et al. Evaluation of the diagnostic accuracy of Computer-Aided Detection of tuberculosis on Chest radiography among private sector patients in Pakistan. Sci Rep. 2018;8(1):12339 Epub 2018/08/19. 10.1038/s41598-018-30810-1
    1. Fatima A, Akram MU, Akhtar M, Shafique I, editors. Detection of tuberculosis using hybrid features from chest radiographs. SPIE; 2017 2017-1-1. Proceedings of the SPIE, Volume 10225, id. 102252B 5 pp. (2017). SPIE.
    1. Ding M, Antani S, Jaeger S, Xue Z, Candemir S, Kohli M, et al., editors. Local-global classifier fusion for screening chest radiographs. SPIE Medical Imaging; 2017 2017-1-1: SPIE.
    1. Lopes UK, Valiati JF. Pre-trained convolutional neural networks as feature extractors for tuberculosis detection. Computers in Biology & Medicine. 2017;89:135–43. 10.1016/j.compbiomed.2017.08.001 .
    1. Lakhani P, Sundaram B. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology. 284(2):574–82. 10.1148/radiol.2017162326 .
    1. Udayakumar E, Santhi S, Vetrivelan P. TB screening using SVM and CBC techniques. Current Pediatric Research. 2017;21(2):338–42. .
    1. Hwang S, Kim HE, Jeong J, Kim HJ, editors. A novel approach for tuberculosis screening based on deep convolutional neural networks. Medical Imaging 2016: Computer-Aided Diagnosis; 2016: SPIE.
    1. Poornimadevi CS, Helen Sulochana C, editors. Automatic detection of pulmonary tuberculosis using image processing techniques. 2016 IEEE International Conference on Wireless Communications, Signal Processing and Networking, WiSPNET 2016; 2016: Presses Polytechniques Et Universitaires Romandes.
    1. Jaeger S, Karargyris A, Candemir S, Folio L, Siegelman J, Callaghan F, et al. Automatic tuberculosis screening using chest radiographs. IEEE Trans Med Imaging. 2014;33(2):233–45. 10.1109/TMI.2013.2284099
    1. Karargyris A, Siegelman J, Tzortzis D, Jaeger S, Candemir S, Xue Z, et al. Combination of texture and shape features to detect pulmonary abnormalities in digital chest X-rays. Int J Comput Assist Radiol Surg. 2016;11(1):99–106. Epub 2015/06/21. 10.1007/s11548-015-1242-x .
    1. Jaeger S, Karargyris A, Antani S, Thoma G. Detecting tuberculosis in radiographs using combined lung masks. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4978–81. Epub 2013/02/01. 10.1109/EMBC.2012.6347110 .
    1. Santosh KC, Vajda S, Antani S, Thoma GR. Edge map analysis in chest X-rays for automatic pulmonary abnormality screening. Int J Comput Assist Radiol Surg. 2016;11(9):1637–46. Epub 2016/03/21. 10.1007/s11548-016-1359-6 .
    1. Jaeger S. Detecting Disease in Radiographs with Intuitive Confidence. Sci World J. 2015;2015 10.1155/2015/946793
    1. Seixas JM, Faria J, Souza Filho JB, Vieira AF, Kritski A, Trajman A. Artificial neural network models to support the diagnosis of pleural tuberculosis in adult patients. Int J Tuberc Lung Dis. 2013;17(5):682–6. Epub 2013/04/12. 10.5588/ijtld.12.0829 .
    1. Hogeweg L, Sanchez CI, Maduskar P, Philipsen RHHM, Van Ginneken B. Fast and effective quantification of symmetry in medical images for pathology detection: Application to chest radiography. Medical Physics. 2017;44(6):2242–56. 10.1002/mp.12127 .
    1. Maduskar P, Philipsen RH, Melendez J, Scholten E, Chanda D, Ayles H, et al. Automatic detection of pleural effusion in chest radiographs. Med Image Anal. 2016;28:22–32. Epub 2015/12/22. 10.1016/j.media.2015.09.004 .
    1. Melendez J, van Ginneken B, Maduskar P, Philipsen RH, Ayles H, Sanchez CI. On Combining Multiple-Instance Learning and Active Learning for Computer-Aided Detection of Tuberculosis. IEEE Trans Med Imaging. 2016;35(4):1013–24. Epub 2015/12/15. 10.1109/TMI.2015.2505672 .
    1. Melendez J, Van Ginneken B, Maduskar P, Philipsen RHHM, Reither K, Breuninger M, et al. A novel multiple-instance learning-based approach to computer-aided detection of tuberculosis on chest X-rays. IEEE Trans Med Imaging. 2015;34(1):179–92. 10.1109/TMI.2014.2350539
    1. Hogeweg L, Sanchez CI, Maduskar P, Philipsen R, Story A, Dawson R, et al. Automatic Detection of Tuberculosis in Chest Radiographs Using a Combination of Textural, Focal, and Shape Abnormality Analysis. IEEE Trans Med Imaging. 2015;34(12):2429–42. Epub 2015/02/24. 10.1109/TMI.2015.2405761 .
    1. Giacomini G, Miranda JR, Pavan AL, Duarte SB, Ribeiro SM, Pereira PC, et al. Quantification of Pulmonary Inflammatory Processes Using Chest Radiography: Tuberculosis as the Motivating Application. Medicine. 2015;94(26):e1044 10.1097/MD.0000000000001044
    1. Requena-Mendez A, Aldasoro E, Munoz J, Moore DA. Robust and Reproducible Quantification of the Extent of Chest Radiographic Abnormalities (And It's Free!). PLoS One. 2015;10(5):e0128044 Epub 2015/05/23. 10.1371/journal.pone.0128044
    1. Melendez J, Sánchez CI, Philipsen RHHM, Maduskar P, Van Ginneken B, editors. Multiple-instance learning for computer-aided detection of tuberculosis Medical Imaging 2014: Computer-Aided Diagnosis; 2014; San Diego, CA: SPIE.
    1. Chauhan A, Chauhan D, Rout C. Role of gist and PHOG features in computer-aided diagnosis of tuberculosis without segmentation. PLoS One. 2014;9(11). 10.1371/journal.pone.0112980
    1. Sundaram KM, R, ran CS. An adaptive region growing algorithm with support vector machine classifier for Tuberculosis cavity identification. American Journal of Applied Sciences. 2013;10(12):1616–28. rayyan-6113211.
    1. Xu T, Cheng I, M, al M. Automated cavity detection of infectious pulmonary tuberculosis in chest radiographs. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:5178–81. rayyan-6113466. 10.1109/IEMBS.2011.6091282
    1. Noor NM, Yunus A, Bakar SA, Hussin A, Rijal OM. Applying a statistical PTB detection procedure to complement the gold standard. Comput Med Imaging Graph. 2011;35(3):186–94. Epub 2010/11/03. 10.1016/j.compmedimag.2010.10.002 .
    1. Shen R, Cheng I, Basu A. A hybrid knowledge-guided detection technique for screening of infectious pulmonary tuberculosis from chest radiographs. IEEE transactions on bio-medical engineering. 2010;57(11).
    1. Mouton A, Pitcher RD, Douglas TS. Computer-aided detection of pulmonary pathology in pediatric chest radiographs. 2010. p. 619–25.
    1. Hogeweg LE, Mol C, Jong PAd, Ginneken Bv, editors. Rib suppression in chest radiographs to improve classification of textural abnormalities2010 2010-1-1: SPIE.
    1. Lieberman R, Kwong H, Liu B, Huang H. Computer-assisted detection (CAD) methodology for early detection of response to pharmaceutical therapy in tuberculosis patients. Proceedings of SPIE—the International Society for Optical Engineering. 2009;7260:726030 Epub 2009/12/03. 10.1117/12.813583
    1. Arzhaeva Y, Hogeweg L, de Jong PA, Viergever MA, van Ginneken B. Global and local multi-valued dissimilarity-based classification: application to computer-aided detection of tuberculosis. Med Image Comput Comput Assist Interv. 2009;12:724–31. rayyan-6111190.
    1. Mohd Noor N, Mohd Rijal O, Shaban H, Ee Ling O. Discrimination between two lung diseases using chest radiographs. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society. 2005;3:3320–3. 10.1109/IEMBS.2005.1617187 .
    1. Hogeweg LE, Mol C, Jong PAd, Ginneken Bv, editors. Rib suppression in chest radiographs to improve classification of textural abnormalities. SPIE Medical Imaging; 2010 2010-1-1: SPIE.
    1. Alfadhli FHO, Mand AA, Sayeed MS, Sim KS, Al-Shabi M. Classification of tuberculosis with SURF spatial pyramid features. 2017 International Conference on Robotics, Automation and Sciences (ICORAS)2017. p. 1–5.
    1. Gabriella I, Stella A K, Agung W S. Early Detection of Tuberculosis using Chest X-Ray (CXR) with Computer-Aided Diagnosis2018. 76–9 p.
    1. Heo SJ, Kim Y, Yun S, Lim SS, Kim J, Nam CM, et al. Deep Learning Algorithms with Demographic Information Help to Detect Tuberculosis in Chest Radiographs in Annual Workers' Health Examination Data. Int J Environ Res Public Health. 2019;16(2). Epub 2019/01/19. 10.3390/ijerph16020250
    1. Hwang EJ, Park S, Jin KN, Kim JI, Choi SY, Lee JH, et al. Development and Validation of a Deep Learning-Based Automatic Detection Algorithm for Active Pulmonary Tuberculosis on Chest Radiographs. Clin Infect Dis. 2018. Epub 2018/11/13. 10.1093/cid/ciy967 .
    1. Rajaraman S, Candemir S, Xue Z, Alderson PO, Kohli M, Abuya J, et al. A novel stacked generalization of models for improved TB detection in chest radiographs. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference. 2018;2018:718–21. Epub 2018/11/18. 10.1109/embc.2018.8512337 .
    1. Santosh KC, Antani S. Automated Chest X-Ray Screening: Can Lung Region Symmetry Help Detect Pulmonary Abnormalities? IEEE Trans Med Imaging. 2018;37(5):1168–77. Epub 2018/05/05. 10.1109/TMI.2017.2775636 .
    1. Sivaramakrishnan R, Petrick N, Mori K, Kohli M, Abuya J, Alderson P, et al. Comparing deep learning models for population screening using chest radiography. Medical Imaging 2018: Computer-Aided Diagnosis2018.
    1. Vajda S, Karargyris A, Jaeger S, Santosh KC, Candemir S, Xue Z, et al. Feature Selection for Automatic Tuberculosis Screening in Frontal Chest Radiographs. J Med Syst. 2018;42(8):146 Epub 2018/07/01. 10.1007/s10916-018-0991-9 .
    1. FDA. Guidance for Industry and Food and Drug Administration Staff: Computer-Assisted Detection Devices Applied to Radiology Images and Radiology Device Data—Premarket Notification [510(k)] Submissions. In: Mathematics DoIaA, editor. Rockville, United States2012.
    1. Rahman MT, Codlin AJ, Rahman MM, Nahar A, Reja M, Islam T, et al. An evaluation of automated chest radiography reading software for tuberculosis screening among public- and private-sector patients. Eur Respir J. 2017;49(5). Epub 2017/05/23. 10.1183/13993003.02159-2016
    1. Philipsen RH, Sanchez CI, Maduskar P, Melendez J, Peters-Bax L, Peter JG, et al. Automated chest-radiography as a triage for Xpert testing in resource-constrained settings: a prospective study of diagnostic accuracy and costs. Sci Rep. 2015;5:12215 Epub 2015/07/28. 10.1038/srep12215
    1. Muyoyeta M, Kasese NC, Milimo D, Mushanga I, Ndhlovu M, Kapata N, et al. Digital CXR with computer aided diagnosis versus symptom screen to define presumptive tuberculosis among household contacts and impact on tuberculosis diagnosis. BMC Infectious Diseases. 2017;17(1):301 10.1186/s12879-017-2388-7 .
    1. Koesoemadinata RC, Kranzer K, Livia R, Susilawati N, Annisa J, Soetedjo NNM, et al. Computer-assisted chest radiography reading for tuberculosis screening in people living with diabetes mellitus. The international journal of tuberculosis and lung disease: the official journal of the International Union against Tuberculosis and Lung Disease. 2018;22(9):1088–94. Epub 2018/08/11. 10.5588/ijtld.17.0827 .
    1. Muyoyeta M, Kasese NC, Milimo D, Mushanga I, Ndhlovu M, Kapata N, et al. Digital CXR with computer aided diagnosis versus symptom screen to define presumptive tuberculosis among household contacts and impact on tuberculosis diagnosis. BMC Infect Dis. 2017;17(1):301 Epub 2017/04/26. 10.1186/s12879-017-2388-7
    1. Rahman MT, Codlin AJ, Rahman MM, Nahar A, Reja M, Islam T, et al. An evaluation of automated chest radiography reading software for tuberculosis screening among public- and private-sector patients. European Respiratory Journal. 2017;49(5). 10.1183/13993003.02159-2016 .
    1. HARRELL FE Jr., LEE KL, MARK DB. MULTIVARIABLE PROGNOSTIC MODELS: ISSUES IN DEVELOPING MODELS, EVALUATING ASSUMPTIONS AND ADEQUACY, AND MEASURING AND REDUCING ERRORS. Stat Med. 1996;15(4):361–87. 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>;2-4

Source: PubMed

3
Abonner